Wasik et al. BMC Genomics (2021) 22:197

https://doi.org/10.1186/512864-021-07508-2 B M C G enom iCS

RESEARCH ARTICLE Open Access

Comparing low-pass sequencing and ®
genotyping for trait mapping in
pharmacogenetics

Kaja Wasik', Tomaz Berisa', Joseph K. Pickrell', Jeremiah H. Li'" ®, Dana J. Fraser?, Karen King” and Charles Cox?

Check for
updates

Abstract

Background: Low pass sequencing has been proposed as a cost-effective alternative to genotyping arrays to
identify genetic variants that influence multifactorial traits in humans. For common diseases this typically has
required both large sample sizes and comprehensive variant discovery. Genotyping arrays are also routinely used to
perform pharmacogenetic (PGx) experiments where sample sizes are likely to be significantly smaller, but clinically
relevant effect sizes likely to be larger.

Results: To assess how low pass sequencing would compare to array based genotyping for PGx we compared a
low-pass assay (in which 1x coverage or less of a target genome is sequenced) along with software for genotype
imputation to standard approaches. We sequenced 79 individuals to 1x genome coverage and genotyped the
same samples on the Affymetrix Axiom Biobank Precision Medicine Research Array (PMRA). We then down-sampled
the sequencing data to 0.8x, 0.6x, and 0.4x coverage, and performed imputation. Both the genotype data and the
sequencing data were further used to impute human leukocyte antigen (HLA) genotypes for all samples. We
compared the sequencing data and the genotyping array data in terms of four metrics: overall concordance,
concordance at single nucleotide polymorphisms in pharmacogenetics-related genes, concordance in imputed HLA
genotypes, and imputation r°. Overall concordance between the two assays ranged from 98.2% (for 0.4x coverage
sequencing) to 99.2% (for 1x coverage sequencing), with qualitatively similar numbers for the subsets of variants
most important in pharmacogenetics. At common single nucleotide polymorphisms (SNPs), the mean imputation r
from the genotyping array was 0.90, which was comparable to the imputation r* from 0.4x coverage sequencing,
while the mean imputation r” from 1x sequencing data was 0.96.
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Conclusions: These results indicate that low-pass sequencing to a depth above 0.4x coverage attains higher power
for association studies when compared to the PMRA and should be considered as a competitive alternative to
genotyping arrays for trait mapping in pharmacogenetics.
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Background

Research in human genetics relies on efficiently profiling the
genome of large numbers of individuals. A number of
approaches can be used for this, usually trading off compre-
hensiveness (i.e. the fraction of the genome that is measured)
with cost. By far the most commonly-used approach is the
genotyping array, in which a set of known polymorphisms
(usually around 500,000-2,000,000) is measured. This tech-
nology is inexpensive (currently on the order of tens to hun-
dreds of dollars), but the set of genetic variants profiled is a
small number of all known variants, and the technology does
not allow for the detection of new (for example rare or
population-specific) genetic variants. Genotyping arrays are
commonly used for pharmacogenetics (PGx) studies where
typically sample numbers are more limited, but inclusion of
PGx focused variants on the arrays makes them suitable
tools for screening the genome for markers associated with
efficacy and adverse events [3, 15, 16].

The technological alternative to genotyping technology
is sequencing technology, in which specific polymor-
phisms are not targeted for analysis, but rather the entire
genome is sampled with some average depth of cover-
age. As sequencing costs have dropped, low-pass
sequencing (for our purposes, which we will define as
sequencing in which the average coverage of the genome
is equal to or lower than 1x) becomes an appealing alter-
native to genotyping [4, 6, 14]. As an intuition for why
this approach is useful, note that a human sample
sequenced at 0.4x coverage is expected to have a single
sequencing read covering each of around 28 million of
the 84.7 million genetic variants identified in the 1000
Genomes Project [1], while a genotyping array obtains
measurements (albeit somewhat less noisy measure-
ments) at two orders of magnitude fewer sites.

In this paper, we directly compare genotyping results
from low-pass sequencing to a commonly used genotyp-
ing array, the Affymetrix Axiom Biobank Precision
Medicine Research Array (PMRA). Two types of metrics
are relevant for this comparison. One is simply the
genome-wide coverage of the assay, which we measure
using average imputation quality. The other is genotyp-
ing quality at particular genetic variants of interest. We
were particularly interested in applications to PGx—the
identification of genetic variants that influence drug
response. In this application, genetic variants in the
major histocompatibility complex (MHC) and genes in-
volved in drug metabolism (so-called “ADME” genes, for
absorption, distribution, metabolism, and excretion) are
known to be particularly relevant. We thus considered
these separately.

Results
We selected 79 individuals to be both genotyped and
sequenced. These individuals derive from a pool of
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volunteers based out of Cambridge, UK for which prior
consent was obtained. Each individual was genotyped on
the Affymetrix Axiom Biobank PMRA, and sequenced
by Gencove, Inc. to an average of 1x coverage using the
[lumina HiSeq 4000 platform with paired-end 150 base
pair reads. Sequencing reads were then sampled at
random to obtain an average of 0.8x, 0.6x, and 0.4x
coverage of the genome (Methods).

We then performed genotyped imputation of genetic
variants in the 1000 Genomes Phase 3 release. This
imputation was performed using minimac2 (for the
genotyping array data) or Gencove’s loimpute software
v0.18 (for the low-pass sequencing data, see Methods for
details). Both the unimputed PMRA data and the
imputed low-pass sequencing data were then used to
impute HLA genotypes using HIBAG [18].

The relevant metrics to use when comparing the two
technologies depend on the downstream use cases.
Specifically, if an investigator is interested in identifying
genetic variants associated with a trait but has no a
priori knowledge of where in the genome such variants
are likely to be located, then the relevant metric is the
average correlation between imputed genotype calls and
true genotypes. On the other hand, if the investigator
knows that specific variants are most likely to be rele-
vant to the trait of interest, then the relevant metric is
the concordance between the technologies at those
specific sites. Since in PGx applications there are some
specific genes and variants of interest, we computed
metrics in both of these classes.

Overall genotype concordance

We first examined the overall concordance between the
genotyping arrays and imputed sequences at different
depths. To do this, we removed genotypes imputed with
low confidence (with less than 90% posterior probability
on a single genotype), and assessed the concordance
between the two platforms, averaging across individuals,
using metrics from the draft guidance of the United
States Food and Drug Administration [19]. These met-
rics measure concordance for variants present and ab-
sent in a reference genome—a “positive percent
agreement” (PPA) for variants that are different from the
reference and a “negative percent agreement” (NPA) for
variants that match a reference genome. For our pur-
poses we considered the genotypes from the PMRA as
“truth”; in this case the PPA ranged from 98.2% for 0.4x
coverage sequencing to 99.2% for 1x coverage sequen-
cing, while the NPA ranged from 99.8% for 0.4x cover-
age to 99.9% for 1x coverage (Table 1).

Genotype concordance at ADME genes
We then specifically compared the concordance between
the genotypes at variants in ADME genes as defined by
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Table 1 Genotype concordance between genotyping and
sequencing platforms

Comparison PPA (%) NPA (%) No Calls (Average)
Accuracy, 4x vs PMRA  98.22% 99.82% 2535
Accuracy, .6x vs PMRA  98.76% 99.85% 1848
Accuracy, .8x vs PMRA  99.01% 99.86% 1508
Accuracy, 1x vs PMRA 99.19% 99.88% 1251

In all cases the genotyping array was treated as ‘Truth’. Positive %
Agreement (PPA)- The percent of non-reference calls in the Truth dataset
detected by Test, ignoring no calls in Test. (True Positives / True Positives +
False Negatives). Negative % Agreement (NPA) - The percent of reference
calls in the Truth dataset detected by Test, ignoring no calls in Test. (True
Negatives / True Negatives + False Positives). No Calls— Count of No Calls in
test that were variant in Truth. No calls are averaged across all 79 individuals.
The total number of overlapping variants between the PMRA and the imputed
sequence data is ~ 423k

Hoverlson et al. [7]. There were 216 such variants that
were directly genotyped on the PMRA. We thus com-
puted the same concordance metrics specifically at these
216 variants. For these analyses we excluded low-
confidence genotype calls from the low-pass sequencing
data; the percentage of excluded calls range from 1.6%
of genotype calls in the 0.4x data down to 0.8% of geno-
type calls in the 1x data.

Concordance results are presented in Fig. 1la. At com-
mon variants (where the minor allele is present in more
than five copies in the sample, corresponding to a minor
allele frequency over 3%), PPA ranged from 98.5% (for
0.4x coverage) up to 99.4% (for 1x coverage). The lowest
concordance metric was the PPA at rarer variants, which
ranged from 82.1% (for 0.4x coverage) to 95.2% (for 1x
coverage).

Genotype concordance at HLA
Apart from ADME genes, another important locus in
PGx is the MHC region. We imputed four digit HLA
alleles from both the PMRA and sequencing data using
HIBAG [18], and assessed the concordance across the
two platforms at each of the seven HLA genes assessed
by HIBAG. (Fig. 1b). There was little variation in
imputed genotype concordance across levels of sequen-
cing coverage, and with the exception of the gene DPBI,
concordance was above 95%.

For samples where we saw consistent discordance for
a given gene between the platforms, we then generated
gold standard HLA genotype calls (Methods). A total of
15 HLA genotype calls in 12 samples were retested in
this manner. The correct calls were obtained at 7/15
genotypes from the PMRA, and 6, 7, 7, and 8/16 geno-
types after imputation from 0.4x, 0.6x, 0.8x, and 1x
sequencing, respectively.

Imputation quality and comparison
Finally, an important metric of how well a technology
assays known polymorphisms in the genome is the
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A. Concordance at variants in ADME genes
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Fig. 1 Genotype concordance across platforms at specific variants
relevant to pharmacogenomics. a. Concordance at SNPs in ADME
genes. Variants were classified as “rare” if the minor allele was
present in five or fewer copies in the sample (corresponding to an
allele frequency of about 3%. Concordance rates are split according
to the genotype calls on the PRMA, which was considered
“truth"—reference concordance is at variants where the PRMA is
homozygous reference, and non-reference concordance is for all
other sites. b. Concordance in HLA genotypes across platforms.
Shown are the concordance rates between sequencing and
genotyping array data in imputed HLA genotypes. Concordance is
shown for 0.4x and 1x sequencing

squared correlation between imputed genotype dosages
and the true genotypes (known as “imputation r*”).
Intuitively, if the researcher has a flat prior on where in
the genome to look for an association between a genetic
variant and a trait, the average squared correlation is a
measure of the power of the study.
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We computed this metric for different levels of
sequencing coverage by correlating the imputed allelic
dosages with directly genotyped sites. We computed this
same metric for the genotype data by using the leave-
one-out r* at genotyped sites computed by minimac2. At
common variants (allele frequency >5% in the cohort),
the average r* obtained from the genotyping array was
0.9 (Fig. 2), consistent with previous reports from a
European population [13]. For the sequencing data, this
metric varied from 0.91 (for 0.4x coverage) to 0.96 (for
1x coverage). When all variants across the frequency
spectrum were considered, the difference in average r*
between assays was even more pronounced, with the
average 1 for the genotyping array being 0.85 and the
average r” for the sequencing data ranging from 0.88
(for 0.4x coverage) to 0.93 (for 1x coverage).

To investigate the effect of the choice of imputation
reference panel on imputation performance on the se-
quencing data, we performed a head-to-head compari-
son between using the 1000 Genomes and a subset of
the Haplotype Reference Consortium (HRC) haplotypes
[12] as reference panels using the above methodology
(i.e., by treating the array data as “truth” and comparing
overlapping sites between the reference panel and the
array sites). Using the HRC dataset as the imputation
reference panel yielded marginal increases in average r*
values in all minor allele frequency (MAF) bins but the
lowest, where it suffered a decrease of about 0.036 as

o |
e
o _| / g . .- . . .
a 4 P —
. '/
.C /
= .
=
O
=
o .
=
[\
= ~
o5
S o
©
— 1x
S — 0.8x
0.6x
— 0.4x
o | array
o
T T T T
0.1 0.2 03 0.4

allele frequency

Fig. 2 Comparison of imputation quality across platforms. Alleles
were binned according to their minor allele frequency (as measured
on the genotyping array) and imputation r* averaged across all
variants in the bin. For sequencing data, the array data was treated
as 'truth’ and imputation r’ computed by correlating imputed
dosages to array genotypes. For the array data, imputation r° for all
genotyped variants was computed using a leave-one-out procedure
implemented in minimac2
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compared to the 1000 Genomes imputed sites in the
same bin (Supp. Tables S1, S2). The exact details and
further discussion on this particular comparison can be
found in the accompanying Supplementary Materials
(Supp. Figs. S1, S2).

Discussion

In this paper, we performed a direct comparison
between low-pass sequencing (combined with imput-
ation) and a commonly-used genotyping array for the
purposes of trait mapping in pharmacogenetics.

We observed that overall, genotype calls across the
two platforms were highly concordant, with a positive
percent agreement (PPA) of the imputed sequence data
to the genotyping array calls ranging from 98.22% at
0.4x to 99.19% at 1x coverage.

At ADME genes, we observed qualitatively similar
results, with a PPA ranging from 98.5 to 99.4% at sites
of common variation (> 3% minor allele frequency in this
cohort) and a PPA ranging from 82.1 to 95.2% at rarer
variants (< 3%).

Four-digit HLA alleles in the MHC region imputed
from sequencing data had high concordance with those
imputed from the PMRA, with all concordances across
the range of sequencing coverage observed to be above
95% with the exception of those in the DPB1 gene; fur-
ther validation using a gold-standard assay of the HLA
genotype calls resulted in similar concordance results
between the imputed sequence or PMRA data and the
resulting gold standards.

For the purposes of trait mapping, low-pass sequen-
cing above a sequencing coverage of 0.4x had higher
overall imputation accuracy as measured by imputation
r” than the genotyping array, indicating a corresponding
increase in power.

Beyond simply comparing concordance between as-
says, it is important to consider other, orthogonal con-
siderations when deciding between low-pass sequencing
and genotyping arrays for PGx purposes. For instance,
due to the sheer number of measurements (reads) made
during a sequencing run (even at very low coverages),
sequence data allows far more sensitive detection of
copy number and structural variation [5, 20]. As intu-
ition, consider that sequencing a human genome at a
depth of 0.1x using 150 bp reads yields 2.2 million reads
corresponding to measurements at 330Mbp, compared
to a typical genotyping array which generates point mea-
surements at only a few hundreds of thousands to a
couple million sites.

Similarly, sequencing affords the capability to perform
metagenomic profiling and analysis of the microbiome
via analysis of non-human sequencing reads deriving
from a DNA sample, as well as analysis of mitochondrial
count [2, 17].



Wasik et al. BMC Genomics (2021) 22:197

Logistical and budgetary considerations are also essen-
tial in real-world project planning. In a number of sce-
narios with different outcomes and study designs, low-
pass sequencing has been shown to increase perform-
ance, for example by increasing the effective sample size
of a genome-wide association study [14] or increasing
the accuracy of polygenic risk scoring [10].

One of the drawbacks of low-pass sequencing com-
pared to genotyping arrays is that while the average
performance over the entire genome is consistently
higher with sequencing, there may occasionally be a
subset of specific SNPs or genes that, for a given
study design, must be assayed with a level of accuracy
and precision which low-coverage sequencing is sim-
ply unable to provide. In order to address this, it may
be useful to develop an assay which combines low-
pass whole genome sequencing with higher-depth
coverage of pre-selected target regions on the gen-
ome, such that a single sequencing run simultan-
eously yields low-coverage sequence data across the
genome at the same time as assaying specific SNPs,
variants, or genes of interest with clinical grade
accuracy.

Conclusion

As research into the effects of genetics on drug response
continues to accelerate, it will become increasingly im-
portant for assays used in pharmacogenetics to provide
reliable measurements both across the entire genome
and at specific PGx focused variants. Our results demon-
strate that low-pass sequencing and imputation provide
a competitive alternative to genotyping arrays in both of
these applications.

It is worth noting that the cost of sequencing is
declining rapidly; if sequencing a human genome to
30x coverage costs $1000, then the cost of sequen-
cing a human sample to 0.4x coverage is around
$13. The key components of cost in a low-pass
sequencing assay then become sequencing library
preparation and analysis. As the costs of sequencing
continue to drop, the importance of these latter
costs will continue to grow.

Methods
Genotyping
Samples were from study TMT109167: A study to col-
lect blood samples from members of the Clinical Unit
Cambridge, UK (CUC) volunteer panel for DNA extrac-
tion and storage, for investigation of prospective
genotype-phenotype relationships and stratification of
subjects for recruitment into future clinical trials.

DNA samples were genotyped by BioStorage
Technologies/Bioprocessing Solutions Alliance, Brooks
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Life Sciences (Piscataway, NJ, USA) using the Affymetrix
Axiom PMRA.

Prior to genotype imputation, variants in each GWAS
dataset were excluded using standard Affymetrix QC
thresholds for the PMRA, if there were deviations from
Hardy-Weinberg proportions within subgroups of any
given ancestry or showed gross and irreconcilable differ-
ences in alleles or allele frequency with reference panel
genotypes from the HapMap or 1000 Genome projects.
Standard Affymetrix array QC sample level thresholds
were also applied prior to imputation.

(http://www.affymetrix.com/support/downloads/
manuals/axiom_genotyping_solution_analysis_guide.pdf)

Imputation of PMRA data

Genotype imputation for genetic variants that were not
directly genotyped (“untyped variants”) was performed
using a cosmopolitan haplotype reference panel from
the 1000 Genomes Project [The 1000 Genomes Project
Consortium, 2015], and using Hidden Markov Model
methods as implemented in MaCH and minimac [8, 9].

HLA genotyping

High resolution HLA genotyping was performed at BioS-
torage Technologies/Bioprocessing Solutions Alliance,
Brooks Life Sciences (Piscataway, NJ, USA) using the
Thermo Fisher AllSet+ Gold SSP High-Resolution HLA
kit for HLA-A, HLA-B, HLA-DRB1, HLA-DQB1 and
HLA-DPBI following the manufacturer’s instructions.

Sequencing

Sequencing libraries were prepared from DNA using the
KAPA Library Preparation Kit by Roche and sequenced
on an lllumina HiSeq 4000 instrument. Sequencing reads
for each sample were aligned to the genome using bwa
mem [9], and sequencing reads were randomly sampled
to obtain different levels of sequencing coverage. Imput-
ation of genotypes from sequencing data was done using
loimpute v. 0.18 by Gencove, Inc. (New York, NY) to a
reference panel comprising a subset of the 1000
Genomes Phase 3 (described in more detail in the
Supplementary Materials).

Imputation of sequencing data

Imputation was performed using an implementation of
the Li and Stephens model [11], described in more detail
in the Supplementary Note.

Abbreviations

PGx: Pharmacogenetics; PMRA: Precision Medicine Research Array;

HLA: Human leukocyte antigen; ADME: Absorption, distribution, metabolism,
and excretion; SNP: Single nucleotide polymorphism; MHC: Major
histocompatibility complex; PPA: Positive percent agreement; NPA: Negative
percent agreement; MAF: Minor allele frequency; HRC: Haplotype Reference
Consortium
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Additional file 1: Supplementary note. Details of the model underlying
loimpute, the software used to impute the low-pass sequencing data
analysed in this study.

Additional file 2: Supplementary materials. Description of imputation
performance using the HRC as a haplotype reference panel rather than
the 1000 Genomes Phase 3 release. Figure S1. Comparison of
imputation r* across allele frequency bins for the 1000 Genomes panel.
Figure S2. Comparison of imputation r* across allele frequency bins for
the HRC panel.
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