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Abstract

Background: Durum wheat (Triticum turgidum L. ssp. durum Desf. Husn) is the main staple crop used to make
pasta products worldwide. Under the current climate change scenarios, genetic variability within a crop plays a
crucial role in the successful release of new varieties with high yields and wide crop adaptation. In this study we
evaluated a durum wheat collection consisting of 197 genotypes that mainly comprised a historical set of
Argentinian germplasm but also included worldwide accessions.

Results: We assessed the genetic diversity, population structure and linkage disequilibrium (LD) patterns in this
collection using a 35 K SNP array. The level of polymorphism was considered, taking account of the frequent and
rare allelic variants. A total of 1547 polymorphic SNPs was located within annotated genes. Genetic diversity in the
germplasm collection increased slightly from 1915 to 2010. However, a reduction in genetic diversity using SNPs
with rare allelic variants was observed after 1979. However, larger numbers of rare private alleles were observed in
the 2000–2009 period, indicating that a high reservoir of rare alleles is still present among the recent germplasm in
a very low frequency. The percentage of pairwise loci in LD in the durum genome was low (13.4%) in our
collection. Overall LD and the high (r2 > 0.7) or complete (r2 = 1) LD presented different patterns in the
chromosomes. The LD increased over three main breeding periods (1915–1979, 1980–1999 and 2000–2020).

Conclusions: Our results suggest that breeding and selection have impacted differently on the A and B genomes,
particularly on chromosome 6A and 2A. The collection was structured in five sub-populations and modern
Argentinian accessions (cluster Q4) which were clearly differentiated. Our study contributes to the understanding of
the complexity of Argentinian durum wheat germplasm and to derive future breeding strategies enhancing the use
of genetic diversity in a more efficient and targeted way.
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Background
Durum wheat (Triticum turgidum L. ssp. durum Desf.
Husn) is one of the most important food crops in the
world [1] with a worldwide production of about 36
millon tons [2]. It was derived from wild Emmer wheat
(T. turgidum ssp. dicoccoides, 2n = 4X = 28, AABB) in a
two-step domestication process that took place in the
Fertile Crescent (10,000 BP) and now it is cultivated glo-
bally [3]. The main producing areas of durum wheat are
in the Mediterranean Basin, North America and India,
Canada and Turkey being the main producer countries
of this cereal, followed by Argelia, Italy and India [4].
Historically it has been used as the main source for mak-
ing different products, mainly flat and leavened bread,
couscous, burghul and frekeh in the West Asia, and the
North and East Africa region and to elaborate pasta in
Western Europe, as well as in North America and world-
wide [5]. It has been suggested that durum wheat was
the first type of wheat sown in the Spanish colonies in
South America in 1527 [6]. In Argentina, the widespread
cultivation of durum started with the introduction of
European or Asian landraces, followed by the beginning
of wheat breeding during the first two decades of the
XXth century. The incorporation of the semi-dwarf
genes (Rht) during the green revolution occurred during
the 70’s. The older cultivars, typically conformed by high
and less productive plants, were progressively replaced
before the beginning of the 80’s and all the durum wheat
varieties cultivated in Argentina today are semi-dwarf
[7]. Argentina annually cultivates the largest durum
wheat area in South America (53,480 ha in 2019/20)
(http://datosestimaciones.magyp.gob.ar/) mainly in the
southeast of Buenos Aires province, but also in the
north-center of the country in Tucumán province and
minor areas in San Luis and Córdoba. Durum wheat
grains are mainly used for dry pasta production, one of
the main staple foods in Argentina, with a consumption
of 8.54 kg per capita p.a. and occupying the 7th world-
wide position of production and consumption [8].
The understanding of genetic diversity available in this

crop provides breeders with important knowledge to 1)
properly design future strategies in plant breeding, 2) as-
sist in germplasm collection management, and 3) con-
serve diversity in the national genebanks. To evaluate
the genetic diversity in durum wheat, different wheat
germplasm collections have been established and genet-
ically characterized using DNA markers by several re-
search institutions [9–17]. Genetic diversity in modern
cultivars is usually decreased due to bottleneck events
during domestication [18] and strong selection in breed-
ing [13, 19]. However, some authors [17] have found a
low or null decay in diversity from landraces to modern
cultivars, although they observed an effect of breeding
on the linkage disequilibrium (LD) patterns and allele’s

frequency. Efforts in recovering genetic diversity and to
capture beneficial alleles for specific traits have been
made by exploring the genetic variability available in
landraces [20–24] and wild relatives [25–27].
Single Nucleotide Polymorphisms (SNPs) are the most

common type of polymorphism in genomes [28]. The use
of array technologies developed to capture variants in
SNP markers in wheat has become a cost-effective and
more efficient way to assess diverse genetic resources [29].
Several wheat SNP arrays, such as the 9 K or 15 K Infi-
nium BeadChip [30] and the 90 K iSelect SNP Array [31]
from Illumina (https://www.illumina.com), or the 820 K
Wheat HD genotyping Array [32], the 35 K Axiom Wheat
Breeder’s Array [33] and the Wheat 660 K Array [34] from
Affymetrix (www.affymetrix.com), are available and have
been widely used during recent years. Furthermore, Next-
generation sequencing (NGS) based approaches, such as
Genotyping by Sequencing (GBS) [35], or DArtSeq [36],
and other emerging technologies are powerful tools for
SNP discovery. The sequencing of hexaploid (bread) and
tetraploid (wild emmer and durum) wheat genomes [37–
39] has anchored the molecular markers to their physical
positions.
The study of LD can be defined as the nonrandom as-

sociation of alleles at different loci due to genetic link-
age, as well as artificial selection, drift, bottlenecks and
other genetic forces [40]. Previous studies have ad-
dressed this issue in durum wheat [10, 41–43]. However,
the analysis of LD patterns in a germplasm collection in-
cluding Argentinian durum wheat by using an SNP array
has not yet been performed. The study of LD could help
to understand the effect of selection pressure exerted
over the national germplasm that occurred during the
breeding processes. An initial genetic characterization of
a subset of the durum wheat collection used in this
study was performed with AFLP and a low number of
KASP™ SNPs markers [14]. For the present study our
goals were to i) assess the genetic diversity in a collec-
tion of 197 durum wheat accessions ii) study the popula-
tion structure in our germplasm collection to establish
the main genetic relationships between the Argentinian
durum wheat and other foreign germplasm, iii) estimate
LD patterns considering the variation in the genome,
population structure and the time of release of evaluated
genotypes.

Results
Distribution and physical location of polymorphic SNPs
From all the SNP results, 7431 SNPs were high-quality
polymorphic in the 197 durum wheat accessions (Add-
itional file 1: Table S1a, b), of which 4854 (65.3%) SNPs
showed and minor allele frequency (MAF) > 0.05, here-
after called high frequency (HF) SNPs and 2577 (34.7%)
corresponded to ˋrare alleles´ SNP with an MAF <
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0.05, subsequently called low frequency (LF) SNPs. A
total of 7222 out of 7431 polymorphic SNPs could be
aligned to the Svevo whole genome sequence assembly
with an average inter-marker distance of 1.38Mb,
whereas the HF and LF SNPs showed average values of
2.1Mb and 4.0Mb, respectively. The SNP distribution in
the durum wheat genome is shown in Table 1. The
number of SNPs per chromosome ranged from 231 (4A)
to 542 (1B) for HF SNPs whereas the LF SNPs varied
from 70 (4B) to 337 (1B). The HF SNPs were better dis-
tributed than the LF SNPs. The B genome had a higher
number of polymorphic SNPs, where 1B, 2B and 6B
chromosomes showed higher representation. The anno-
tation’s ID and function of genes containing SNPs were
listed in Additional file 2: Tables S2a, b. A total of 1547
polymorphic SNPs was located within the annotated
genes, out of which 595 corresponded to LF SNPs and
952 to HF SNPs. Out of these, 16 annotated genes
carried three or more than three SNP markers, and in
particular, two annotations (TRITD6Bv1G225150 and
TRITD7Av1G001490) showed nine and six polymorphic
SNPs, respectively (Additional file 2: Tables S2c, d).

Genetic diversity analysis
Genetic diversity was analyzed in all the chromosomes
considering HF and LF SNPs separately. Nei’s gene di-
versity (He) considering HF SNPs was higher for the B
genome, showing maximum values on the 3B and 1B
chromosomes, while the A genome showed higher
values of He for LF SNPs (rare allele) (Table 1). When
the geographical origin or period of release were taken
into account the private alleles (alleles that are found
only in a single subgroup) were not observed among the
HF SNPs (Table 2). However, the analysis of rare alleles
detected 1102 and 1122 private alleles based on geo-
graphical origin and the period of the genotype’s breed-
ing or release, respectively.
The highest genetic diversity indices (I, He, Ho, Na,

%PL) calculated using HF SNPs were observed in the
modern Argentinian accessions (ARM), followed by the
French (FRA) and traditional Italian ones (ITT), whereas
the lowest indices were observed in the genotypes from
the USA, CIMMYT and Chile (Additional file 3: Figure
S1a, b). However, when the indices and the number of
private alleles (PA) were based on LF SNPs, the ITT
constituted the most diverse subgroup. All 17 ITT acces-
sions carried rare PAs and 416 LF SNP variants that
were exclusive of this subgroup (37.7% of total) giving
an average of 24.5 PA by accessions (Additional file 4:
Table S3a). The Chilean (303 PA) and modern Argentin-
ian (200 PA) subgroups also captured a high number of
rare SNP variants. The PCoA via distance matrix with
data standardization of the Nei genetic distance evi-
denced that modern Argentinian genotypes are

genetically related to WANA region accessions. On the
other hand, Chilean accessions were closely related to
CIMMYT germplasm (Additional file 5: Table S4a).
Diversity indices calculated according to the period of

the genotype’s breeding or release were also analyzed.
The indices that were estimated using HF SNPs showed
a slight upward trend between 1970 and 2009, followed
by a slight reduction in diversity during the last period
(2010–2020). However, the analysis of LF SNPs showed
a different pattern, increasing from 1915 to1979,
followed by a three-fold downward trend in diversity to
the present (Additional file 3: Figure S1c,d). Despite this,
the highest number of LF PAs was observed between
2000 and 2009, with 590 PA (52.6%) followed by 396 PA
in 1970–1979 (35.3%) (Table 2). The highest average
number of PAs by accession was found in the period
1970–1979 (28.3 PA). The estimated Nei genetic dis-
tance among breeding periods showed the highest differ-
entiation between the 1960–1969 and 2010–2020
periods (Additional file 5: Table S4b).
Only 15 genotypes of the collection captured most of

the rare allelic variants, in particular the cultivar Polesine
(ITT, 1970–1979) and the Chilean breeding line Quc
3506–2009 (2000–2009) that carried more than 200 PA
(Additional file 4: Table S3c).

Linkage disequilibrium patterns
Analysis of genome-wide LD in the whole collection
showed that 13.37% of the total marker pairs had a sig-
nificant LD (p < 0.01), with a mean r2 value of 0.0895.
Only 4.74 and 0.95% of the significant marker pairs
showed r2 values above 0.2 and 0.7, respectively, indicat-
ing a low level of LD in the genome. Differences in the
significant intra-chromosomal LD were observed be-
tween the A and B genomes resulting in higher values in
the A genome. Analysis of variance detected significant
differences (p < 0.001) in LD between chromosomes,
with the 6A chromosome having the highest mean r2

value (r2 = 0.290), followed by 2A, 4B, 1A, 4A and 7A.
Moreover, the 6A had the lower proportion of signifi-
cant marker pairs in LD (15.1%), whereas the highest
value was observed in the 1B chromosome (27%) (Table
1). The frequency of r2 values in each chromosome is
shown in Fig. 1d.
The distribution and extent of LD were displayed as

decay plots and a second-degree locally-weighted poly-
nomial regression (LOESS) curve was fitted by chromo-
some, each genome and for the whole genome (Fig. 1a,
b). The critical threshold r2 value, corresponding to the
95th percentile of the distribution of the square root
transformed inter-chromosomal LD, was r2 = 0.196, very
close to the 0.2 suggested by [44]. The intra-
chromosomal LD decay, below an r2 critical threshold
lower than 0.2, showed a mean value of 11.8 Mb in the
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whole genome below which the LD is probably caused
by a real physical linkage. The LD decay varied from 5.6
(7A) to 19.1 (1B) Mb in the chromosomes (Table 1, Fig.
1a, b). Beyond the inter-marker distance indicated as
whole genome LD decay, 88.2% of the r2 values were
below 0.2 and only 4.4% were values higher than 0.5. Al-
ternatively, the LD decay was calculated as the variation
of the mean r2 value across distance in each chromo-
some [45] (Additional file 6: Figure S2a).
LD decay was also calculated considering the Argen-

tinian germplasm only, obtaining values of 60.6 Mb for
the A genome, 34.7 Mb for the B genome and a whole
genome value of 30.4 Mb which is 2.5 fold higher than
the one obtained when the whole collection was consid-
ered (Additional file 6: Figure S2b, c, d). The mean r2

values for the Argentinian germplasm and by chromo-
some are also shown in Table 1.
On the other hand, the number of marker pairs, in

high (r2 > 0.7) or complete LD (r2 = 1), was assessed for
each chromosome and its distribution considering the
inter-marker distance was evaluated. As a result, the per-
centage of marker pairs in complete intra-chromosomic
LD (r2 = 1) in the whole genome was very low (1.97%).
The 2A, 6A, 1B, 2B, 7A chromosomes showed the high-
est number of marker pairs in complete LD, whereas 1B,
2A, 6A, 7A and 2B exhibited the highest number in high
LD (r2 > 0.7). This analysis was repeated taking into ac-
count only the Argentinian germplasm being the num-
ber of marker pairs in high LD (r2 > 0.7) 11.7% higher
and the complete LD (r2 = 1) 88.9% higher than in the

Table 2 Genetic diversity estimated in the whole collection and subgroups

Subgroup N 4854 HF SNPs 2577 LF SNPs

%PL Na I Ho He PA %PL Na I Ho He PA

Origin a

ARM 71 98.0 1.98 0.478 0.029 0.315 0 45.4 1.45 0.051 0.003 0.022 200

ART 14 83.8 1.84 0.416 0.016 0.273 0 19.6 1.20 0.056 0.002 0.031 50

CHI 26 80.6 1.81 0.390 0.008 0.257 0 27.7 1.28 0.057 0.001 0.028 303

CIM 10 66.3 1.66 0.348 0.003 0.231 0 9.1 1.09 0.032 0.001 0.019 1

FRA 22 92.4 1.92 0.462 0.024 0.306 0 24.6 1.25 0.061 0.003 0.032 86

ITM 16 81.4 1.81 0.423 0.008 0.282 0 12.3 1.12 0.041 0.002 0.023 18

ITT 17 91.7 1.92 0.457 0.020 0.301 0 48.3 1.48 0.131 0.005 0.070 416

USA 4 53.3 1.53 0.320 0.016 0.220 0 6.8 1.07 0.039 0.002 0.026 29

WAN 17 84.7 1.85 0.424 0.008 0.280 0 17.4 1.17 0.048 0.001 0.026 26

Period

1915–1959 6 70.3 1.70 0.382 0.015 0.255 0 10.6 1.11 0.047 0.002 0.029 12

1960–1969 5 61.5 1.62 0.352 0.018 0.239 0 19.6 1.20 0.098 0.006 0.064 33

1970–1979 15 91.0 1.91 0.460 0.022 0.304 0 48.1 1.48 0.137 0.005 0.074 396

1980–1989 22 94.9 1.95 0.474 0.017 0.314 0 23.4 1.23 0.049 0.002 0.024 30

1990–1999 24 95.2 1.95 0.482 0.008 0.320 0 22.7 1.23 0.046 0.001 0.022 32

2000–2009 101 99.8 2.00 0.487 0.015 0.320 0 71.1 1.71 0.067 0.002 0.028 590

2010–2020 24 92.5 1.93 0.459 0.048 0.303 0 19.2 1.19 0.034 0.003 0.016 29

DAPC

Q1 68 99.2 1.99 0.478 0.023 0.315 1 54.2 1.54 0.066 0.003 0.029 313

Q2 41 97.3 1.97 0.450 0.019 0.293 0 35.2 1.35 0.050 0.002 0.022 104

Q3 36 92.0 1.92 0.419 0.014 0.271 0 56.0 1.56 0.108 0.003 0.054 511

Q4 18 70.6 1.71 0.327 0.030 0.212 1 8.2 1.08 0.019 0.002 0.010 6

5 34 83.2 1.83 0.364 0.011 0.234 0 31.2 1.31 0.056 0.001 0.027 297

Total 197 100 2.00 0.503 0.019 0.333 – 100 2.00 0.078 0.002 0.031 –

HF high frequency, LF low frequency, % PL percentage of polymorphic loci, Na average number of alleles, I Shannon’s Information index, Ho observed
heterozygosity, He Nei’s gene diversity or heterozygosity, PA number of private alleles
Q1 to Q5 are the sub-population inferred by DAPC
a ARM Accessions are coded as: modern Argentinian, ART traditional Argentinian, CHI Chile, CIM CIMMYT, FRA France, ITM modern Italian, ITT traditional Italian, USA
United States, WAN West Asia/ North Africa region. Accessions from Argentina and Italy were divided into two groups according to the breeding period or year of
release (until: ʽtraditional,ʼ and after 1985: ʽmodernʼ)
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whole collection, in particular for the 6A, 2A, 7A and 1B
chromosomes (Additional file 6: Figure S2e, f).
Considering the whole genome, the number of pair-

wise SNPs showing high (r2 > 0.7) or complete LD (r2 =
1) values was maximum in an inter-marker distance
range of 1 to 5Mb (Additional file 6: Figure S2g, h).
However, different behavior was observed in three chro-
mosomes (2A, 7A and 6A) showing an increasing num-
ber as the distance between pairs of SNPs increased,
suggesting a higher extension of high LD in these chro-
mosomes. The 1B chromosome exhibited extended high
LD between 1 and 50Mb, also shown in Additional file
6: Figure S2d. LD heat maps by chromosome and for
whole genome revealed larger LD blocks on chromo-
somes 6A, 4B, 2A, 7A, 4A, 1B, 1A and 3B (Add-
itional file 7: Figure S3a, b).
In addition, the inter-marker distance estimated con-

sidering the SNP pairs in complete LD was higher in the
Argentinian germplasm compared with the whole collec-
tion values (Table 3).

An overall increase over time in significant LD, and
also in the extension of LD measured as an average of
inter-marker distance (Mb) (Fig. 2), was observed as an
effect of breeding, considering three main periods
(1915–1979, 1980–1999 and 2000–2020). In this sense,
the number of pairwise SNPs in high LD (r2 > 0.7) in-
creased over time, but the proportion of these markers
decreased as a consequence of an overall increase in the
background LD. Different LD patterns in the A and B
genomes and in the chromosomes were observed over
time (Additional file 8: Figure S4). In general, the SNP
pairs on the B genome in high LD decreased between
the second and third periods. The 6A chromosome was
the only one showing an increase in the number and a
proportion of pairwise in complete LD = 1 simultan-
eously over time.

Population stratification and diversity
The population structure was studied in our collection
using a subset of 675 markers selected from the

Fig. 1 Genome-wide linkage disequilibrium (LD) distribution and LD decay. a Scatter plot of LD values of intra-chromosomal pairwise loci against
physical distance (Mb). LD decay was fitted with the locally weighted polynomial regression-based (LOESS) curve by genome and for genome-
wide LD. b LOESS curves fitted by chromosome (only distance to 200 Mb is shown); c Number of SNP pairs in LD distributed along physical
distance intervals; d) LD (r2) values frequency by chromosome, genome and whole genome
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complete dataset. These markers were almost evenly dis-
tributed throughout the whole genome (Table 1).
Five sub-populations were inferred by the Discrimin-

ant Analysis of Principal Components (DAPC) based on
BIC criterion (Fig. 3). For this analysis, 40 PCs were
retained using the cross-validation method. The modern
Argentinian germplasm was mainly distributed in four
sub-populations, Q1 (28), Q2 (16), Q4 (16) and Q5 (9),
indicating the high diversity present in this germplasm.
The only modern Argentinian cultivar included in Q3
was BonINTA Cumenay. Three traditional Argentinian
accessions were included in Q1, one in Q2, nine in Q3
and only one in Q4.
The sub-population Q1 mostly included modern Ar-

gentinian accessions (28), most of the French germplasm
(19 out of 22) and intermediate contributions of WANA
(6), Chile (4), traditional Argentinian (3) and modern
Italian accessions (3). Two out of the three Argentinian
breeding programs included in this study (INTA and
ACA) made a major contribution to this group and 72%
of the germplasm included in Q1 corresponded to the
last two breeding decades. Among these contributions
the Argentinian cultivar BonINTA Carilo was widely
present in the pedigree of the breeding lines of this sub-
population. The U.S. cultivar Kofa was also included in
this group, as well as several breeding lines from the Ar-
gentinian program of ACA which frequently used Kofa
as a parental line for end-use quality traits.

The sub-population Q2 included 16 Argentinian ac-
cessions, followed by nine from WANA, five from Chile,
three from CIMMYT and three modern Italian geno-
types. This sub-population showed greater influence in
the pedigrees of accessions from the CIMMYT/ICARDA
breeding programs. The Q2 cluster included four Om
Rabi accessions and its parental line Haurani, all from
the WANA region. The founder genotypes Altar 84
(Gallareta) and Yavaros-79 (Chagual INIA), two geno-
types widely used by CIMMYT in different breeding
programs, were also included. The cultivar Buck Topacio
(PROB611/Altar 84) belongs to this sub-population, cul-
tivated in Argentina for 20 years, together with deriva-
tive breeding lines from INTA and BUCK Semillas.
The sub-population Q3 was mainly composed of

Italian germplasm (24 of 36), i.e. 15 out of 17 traditional,
and nine modern, Italian accessions. This sub-
population also includes nine out of the 14 traditional
Argentinian accessions and it is mostly composed of old
genotypes (58%), released between 1915 and 1979, with
great influence of Cappelli and Taganrog, two founder
genotypes. The only modern Argentinian genotype in-
cluded in Q3 (BonINTA Cumenay) is mainly a derivative
of the last two mentioned genotypes. In addition, here
were included all the accessions from the Gerardo group
(GIORGIO//CAPELLI/YUMA).
The fourth subpopulation (Q4) was the smallest group

(18) inferred by DAPC, mostly corresponding to 16
modern and one traditional Argentinian (Buck Candisur,
from 1982) and one French accessions (Arcodur). This
cluster mainly included germplasm from the BUCK
breeding program, or breeding lines from INTA, but
carrying a genetic derivative from BUCK Semillas. Eighty
three percent (83%) of the germplasm included in Q4
was developed in the last 20 years. In addition, the pedi-
gree analysis showed a wide use of the cultivar Buck
Ambar as part of these crosses.
Pedigree analysis showed that the sub-population Q5

included accessions with the greatest influence of CIMM
YT germplasm, mainly bred or released during the
2000–2020 period. This group includes most of the
Chilean breeding lines (17) and two recently released
cultivars, Lleuque INIA (2011) and Queule INIA (2014).
This group was also composed of 10 Argentinian acces-
sions and germplasm from CIMMYT nurseries (6).
Population structure was also studied using the Bayesian

model-based method implemented in STRUCTURE soft-
ware. In contrast to DAPC, this analysis obtained a max-
imum ΔK at K = 2, indicating less ability to discriminate
the sub-populations clearly. At K = 2 the sub-population
Q1_K2 with 85 accessions was mainly composed of germ-
plasm with the greatest CIMMYT contribution, including
30 modern Argentinian genotypes, all the Chilean acces-
sions (26), 10 CIMMYT cultivars or breeding lines, and

Table 3 Mean inter-marker distance for SNP pairs in complete
LD (r2 = 1)

Chr. / Genome Whole collection Argentinian accessions

1A 7.38 6.57

1B 14.93 10.52

2A 69.79 81.28

2B 5.63 5.48

3A 8.07 14.34

3B 3.66 17.84

4A 6.69 8.68

4B 3.13 3.00

5A 5.56 10.79

5B 0.91 2.04

6A 29.50 57.48

6B 9.07 19.84

7A 41.40 51.93

7B 23.95 30.72

A genome 35.13 53.96

B genome 7.46 13.11

Whole genome 25.12 37.79

Chr. chromosome
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half (9) of the WANA region accessions. On the other
hand, the sub-population Q2_K2, consisting of 112 geno-
types, included 41 modern and 12 traditional Argentinian
accessions and most of the Italian, French, American and
half of the WANA region accessions (detailed in Add-
itional file 9: Table S5a). Population stratification was
tested by the genetic distance-based method, followed by
a Ward hierarchical clustering implemented in the
DARWIN v6.0 software (Fig. 4). This analysis was able to
establish the genetic relationships between accessions and
also to detect the main sub-populations previously identi-
fied using DAPC. Based on pedigree information, sister
lines (such as Buck 44, Buck 45 and Buck 46) and breed-
ing lines with their parental lines were clustered together,
as for example BonINTA Carilo and their derivatives.
The number of sub-populations defined a priori by

DAPC (K = 5) and the two additional methods were

compared. The Ward clustering method divided Q2
(DAPC) into two main blocks, Q2a more closely related
to Q1 and Q2b clustered proximal to Q5. Q2b repre-
sented genotypes with major influence of CIMMYT, in-
cluding the founder genotypes Altar-84 and Yavaros-79.
When the convergence of these three methods was ana-
lyzed a clear pattern in the assignment of accessions to
Q3, Q4 and Q5 was observed, showing several differences
between Q2 from DAPC and Ward clustering and be-
tween Q1 from DAPC and STRUCTURE (detailed in
Additional file 9: Table S5b). The results of a comparison
between the Ward clustering method and STRUCTURE
are graphically displayed in Additional file 10: Figure S5.
The Analysis of Molecular Variance (AMOVA) con-

sidering the five DAPC genetic sub-populations revealed
that 22% of the variation (p < 0.001) was between sub-
populations and 78% was intrapopulation. In addition,

Fig. 2 Comparison of LD distribution in three breeding periods (a). Changes of average inter-marker distance in significant LD (p < 0.01) over
time assessed by chromosome (b) and genome (c)
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the pairwise Fst index showed that the Q5 (CIMMYT
derivatives) and Q3 (mostly Italian germplasm or deriva-
tives) (Fst = 0.337) sub-populations showed the most dif-
ference. Q4 with Q3 and Q4 with Q5 also exhibited high
pairwise Fst and He values, but lower than the former
mentioned pair of sub-populations. (see Additional file
5: Table S4c).
The Q1 sub-population from DAPC showed the high-

est Nei’s gene diversity index (He), followed by Q2 and
Q3. Using HF SNPs only two private alleles were de-
tected, one in Q1 and another in Q4. Considering the
LF SNPs, also called rare alleles, the highest diversity (as
He and I index) and number of private alleles were ob-
served in Q3, followed by Q1 and Q5.

Discussion
Distribution and physical location of polymorphic SNPs
In this study a total of 7431 polymorphic SNPs were
assessed in the 14 durum wheat chromosomes using a
collection of 197 accessions, facilitated by the availability
of high quality genome assemblies that allowed the co-
localization of markers [37–39]. SNP loci in annotated
genes (Svevo genome assembly) were verified, consider-
ing both the LF SNPs and the HF SNPs. In both cases,
SNPs were found in the annotated genes, representing
20.8% of the total polymorphic SNPs (23.1% LF and
19.6% HF SNPs). In most cases only one SNP was lo-
cated on a gene (80% of SNPs alignments). However, in
some genes several polymorphic SNPs (up to nine) could

Fig. 3 Population structure according to the discriminant analysis of principal components (DAPC) using 675 SNPs. The first two components are
displayed graphically (each sub-population is differentiated by color) (a). Cluster selection was based on the BIC value (b). Number of PC retained
using the cross-validation test (c)
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be found. According to [46], allelic rare variants could
contribute to complex disease resistance and discarding
them might reduce the chance to find associations with
disease resistance traits. In our study 16 SNPs with rare
alleles and 43 HF SNPs were found in annotated disease
resistance genes (NBS-LRR domains and other). An in-
crease in the frequency of rare alleles in breeding pro-
grams introduced from landraces or related wild species
is a commonly adopted method for gaining variability
[47, 48]. The parallel identification of allelic variations
for known functional genes contributes to the efficient
use of genetic resources for widening genetic diversity in
elite wheat lines.
Furthermore, the results showed other annotated genes

carrying polymorphic SNPs aligned as the Gli-B1 locus
encoding for gamma-gliadin in 1BS chromosome ([LF],
AX-94659353), the HYD-B1 locus encoding the caroten-
oid β-hydroxylase 1 gene ([HF], AX-94475906) in the 2B
chromosome, a soluble starch synthase gene (ss3) located
in 1A (two LF SNPs, AX-95209651 and AX-94805209)
and a lipoxygenase gene putatively encoding the Lpx-A2
locus in chromosome 5A ([HF], AX-94964352), all im-
portant genes associated with relevant quality traits in
durum wheat breeding programs [49–52].

Genetic diversity
The genetic diversity using HF SNPs assessed in our collec-
tion was moderate (I= 0.503, He= 0.333), but acceptable
considering the bi-allelic nature of the SNPs. Lower indices
were reported for 259 genotypes (I= 0.38, He= 0.24) in-
cluded in a durum wheat collection (old and modern Italian
cultivars and landraces) by [17]. Also, [53] reported lower
values (He= 0.228) using 150 durum wheat landraces and
cultivars from 1901 to 2009. Genetic diversity based on the
number of low frequency SNPs was also assessed. The num-
ber of rare related alleles has been directly associated with
the allelic richness in subdivided populations [54] and it is
also considered as an indicator of gene flow between sub-
populations [55]. Allelic richness is an alternative criterion
for measuring genetic diversity and is considered a key par-
ameter for germplasm conservation programs [56]. Loss of
rare alleles could be associated with genetic erosion and de-
creased long-term adaptation [57]. The use of a low number
of parental lines or the recurrent use of cultivars in breeding
produces a narrowing of the genetic base and could be re-
sponsible for a founder effect or loss of allele richness in the
segregating germplasm. This was observed in the Q4 sub-
population which exhibited the lowest percentage of poly-
morphism in LF SNPs.

Fig. 4 Phylogenetic relationships based on genetic distance in 197 durum wheat accessions displayed graphically using a Ward dendrogram. The
sub-populations found by DAPC are indicated with colors and named on the external circle
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Based on geographical origin, the modern Argentinian
genotypes exhibited the highest level of genetic diversity
(He or I index) followed by French and traditional Italian
genotypes when HF SNPs were used. The traditional
Italian genotypes exhibited the highest diversity (He) es-
timated using the LF SNP and also the highest number
of private alleles. The modern Argentinian accessions
showed a slightly higher He value (for HF SNPs) and a
higher number of private alleles (for LF SNPs) than the
modern Italian genotypes. The decreased diversity ob-
served using both HF and LF SNPs from traditional and
modern Italian accessions agrees well with the results of
[19]. Similar values of Nei and Shannon indices in the
old and modern Italian cultivars were reported by [17].
Genetic diversity over a timeline (using HF SNPs)

showed a slight increased (5.4%) between the 1970–
1979 and 2000–2009 periods but decreased during
the latest one (2010–2020) returning to a similar He
value as in the 1970–1979 period. On the contrary,
[13] only considering Canadian germplasm, reported a
decline in diversity from 1950 to 2010. In the same
way, genetic diversity decreased during the develop-
ment of the ICARDA breeding program from 1974 to
2007 [58]. Interestingly, even though a reduction in
Nei’s diversity index, using LF SNPs, was observed
between the 1970–1979 and 2000–2009 periods, the
number of LF and private alleles was higher in 2000–
2009 than in the other periods. According to [59] the
number of alleles per locus detected in a finite popu-
lation depends on the effective population size. This
concept could explain the high number of LF SNPs
captured in the 2000–2009 period which exhibit the
highest number of genotypes. It is promising to ob-
serve that allelic richness is preserved within the
more recent germplasm. This period included most of
the modern Argentinian, Chilean and French geno-
types. A decrease in genetic diversity estimated using
LF SNPs was also observed by [58], suggesting that
effective strategies to incorporate and increase the
amount of these variants should be addressed. Recent
studies in wheat associated LF SNPS (rare alleles)
with larger grains [60], or improvements in grain size
and yield in rice [61]. These alleles could also be used
to trace the degree of genetic contribution in different
sub-populations [62] and could have long-term impli-
cations in the adaptive response towards environmen-
tal changes [57]. Otherwise, short-term response to
selection is highly dependent on additive genetics esti-
mated as expected heterozygosity (He) [63]. Accord-
ingly, this study provides evidence to define genetic
diversity strategies in breeding programs aiming to
maximize both heterozygosity and allelic richness in
order to obtain a rapid short-term response to selec-
tion and producing more resilient wheats.

LD patterns
The extent and distribution of linkage disequilibrium in
the genome define regions that are inherited together
[64]. Our analysis detected 13.4% of the total marker
pairs with significant LD (p < 0.01), a considerably lower
percentage in comparison with the 42% (p < 0.001) ob-
tained by [15] and the intra-chromosomal LD values re-
ported by [48, 65, 66]. In our collection, high LD (r2 >
0.7) was only represented in 0.94% of significant pairwise
comparisons, being four-fold lower than the value
reported by [67]. Considering a threshold of the 95th
percentile of the root transformed r2 value distribution
(r2 = 0.196), the LD decay (11.8 Mb) detected in our col-
lection was acceptable for modern cultivars and it was
similar to the values obtained in other durum wheat
panels (9.6 Mb in [15] and 9.96Mb in [17]), but lower
than the distance (51.3 Mb) reported by [68] and by [41]
(21 cM) or by [42] (14 cM). However, for breeding pur-
poses the estimation of LD decay in local germplasm
could be useful due to the differences between regional
germplasm and large populations, as was observed be-
tween the Argentinian accessions and the whole collec-
tion where we could observe a 2.5 fold higher LD decay
values. An increase in the mean inter-marker distance
was also observed in the SNP pairs in complete LD.
According to [69], the trend in LD decay could be de-

scribed using different estimators or functions. In the
present study, the number of SNP pairs in high (r2 > 0.7)
or complete LD (r2 = 1) over distance was described,
finding the highest number of significant pairs in LD be-
tween 1 and 5Mb. A different pattern was observed
when overall LD was considered. Some authors reported
the presence of local epistasis in winter wheat [70], but
the LD pattern could vary substantially with the popula-
tion [40]. Some authors indicate that high LD between
closely linked loci can be created by genetic drift, bottle-
necks or selection [70]. However, some chromosomes,
such as 2A and 7A, showed an extended and rising
number of SNPs in high or complete LD as a function of
distance, probably due a differential selection pressure
exerted on these chromosomes to maintain agronomi-
cally advantageous or epistatic loci during the breeding
process [40, 71]. In the overall LD, the number of SNP
pairs in significant LD became higher as the pairwise
distance increased (presented in Fig. 1c). In addition, the
LD patterns between neighboring loci were also analyzed
by plotting heat maps and several LD blocks were
observed on the 6A, 1B, 4B, 2A, 7A, 1A and 3B chromo-
somes. Long-range LD blocks on 1B and 6A chromo-
somes were also reported by [72] and signatures of
selection based on LD on 1B and 7A were observed by
[73]. Some of these regions could correspond to the pu-
tative position of major known genes in wheat, such as
dwarfism genes Rht-1 (4B and 4A, [74]), the photoperiod
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sensitivity gene Ppd-A1 (2A, [75]), the glutenin loci Glu-
2/Glu-3 and Glu-1 (1B and 1A, [49, 76], the Gliadins
Gli-2 and TaGW2 loci (6A, [77, 78]) or TaSus1 (7A)
(https://wheat.pw.usda.gov/GG3/node/759 [39, 79];).
LD patterns assessed over three main breeding periods

(1915–1979, 1980–1999 and 2000–2020) demonstrated
an increased number of overall pairwise LD over time.
Even though, a reduction in the mean r2 value was ob-
served over the three periods due to a dilution effect
caused by a higher proportion of background LD (r2 <
0.5). The occurrence of high background LD was sup-
ported by an increased average inter-marker distance in
most of the chromosomes over time. Chromosomal LD
pattern over time suggested that breeding and selection
have impacted differently on the A and B genomes. In
our collection, the SNPs with high or complete LD de-
creased from 1980 to 1999 to 2000–2020 in the B gen-
ome, but consistently increased over time in the A
genome. The highest effect of artificial selection over
time was observed for the 6A chromosome. Previous re-
ports also indicated differences in LD patterns in the A,
B and D genomes in bread wheat [42, 48, 80, 81].

Population structure
Population stratification can occur as a consequence of
artificial selection in breeding, parental bottlenecks, geo-
graphical origin of germplasm and genetic drift [82–85].
Population structure using different methods was ap-
plied, as suggested by [86]. We used the Bayesian
model-based method implemented in STRUCTURE, a
nonparametric method, as DAPC and a distance-based
clustering method (Ward).
This study evaluated 111 South-American durum

wheat accessions (mainly from Argentina and Chile), in-
cluding also additional world-wide genotypes. Our re-
sults indicated the existence of five sub-populations with
moderate to high differentiation (Fst ranging from 0.139
to 0.337), slightly higher than the one reported by [13],
but lower than that of [17] which included a large collec-
tion of landraces. The AMOVA assessed considering
these sub-populations explained about 22% of the vari-
ance between groups, a lower value than reported by
[12]. The DAPC and Ward clustering results showed
that the modern Argentinian germplasm combines con-
tributions from different genetic sources, such as Medi-
terranean genotypes (Q1 and Q2), or accessions from
CIMMYT (Q5 and partially in Q2). An interesting result
was the evidence that a part of the modern Argentinian
accessions (Q4) was clearly differentiated from the
remaining sub-populations, mostly germplasm from
BUCK Semillas company. This finding confirms previous
results obtained by our group based on 26 SNPs
(KASP™) that gave indications of a possible genetic dif-
ferentiation [14]. On the other hand, the STRUCTURE

results were able to differentiate clearly only the K = 2 as
the main stratification level, based on ΔK parameter.
However, considering the clustering of entries at the
K = 5 level this result gave up to 77% of coincidence with
DAPC (100% in Q3 and Q4 as it is shown in Add-
itional file 10). The use of different methodologies as
suggested [86] contributed to better understanding of
the genetic relationships between the accessions and lets
to infer that the cluster Q4 have greater similarity with
the Mediterranean germplasm.
In addition, there was evidence of a founder effect of

Buck Ambar in this modern Argentinian germplasm
(Q4). Whereas that another two Argentinian cultivars,
BonINTA Carilo (Q1) and Buck Topacio (Q2), were
widely used in crosses and their derivative lines were
mostly clustered together with the parental lines. In
comparison, the ACA Coop Ltda. breeding program ex-
tensively used the desert durum cultivar Kofa, which was
clustered with its derivative breeding lines in Q1. Con-
sidering all the methodologies used in this study, popu-
lation structure analysis also divided the traditional or
old germplasm, mostly included in Q3 (≈75% bred be-
fore 1989), from the modern ones. Most of the landraces
(Taganrog, Etit 38) and the old cultivar Cappelli were
also included in Q3, except for Haurani which was only
clustered in Q3 when using the Ward clustering method.
A gradient in the contribution of CIMMYT germplasm
from Q5, passing through Q2 and finally to Q1 was
shown from the three sub-populations with a major in-
fluence of the CGIAR durum wheat breeding programs.
The WANA region germplasm, with greater influence or
derived from ICARDA, was mostly represented by Q2
and Q1. In general, population structure analysis corrob-
orates the previous pedigree information and the a priori
relationships between parental lines with derivative lines
and between sister lines.

Conclusions
The development of national breeding programs of durum
wheat in Argentina began with the introduction of Euro-
pean germplasm, local breeding and subsequent incorpor-
ation of CIMMYT germplasm during the green revolution
era. Three main national breeding programs have been
permanently maintained over the last 50 years. Nowadays,
some international companies have recently established
breeding programs or released introduced cultivars. The
present study demonstrated that the breeding germplasm
developed in Argentina is the result of an admixture from
different genetic sources. An important highlight is that
selection patterns and diversity structure were identified
in the germplasm subgroups resulting from decades of lo-
cally adapted breeding. Rare alleles can be used as sources
of variability and may provide favorable alternatives for fa-
cing future challenges.
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From a breeding approach, the selection of a strategy
for increasing allelic richness based on adaptive potential
in the segregating germplasm is essential under a climate
change scenario. Recent international effort has resulted
in dynamic platforms or initiatives for sharing genetic
resources that guarantee free germplasm exchange and
permit a continual widening of the genetic base in
breeding. On the other hand, the study of LD indicated
that selection pressure during breeding has impacted dif-
ferently on chromosomes resulting in differences in the
extension and level of LD and haplotypes. This should
be considered at the time of applying marker assisted
selection.

Methods and materials
Plant material
A durum wheat (Triticum turgidum L. ssp. durum Desf.
Husn) collection composed of 197 worldwide accessions
(landraces, cultivars and breeding lines), including 168 ge-
notypes previously described by [14], was used for this
study. This collection is mostly representative of the Ar-
gentinian breeding programs (85), but also includes acces-
sions from Italy (33), Chile (26), France (22), WANA (17),
CIMMYT (10) and the USA (4) (Additional file 1: Table
S1a). Both the Italian and Argentinian accessions were
classified as ˋtraditional´ or ˋmodern´ (before and after
1985) based on previous results which detected an associ-
ation of origins according the breeding period [14].

SNP genotyping and data filtering
DNA from each accession was extracted from fresh
leaves of 10-day-old seedlings using a modified CTAB
method, as described in [87]. The durum wheat collec-
tion was genotyped using the 35 K Axiom Wheat
Breeder’s Genotyping Array from Affymetrix [33] at
TraitGenetics (Gatersleben, Germany) and CCT CONI-
CET La Plata (Argentina). The SNP matrix was filtered,
discarding the monomorphic markers, SNPs with > 10%
of missing data and SNP with > 10% of heterozygosity.
Markers with minor allele frequency (MAF) < 0.05 were
analyzed separately to study the diversity due to LF
SNPS. The SNPs classified as polymorphic high reso-
lution (Poly High-resolution) and off-target variant
(OTV) having good cluster resolution were considered,
following the recommendations for polyploid species of
Axiom® Genotyping Solution Data Analysis Guide
(http://www.affymetrix.com/). The OTV SNPs were ana-
lyzed with the OTV-caller function before use.

Distribution and physical positions of polymorphic SNPs
in the durum wheat genome
The physical positions of the SNPs were obtained by
BLASTN [88] of each SNP sequence on the durum
wheat reference genome assembly (Svevo CV) (https://

wheat.pw.usda.gov/GG3/node/759), with a threshold of
95% for identity and coverage. Additional information of
the SNP positions were obtained from nulli-tetrasomic
lines (https://www.cerealsdb.uk.net), BLASTN results on
bread wheat (http://plants.ensembl.org/Triticum_
aestivum/Info/Index), wild Emmer wheat genomes
(https://wewseq.wixsite.com/consortium) and genetic
positions on published linkage maps [33, 89, 90], espe-
cially if the SNPs showed multiple hits (homeologous or
interchromosomic duplication). The SNPs positioned on
the Svevo genome assembly were used to identify poly-
morphisms in annotated genes (http://plants.ensembl.
org/Triticum_turgidum/Info/Index).

Genetic diversity
Basic genetic statistics were calculated using the GenA-
lex v6.5 software [91, 92] to describe genetic diversity in-
cluding the percentage of polymorphic loci (%PL),
observed heterozygosity (Ho), Nei’s gene diversity (PIC=
He = expected heterozygosity) [93, 94] and Shannon’s in-
formation index (I) [95]. The fixation index (Fst = (Ht-
Hs)/Ht) or genetic differentiation in populations index
[96] was calculated between sub-populations detected by
Discriminant Analysis of Principal Components (DAPC).
Polymorphic SNP markers that passed quality controls

but showed an MAF < 0.05 (LF), commonly called “rare
alleles”, were used to identify subgroups in the collection
that could be considered as a reservoir of genetic diver-
sity. These rare alleles are referred to as private alleles
(PA) when only found in a single subgroup of a broader
collection. Predefined groups according the country/re-
gion of origin (Argentinian traditional [ART], Argentin-
ian modern [ARM], Chile [CHI], CIMMYT (México)
[CIM], France [FRA], Italian traditional [ITT], Italian
modern [ITM], United States [USA], West Asia/North
Africa region [WANA]), the sub-populations from struc-
ture results and the ranges of periods of bred/released
(1915–1959, 1960–1969, 1970–1979, 1980–1989, 1990–
1999, 2000–2009, 2010–2020) were considered as sub-
groups for testing genetic differences.

LD estimation and LD decay
Linkage disequilibrium (LD) was calculated in the TASS
EL 5.0 software [97] considering only SNPs with an
MAF > 0.05 to avoid a bias effect of the LF SNPs on LD
[98]. LD was measured as the allele frequency correl-
ation (r2) for all pairwise SNP comparison in each
chromosome and subsequently the chromosome and
genome specific mean values were estimated. Inter-
chromosomic LD (unlinked loci) was estimated over the
whole genome. The LD decay was determined by plot-
ting the r2 values against the genetic distance of loci
pairs (Mb) for each chromosome and a trend line de-
scribing the LD decay was calculated by locally-weighted
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polynomial regression (LOESS) in R (http://www.r-
project.org). The 95th percentile of the distribution of
square root transformed inter-chromosomal LD values
(r2) [99] was estimated as the critical threshold below
which the LD could be considered as being caused by
physical linkage. The intersection point between the LD
curve and the r2 threshold determined the LD decay
value for each chromosome.

Population structure
To assess the population structure, the SNPs were se-
lected by considering inter-marker distances greater than
1Mb and MAF > 0.3 to select informative and well dis-
tributed markers according to the recommendations of
[86]. The population structure was explored by the Dis-
criminant Analysis of Principal Components (DAPC)
method implemented in the R package “adegenet” v2.0.1
[100] in R studio V 1.3.1056 (R Development Core
Team, 2011). The number of PC retained was selected
by the cross-validation method using the xvalDapc func-
tion. The most probable K was declared, based on the
lowest Bayesian Information Criterion (BIC) value fol-
lowing the [10] criteria. In addition, population structure
was analyzed using the STRUCTURE v2.3.4 software
(http://pritch.bsd.uchicago.edu/structure.html), selecting
the admixture as the ancestry model and the correlated
allele frequencies option [101]. Parameters were set at
100,000 burning periods and 100,000 Markov Chain
Monte Carlo (MCMC) replicates using 5 independent
runs for each K (1 to 10). No prior information was pro-
vided. The Evanno test [102] was used to identify the
true number of sub-populations (K) implemented in the
STRUCTURE HARVESTER website [103]. STRUCT
URE results were plotted using the Pophelper 2.3.0 R li-
brary [104]. Furthermore, the Ward clustering based-
distance method was used to assess the genetic relation-
ships between the accessions, based on a dissimilarity
index calculated from the simple matching coefficient in
DARwin v6.0 software [105]. The Ward dendrogram
was drawn in the FigTree v1.4.3 software (http://tree.bio.
ed.ac.uk/software/figtree/).
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