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Abstract

Background: Survival and drug response are two highly emphasized clinical outcomes in cancer research that
directs the prognosis of a cancer patient. Here, we have proposed a late multi omics integrative framework that
robustly quantifies survival and drug response for breast cancer patients with a focus on the relative predictive
ability of available omics datatypes. Neighborhood component analysis (NCA), a supervised feature selection
algorithm selected relevant features from multi-omics datasets retrieved from The Cancer Genome Atlas (TCGA) and
Genomics of Drug Sensitivity in Cancer (GDSC) databases. A Neural network framework, fed with NCA selected
features, was used to develop survival and drug response prediction models for breast cancer patients. The drug
response framework used regression and unsupervised clustering (K-means) to segregate samples into responders
and non-responders based on their predicted IC50 values (Z-score).

Results: The survival prediction framework was highly effective in categorizing patients into risk subtypes with an
accuracy of 94%. Compared to single-omics and early integration approaches, our drug response prediction models
performed significantly better and were able to predict IC50 values (Z-score) with a mean square error (MSE) of
1.154 and an overall regression value of 0.92, showing a linear relationship between predicted and actual IC50
values.

Conclusion: The proposed omics integration strategy provides an effective way of extracting critical information
from diverse omics data types enabling estimation of prognostic indicators. Such integrative models with high
predictive power would have a significant impact and utility in precision oncology.

Keywords: Multi-omics integration, Deep learning, Feature selection, Survival outcomes and drug response
prediction

Background
Breast cancer has ranked among the most prevalent can-
cer type with a rate as high as 25.8 per 100,000 women
in the Indian subcontinent [1]. Global and local studies
have also reported a gradual increase in cancer-
associated mortality in the region [2–4]. These metrics
suggest an urgent need to devise robust knowledge-

based prognostic systems that can generate phenotypic
estimates for an individual. To address this issue, per-
sonalized medicine aims to provide the most effective
treatment strategy based on the patient’s medical history,
genomic characteristics, and response to therapy [5, 6].
Substantial genomic characterization has been con-
ducted in the past decade to support the idea, leading to
clinically relevant molecular subtyping [7–9]. Still, out of
all the pharmaceutical agents pitched in clinical setups,
only about 15% demonstrate sufficient safety and po-
tency to gain any sort of regulatory consent [10, 11].
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This implies the limitations in the current understanding
of cancer complexity and the need for models that effi-
ciently simulate the diversity of human tumor biology in
a preclinical arrangement. With the advent of high-
throughput data profiling technologies in the past dec-
ade, there is an opportunity for us to improve our un-
derstanding of the multi-layered molecular basis of
cancer.
Large scale collaborative efforts such as The Cancer

Genome Atlas (TCGA) and International Cancer Gen-
ome Consortium have led to numerous reports related
to interim analyses of gene expression, somatic muta-
tion, copy number variation (CNV) and protein expres-
sion data in the literature [12–16]. While it has allowed
us access to a massive set of curated data, it is essential
to address the long-standing bottleneck of omics inte-
gration to understand cancer prognosis and phenotype
better. Multi-omics data integration has emerged as a
promising approach for the prediction of clinical out-
comes and identification of biomarkers in several cancer
studies [17–20]. Modeling of survival and drug response
clinical outcomes in cancer research can prove as step-
pingstones in the direction of personalized therapy.
Omics integration allows us to analyze the human gen-
ome at multiple levels of complexity simultaneously and
extract meaningful conclusions. Linear prediction
models for such analysis often break down due to the
steep dimensionality and heterogeneity associated with
omics datasets. Hence, a refined integrative approach to
handle these diverse datasets coherently is required.
Here, we address the challenge of building robust

multi-omics integration based neural network models to
predict clinical outcomes and response of an individual
to a panel of 100 drugs. Neighbourhood component ana-
lysis (NCA) based feature selection algorithm was
employed separately on each omics data to select high
weighted features that were then fed into neural
network-based classifier and regressor model to build
multi-omics based integrative survival and drug response
prediction models for breast cancer. These type of
multi-omics integration based prediction models will not
only help the physicians make rational chemotherapeutic
decisions but also to understand the driving nodes in the
cancer machinery.

Results
We trained breast cancer datasets from TCGA and
GDSC to generate robust survival and drug response
prediction models. We used 10-fold cross-validation for
the survival prediction model and 5-fold cross-validation
for drug response prediction model to better tune the
hyperparameters. Ultimately, two neural network models
were chosen to generate drug responses and survival es-
timates for the patients in validation sets. The

corresponding performance metrics were calculated
based on the losses incurred in the respective models.

Multi-omics integration improves survival prediction in
BRCA patients
The NCA selected 246 six-omics feature set along with
clinical features like age, gender, days to the last follow-
up, pathologic stage, the number of affected lymph
nodes, tumor stage, lymph node metastasis, metastatic
stage and histological type were fed into neural network-
based survival prediction model to classify the patients
into two classes, i.e., high-risk class and low-risk class.
The feed-forward neural network model was trained
with two hidden layers of 7 nodes in each layer and an
output layer of two neurons to classify patients into two
survival classes. 10-fold cross-validation of neural-
network along with optimization of regularization term
and hidden layers architecture was performed using
BayesOpt. The final layout of the neural network model
consisted of two hidden layers (with seven nodes) and
two output classes with a regularization term set to
0.9999. After multiple iterations of Bayesian
optimization, ‘trainscg’ was selected as a training func-
tion that adopted a scaled conjugant gradient method to
update weights and bias; cross-entropy was used as the
performance evaluation function.
The survival prediction model was able to classify the

patients into two survival classes – high-risk and low-
risk, with a prediction accuracy of 94% (Fig. S1A). The
prediction accuracies of training, validation and test
dataset were 93.5, 93.7 and 98.1%, respectively. This
clearly signified that the overfitting of the neural net-
work model was successfully avoided here. AUROC
(Area Under the Receiver Operating Characteristics)
value of 0.98 was observed for both the classes, i.e., low-
risk and high-risk, that showed the ability of prediction
model to classify patients into two classes (Fig. S1B) effi-
ciently. The performance of the model was also evalu-
ated by calculating various other parameters like
sensitivity, specificity, precision, false-positive rate, F1
Score, Matthews Correlation Coefficient and Kappa
(Table 1). The value of all the parameters showed good
ability of the prediction model to distinguish between
two survival classes.
External validation of the multi-omics integration-

based survival prediction model was performed by using
single-omics and five-omics dataset of TCGA BRCA pa-
tients that were excluded for the training of model due
to unavailability of all six-omics data (Table 2). The per-
formance of the model with single-omics data or five-
omics data as input for validation was not comparable to
the performance of our model. It was observed that six-
omics integrated data was able to predict both high-risk
and low-risk individuals with good prediction accuracy.
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However, when single-omics or five-omics data was
given as input for external validation, the model was not
able to predict high-risk individuals correctly due to
class imbalance in dataset available for breast cancer. It
was observed that single-omics input classified all indi-
viduals as low-risk class, therefore correctly predicting
low-risk patients with 100% prediction accuracy, but
failed to predict for high-risk class. Similarly, for five-
omics input feed, the model was able to predict high-
risk individuals correctly with prediction accuracy ran-
ging from 0 to 10% only and that of low-risk individuals
with prediction accuracies ranging from 83 to 100%.
This showed that adding more layers of omics informa-
tion would aid in better prediction. Integrating different
omics data types improved the performance of the pre-
dictive models over the traditional single-omics ap-
proach as the highest accuracy was achieved with the
model including all the omics-types.

Multi-omics signature predicts drug response in BRCA cell
lines
The drug response prediction model was trained on
BRCA cell lines for 212 drugs initially; however, some
drugs were filtered out later due to poor performance of
models for these drugs. The final regression model was
trained for 42 cell lines and 100 drug molecules. The ro-
bustness of the regression model using the features opti-
mally selected using NCA was demonstrated using
various performance metrics. The optimal neural net-
work regressor had two hidden layered architecture with
11 nodes in both the layers. Levenberg-Marquardt back-
propagation, which is the fastest backpropagation algo-
rithm, was used as a training function to propagate the
losses incurred back to the network and reconfigure the
weights. In addition to this, Bayesian optimization of the
regularization term was performed with the final value
set to 0.3743 with 5-fold cross-validation to avoid

overfitting the model. Mean squared error (MSE) was
used as a performance evaluation function of the neural
network regression model. The drug response prediction
regression model predicted IC50 values for each drug
with MSE of 1.154 and an overall regression value of
0.92, which showed the linear relationship between pre-
dicted and actual IC50 values. This was followed by un-
supervised clustering (K-means) of drug responses to
segregate the samples into responders and non-
responders based on their IC50 values. The clustered
IC50 values for the first twenty drugs showed that a
common threshold value for all of the drugs could not
be used as each drug has its unique distribution of re-
sponses (Fig. S2). The best validation performance re-
ported in terms of MSE as 0.66 is remarkable,
considering the small number of datasets. Moreover, cal-
culation of IC50 thresholds was also consistent among
the two methods (K-means and waterfall) as quantified
by a strong correlation of 0.91 (Fig. S3-B). However, the
classification metrics lagged while using thresholds cal-
culated by waterfall analysis (Fig. S4).
Drugs such as Dabrafenib, Mitomycin, Olaparib and

Ruxolitinib performed exceptionally well on almost all
the cell lines tested. Figure 1 shows the performance of
drug response in terms of accuracy, specificity, and sen-
sitivity corresponding to all the drugs as well as all the
cell lines. It is evident from the results that most of the
drugs performed at par or even outperform similar drug
response prediction models [21]. These traditional
methods employed Elastic Net and SVM models for
drug response on GDSC datasets instead of Deep learn-
ing frameworks. Hence, their average sensitivity and spe-
cificity values were averaged around 0.75 and 0.78
respectively. Even with a large ensemble of tested drugs
(100), the average sensitivity and specificity values re-
ported here averaged around 0.80 (Fig. 1a and c). Indi-
vidual drugs were analyzed for their contribution to the

Table 1 Performance of neural network-based classifier for survival prediction of BRCA patients

Sensitivity Specificity Precision False positive rate F1 Score Matthews Correlation Coefficient Kappa

Parameters 0.95 0.92 0.93 0.07 0.94 0.87 0.87

Table 2 External validation prediction accuracy of our multi-omics integration-based survival prediction model for BRCA patients

External Validation with Single-omics data and clinical features
as input to model

External validation with five-omics data and clinical features as input to
model

Datatype Samples Prediction accuracy Datatype Samples Prediction accuracy

RNA 561 85.7% five-omics data excluding Protein 59 78.0%

Protein 397 85.1% five-omics data excluding Mutation 41 73.2%

Mutation 493 85.8% five-omics data excluding miRNA 103 90.3%

miRNA 241 82.6% five-omics data excluding Methylation 111 77.5%

CNV 548 85.8% five-omics data excluding CNV 3 66.7%

Methylation 268 86.6% five-omics data excluding RNA 0
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overall performance metrics that led to the discovery of
certain outliers like Bleomycin, Gemcitabine, Thapsigar-
gin, MP470 and FK866 (Fig. 1e-f). While these drugs
negatively affected the model performance, drugs such
as Dabrafenib, AS605240, RDEA119 and PLX4720
depicted exceptional correlation with the actual drug-
responses across the test set (Fig. 1f and 2).

Proposed model performs better than similar approaches
The proposed breast cancer survival and drug response
prediction models were compared with one survival pre-
diction method and two drug response prediction
methods (Table 3). For survival prediction, a similar
study on BRCA patients reported accuracy and AUC
values of 0.73 and 0.79 respectively [22]. As a direct
comparison, our proposed model performed significantly
better for the same metrics with prediction accuracy of
0.94 and AUC value of 0.98.
On the other hand, SVM-based and late-integration

based models have been extensively used to predict drug
responses in cancer patients [23]. On similar lines, an
SVM model was built in-house using NCA selected fea-
tures for comparative analysis. SVM parameters were
optimized using grid search on a range of cost and
gamma that were adapted from a similar SVM based
study [23]. A value of 10 for cost and 0.5 for gamma was
found to be optimal for predicting drug responses. Simi-
larly, MOLI was employed to predict drug responses for

our datasets (https://github.com/hosseinshn/MOLI) [19].
However, only a subset of the drugs (Docetaxel and
Gemcitabine) could be compared as MOLI was limited
to only a few drugs. The proposed method was able to
outperform the competition on both the instances, re-
inforcing the effectiveness of the proposed method
(Table 3).
Moreover, to gauge the effectiveness of the pro-

posed drug response model, a measure of external
validation was necessary. Drug response data for
TCGA breast cancer (BRCA) patients was available
from a similar study [24]. TCGA identifiers and drug
responses for four drugs (Vinblastine, Gemcitabine,
Tamoxifen, Docetaxel) were extracted from the data-
set. mRNAseq, methylation, CNV and miRNAseq data
for the selected TCGA identifiers was processed and
passed through the saved neural network. The pre-
dicted drug responses, binarized using previously cal-
culated drug thresholds, were fairly accurate with
about 0.79 accuracy for Docetaxel (24 patients) and
0.5 for Tamoxifen (11 patients). For Vinblastine and
Gemcitabine, the dataset of single patient for each
drug was available to compare predictions of devel-
oped drug response prediction model. The developed
model was able to predict drug response for Vinblast-
ine and Gemcitabine correctly. Therefore, considering
that the initial model was trained on cell lines, the
overall external validation accuracy of 0.73 is

Fig. 1 Performance of drug response model for BRCA cell lines. Box plot showing accuracy, sensitivity and specificity of model for all drugs (a)
and all cell lines (c). Scatter plot showing frequency of (b) sensitive cell lines per drug molecule and (d) effective drugs for each cell line. e Mean
squared error and (f) Pearson’s correlation for drug responses from the model for individual drugs
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consistent with internal validation and reinforces the
effectiveness of the proposed method.

Biological significance of identified signature
Feature selection using NCA provided us with a set of
genes that were weighted highly for their predictive po-
tency. Therefore, Gene Set Enrichment Analysis (GSEA)
was employed to calculate gene enrichment scores cor-
responding to every entity. Reactome knowledge data-
base was used to carry out the analysis [25, 26]. Gene set
screened from mRNA dataset for the survival prediction

module revealed pathways and reactions that are critical
for the patient’s survival (Table S2). TP53 dependent
transcription regulation, gene expression and DNA dam-
age response were among the most significantly enriched
pathways among all data types. The identified signature
of survival and drug response prediction was also com-
bined and mapped onto KEGG pathways using DAVID
functional annotation tool [27, 28]. The identified path-
way mainly consisted of cancer pathways and all major
pathways whose dysregulation is well reported in cancer
(Table S3).

Discussion
Robust classification of cancer patients into risk groups
and having prior information about the possible drug re-
sponses will identify novel screening methods, prognos-
tic factors, methods and perhaps guide the next steps in
personalized therapies. In this study, the high prognostic
accuracy of neural networks has been demonstrated
owing to their capacity to model complex relationships
among variables [29, 30].

Fig. 2 The drug response model, trained on the multi-omics profile of cell lines has the capacity to predict response for 100 drugs. The figure
evaluates the performance for some of the prominent cancer drugs in terms of R squared performance measure (Note: For an ideal case, all the
points would lie on a straight line y = x (dashed) with r2 = 1)

Table 3 Comparison of the proposed survival and drug
response prediction model with similar methods

Survival Prediction Accuracy AUC

C. Wang et al. [22] 0.79 0.93

Proposed method 0.94 0.98

Drug response prediction Docetaxel (AUC) Gemcitabine (AUC)

MOLI 0.67 0.71

SVM 0.63 0.69

Proposed method 0.83 0.78
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For identification of probable prognostic biomarkers
among the screened gene-pool, a ranking criterion was
devised among the genes. The screening methodology
(NCA) enabled us to rank the associated genes based on
their predictive ability. Four genes, EFHD1, CDH1,
PIK3CA and TP53, were identified by our feature selec-
tion algorithm that aid in prediction of both survival and
drug response prediction of breast cancer patients. The
role of these genes, to serve as prognostic/predictive bio-
markers has already established in many cancer types
(Table 4). EF-hand Domain Family Member D1
(EFHD1) is shown to be overexpressed in breast cancer
and is reported to serve as a potent breast cancer-
specific RNA signature [36]. Similarly, genetic and epi-
genetic alterations in E-Cadherin (CDH1) relates to ab-
errant expression and microsatellite instabilities in
breast cancer patients have also been related to the inci-
dence of breast cancer [37, 38]. Besides, Phos-
phatidylinositol 3-kinase (PIK3CA) and Tumor protein
53 (TP53) genes, which are two of the most mutated
genes in breast cancer, were also shortlisted by the
workflow [39, 40].
The drug response model captured the relationship

between the patient’s multi-omics profile and well-
known breast cancer drugs such as Dabrafenib (r2 =
0.71), Gemcitabine (r2 = 0.59) and (AS605240) PI3K in-
hibitor (r2 = 0.75) among others with a high degree of
confidence (Fig. 2). In addition to the omics types in-
cluded in the study, the approach can be theoretically
scaled for the integration of other omics types such as
proteomics. Ambiguous data remains to be a hurdle in
the way of these models being clinically acceptable. For
example, patients who die of an unrelated cause or have
a sparse follow-up will have to be incorporated accord-
ingly into the model. A few alternatives to mitigate this
issue is reported in the literature, but none of them have
yet been successful [41, 42].

Conclusions
Survival statistics are one of the most important prog-
nostic factors in breast cancer. However, it can be

debated whether a response to therapy is also as detri-
mental to the patient’s ultimate treatment routine. Prob-
ing the potential of cumulative analysis of survival
prediction and response to therapy could open doors for
practical solutions in improving therapy in cancer. Glo-
bal genomic profiling of cancer cell line panels and
patient-derived samples have contributed a lot in build-
ing risk-classification models and suggesting novel thera-
peutic measures. However, a large pool of drug
compounds has not been assessed over the potential of
available genomics data. With an increase in biological
resources that capture disease characteristics such as
genotype, phenotype and their associations, novel strat-
egies are required to efficiently process this information
and reveal critical insights for the disease. Here, we
employed late integrative deep learning frameworks for
building survival and drug response prediction models
that performed at par with existing individual solutions.
We conclude that an artificial deep neural network,

which is trained on the multi-omics signature of an indi-
vidual, in tandem with its clinico-pathological factors,
can not only segregate individual into low-risk and high-
risk subgroups but also assist in screening a pool of
drugs based on the sensitivity values corresponding to
the patient under observation. The results reinforce the
idea that an integrative approach can make more accur-
ate and personalized decisions for drug administration
and general treatment strategy.

Methods
General workflow
This workflow was designed to predict the survival out-
come and drug response for a given BRCA patient, char-
acterized by its multi-omics signature. The underlying
assumption is data being independent and identically
distributed. The workflow followed multiple feed-
forward networks and dimensionality-reduction mea-
sures corresponding to every omics type. The features
learned were clubbed together that served as an input to
a regression and classification network for drug-
response and survival prediction, respectively (Fig. 3).

Table 4 Biological significance of gene set that aid in prediction of BRCA survival and drug response

GENE NAME Reported Biomarker function

EFHD1 EF-Hand Domain Family Member D1 Part of digital RNA resistance signature to predict response to breast cancer
therapy [31]

CDH1 Cadherin 1 CDH1 structural alterations as novel prognostic biomarker in gastric cancer
patients [32]
CDH1 gene as a prognostic biomarker in hepatocellular carcinoma [33]

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic sub-
unit alpha

PIK3CA is a predictive biomarker for use of alpelisib and fulvestrant in BRCA
patients [34]

TP53 mutant p53 as a possible therapeutic target and biomarker for breast cancer
[35]
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Datasets
Two major resources were used for the analysis. Data-
sets for breast invasive carcinoma (BRCA) patients were
retrieved from TCGA, whereas GDSC was used to
source multi-omics as well as drug-response datasets for
BRCA cell lines [43]. GDSC was preferred among other
sources due to its broad spectrum of screened drugs.

Preprocessing TCGA breast cancer patient’s data
TCGA BRCA multi-omics datasets, along with their clin-
ical information was available for more than 1000 patients,
including 1089, 977, 1097, 1078, 1093 and 887 patient’s
GISTIC2 CNV, mutation, methylation, miRNA, RNA and
protein expression data respectively. The pre-processed
TCGA dataset was obtained using FireBrowse utility

(http://firebrowse.org). For RNA, z-scaled RSEM values of
RNA expression were used and for miRNA log2-RPM
values were retrieved. Protein expression and methylation
data (β values) obtained from database were already
scaled. Binary data was obtained for mutation of genes
and GISTIC2 calculated CNV data was obtained directly
from FireBrowse. The dataset was screened by filtering pa-
tients and features with more than 20% missing values.
Further missing values in the omics dataset were imputed
using R package impute [44]. An overlapping set of 314
patients was obtained for which all six-omics datasets
along with their clinical information was available. The
final processed data was observed to be class imbalanced.
Therefore, an oversampling technique called Synthetic
Minority Oversampling TEchnique (SMOTE) [45] was

Fig. 3 Schematic of the general pipeline followed for survival and drug response prediction task. The flowchart depicting various steps followed
during prediction models development including (a) data retrieval, (b) drug response processing, (c) omics data processing and (d) training/
optimizing deep neural networks
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employed to balance the data that increases our sample
set from 314 to 532.

Preprocessing breast cancer cell line data obtained from
GDSC
The breast cancer cell lines omics data and drug response
data were retrieved from the GDSC database. Already pre-
processed data for all cell lines was obtained from the
GDSC database followed by filtration step to filter out other
cancer cell lines data and only breast cancer cell lines data
was retained for the analysis. Binary data was obtained for
gene mutations and already pre-processed β-values were
obtained for methylation of CpG islands. RMA normalized
basal expression level was obtained for RNA data and copy
number values were obtained ranging from − 1 to 1, where
0 indicates normal copy number, − 1 and + 1 indicates loss
and gain of copy of genes respectively. The overlapping set
of 43 cell lines were selected for those drug responses for
which at least 80% of drugs and all four omics datasets,
namely CNV, methylation, mutation and mRNA, were
available. Similar preprocessing was done to remove cell
lines and features having more than 20% missing values.
This reduced our sample set to 42 cell lines only.
Remaining missing values in omics and drug response data
were imputed using the impute R package. The next filter
for genes was applied to screen out genes for which omics
data was not available in the TCGA BRCA dataset.

Constructing representative gene sets
The high dimensionality of omics datasets remains a sig-
nificant bottleneck in generating robust prediction
models that are clinically relevant [46]. The goal of fea-
ture engineering here is to find an effective low-
dimensional manifold of a given high dimensional data-
set. Fortunately, biological processes are highly corre-
lated and can be represented in a lower-dimensional
sub-space [47, 48]. Many approaches, like Principal com-
ponent analysis, Correspondence Analysis, Partial Tri-
adic Analysis and Multiple co-inertia analysis, which are
based on variance, correlation, inertia, eigenvalue among
others have utilized this fact. They have been quite suc-
cessful in this effort [49–51]. However, none of these
commonly used approaches considers the effect of labels
corresponding to the datasets. Due to this particular rea-
son, we opted for Neighborhood Component Analysis
(NCA), which is a supervised dimensionally reduction
method for learning Mahal Nobis distance measure for
k-nearest Neighbors [52].
Given an omics data set, X = x1, x2, x3, …, xn ∈ R

P and
corresponding class labels c1, c2, c3, …, cn, which is gen-
erally an n × p matrix with n observations (patients) and
p variables (genes) corresponding to the measurements
of mRNA and other omics datasets. NCA reduces the
dimensions by restricting the quadratic distant metric to

be low rank. The underlying distance metric can be de-
fined as follows.

d x; yð Þ ¼ x − yð ÞT z − yð Þ ¼ Ax −Ayð ÞT Ax − Ayð Þ ð1Þ
Also, Leave One Out performance is utilized as test

data is not available during training under the following
objective function.

f Að Þ ¼
X

i

X
j∈Ci

pij ¼
X

i
pi ð2Þ

The ultimate features extracted corresponding to each
omics type for building survival and drug response
models are summarized in Table S1.

Multi-omics feature integration
A single multi-omics representation of different omics
datasets was generated by employing a late integration
approach, where the learned features for each of the
omics types were concatenated before being fed into the
neural networks. For instance, three single-omics input
with three m × n feature matrices will result in a single
m × 3n representation matrix after integration.

Survival prediction
A two-layer neural network model was constructed for
the binary classification (survival) task using MATLAB
ver. R2019b. Cross-entropy loss was employed for the
optimization of the objective function. Losses were prop-
agated back using scaled conjugate gradient backpropa-
gation and the hyperparameters were optimized using
Bayesian hyperparameter optimization (BayesOpt) [53].
Hyperbolic tangent, a symmetric activation function that
provides mean-zero initial weights, was used in the hid-
den layers, followed by sigmoid activation at the output
layer [41]. The output of the network that ranged from
zero to one was used to infer the risk group as a categor-
ical variable.

CE ¼ − log f s1ð Þð Þ if t1 ¼ 1
− logð1 − f s1ð Þð Þ if t1 ¼ 0

�
ð3Þ

where t1 = 1 denotes the assignment of C1 = Ci for the
sample. The entire network and its parameters were op-
timized using grid search and Bayes-opt optimizer.

Drug response prediction
Similar to the architecture of the survival prediction
model, the drug response prediction neural network also
had two hidden layers, followed by an output regression
layer. The drug response model was trained on data
points from 42 cell lines to predict drug responses of
212 drugs initially using MATLAB ver. R2020a (data not
shown). However, with a limited model capacity due to
small dataset, modelling large number of drug responses

Malik et al. BMC Genomics          (2021) 22:214 Page 8 of 11



had an inverse effect on the performance, reflected in
below-par metrics for many drugs. Therefore, another
model was built for limited number of drugs that is re-
ported in this study. This was done by eliminating drugs
depicting an accuracy of less than 0.5. A total of 100
drugs fulfilled the criteria and the network architecture
was modified to predict their drug responses.
The neural network was modelled as a regression

problem to predict IC50 values. However, to binarize
predicted IC50 to responses as sensitive or resistant, the
original IC50 values were clustered into two classes
using K-means clustering. It tries to make the inter-
cluster points as similar as possible while trying to keep
the clusters as far as possible under the objective func-
tion defined in eq. (4).

J ¼
Xm

i¼1

XK

k¼1

wik xi − μk
�� ���� ��2 ð4Þ

The threshold IC50 value between the two classes was
saved for each drug and later used to compare and test
the effectiveness of the drug response prediction model.
In addition to K-means as a method to calculate thresh-
olds, waterfall analysis was also performed. Our imple-
mentation of the waterfall analysis was similar to a
previous approach [54, 55]. For each of the 100 drugs,
IC50 values were sorted to generate a waterfall distribu-
tion (Fig. S5). If the distribution is non-linear (Pearson
correlation coefficient to linear fit ≤0.95), the inflection
point was calculated by first smoothening the curve with
a gaussian filter, followed by analysing the differential. In
case of a linear distribution (Pearson correlation coeffi-
cient to linear fit > 0.95), median IC50 was used instead.
43 drugs had a non-linear waterfall distribution (Fig. S3-
A). Inflection points and medians were used as thresh-
olds to segregate among sensitive and resistant cell lines.

Hyperparameter optimization
BayesOpt and grid search was employed for tuning the pa-
rameters of the classification and regression neural network
models. BayesOpt builds a probability model of the objective
function to screen the best parameters to evaluate the model
objective function [56]. For both drug response regression
and survival classification tasks, hyperparameters corre-
sponding to the objective functions were optimized using
BayesOpt. The basic formulation is represented in eq. (5).

x� ¼ arg minx∈ϰP scoreð j xÞ ð5Þ
where P(y| x) is the surrogate objective function (Mean

Square Error or cross-entropy) and x∗ is the set of hyper-
parameters with the best model performance. It works
by finding the parameters that correspond to the best
performing surrogate function and using them on the
actual objective function iteratively.
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