
RESEARCH ARTICLE Open Access

Long non-coding RNA pairs to assist in
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Abstract

Background: Sepsis is the major cause of death in Intensive Care Unit (ICU) globally. Molecular detection enables
rapid diagnosis that allows early intervention to minimize the death rate. Recent studies showed that long non-
coding RNAs (lncRNAs) regulate proinflammatory genes and are related to the dysfunction of organs in sepsis.
Identifying lncRNA signature with absolute abundance is challenging because of the technical variation and the
systematic experimental bias.

Results: Cohorts (n = 768) containing whole blood lncRNA profiling of sepsis patients in the Gene Expression
Omnibus (GEO) database were included. We proposed a novel diagnostic strategy that made use of the relative
expressions of lncRNA pairs, which are reversed between sepsis patients and normal controls (eg. lncRNAi > lncRNAj
in sepsis patients and lncRNAi < lncRNAj in normal controls), to identify 14 lncRNA pairs as a sepsis diagnostic
signature. The signature was then applied to independent cohorts (n = 644) to evaluate its predictive performance
across different ages and normalization methods. Comparing to common machine learning models and existing
signatures, SepSigLnc consistently attains better performance on the validation cohorts from the same age group
(AUC = 0.990 & 0.995 in two cohorts) and across different groups (AUC = 0.878 on average), as well as cohorts
processed by an alternative normalization method (AUC = 0.953 on average). Functional analysis demonstrates that
the lncRNA pairs in SepsigLnc are functionally similar and tend to implicate in the same biological processes
including cell fate commitment and cellular response to steroid hormone stimulus.

Conclusion: Our study identified 14 lncRNA pairs as signature that can facilitate the diagnosis of septic patients at
an intervenable point when clinical manifestations are not dramatic. Also, the computational procedure can be
generalized to a standard procedure for discovering diagnostic molecule signatures.
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Background
Sepsis is a severe disease that threatens patients’ life and
is the main cause of death in Intensive Care Unit (ICU).
Based on the report from Centers for Disease Control
and Prevention, over 1.7 million people get sepsis each
year, up to 270,000 Americans are killed by the disease
per year, and one in three patients who die in a hospital

have sepsis [1]. It is occasioned by the over response of
the immune system to the infection. The chemicals re-
leased by the immune system diffuse throughout all the
body and lead to inflammation. Septic shock is a subtype
of sepsis when the blood circulation and cellular metab-
olism of the patients become deadly abnormal [2]. The
diagnosis of sepsis in clinic bases on the symptoms and
a series of medical tests involving blood, urine, wound
secretion, and mucus secretion tests. Taking these typ-
ical tests may result in delays in diagnosis and interven-
tion. Besides, it is challenging to distinguish sepsis from
non-infectious inflammation based on existing tests [3].
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Molecular detection provides a rapid way for early
diagnosis and initial evaluation of sepsis. Moreover, it
can determine whether a patient with systemic inflam-
mation has an underlying infection by identifying
biomarkers or signatures for sepsis. Procalcitonin (PCT)
is widely studied as a “standard of care” component for
sepsis and has been applied in blood tests for quick
diagnosis [4]. However, some studies on PCT in intra-
abdominal infections led to contradictory results and re-
stricted the application of PCT as a diagnostic biomarker
[5–7]. Protein-coding genes are also investigated as diag-
nostic signatures for sepsis with high accuracy according
to a series of in silico experiments [8]. sNIP [9] and
SeptiCyte Lab [10] are the two most effective genetic sig-
natures for sepsis diagnosis proposed recently. SeptiCyte
Lab is based on the sum of two ratio classifiers, each of
which consists of a ratio of two genes (PLAC8/PLA2G7
or LAMP1/CEACAM4) and performed AUC of 0.92 in
average in three validation cohorts while PCT only
attained AUC of 0.81. It was regarded as the benchmark
of sepsis diagnosis [11]. Scicluna et al. identified three
genes and developed the sNIP score [(NLRP1 - IDNK)/
PLAC8] from a discovery cohort including 60 abdominal
sepsis patients and 42 controls. sNIP achieved AUC of
0.97 in the discovery cohort, which outperformed SeptiCyte
(AUC= 0.89).
Long non-coding RNA (lncRNA) is a category of RNAs

longer than 200 base pairs in length with little potential of
encoding proteins [12]. lncRNAs are involved in the medi-
ation of transcriptional and post-transcriptional regulation,
which is a canonical epigenetic mechanism of cell dysfunc-
tion linked to a variety of immune-related diseases [13–15].
Ho et al. reviewed the regulatory non-coding RNAs in sep-
sis including lncRNA MIR210HG, linc-ATP13A4–8, linc-
KIAA1737–2, AL132709.5, CTC-459I6.1 and IL7R [16].
Reddy et al. identified lncRNA E33 to regulate expression
of inflammation related gene in macrophage and the re-
sponse to the inflammatory signals through diabetic mice
model [17]. Chen et al. investigated MALAT1 in rat sepsis
model and found it regulates sepsis-induced cardiac inflam-
mation [18]. Q. Huang et al. [19] and S. Huang et al. [20]
showed that NEAT1 is overexpressed in sepsis patients and
the expression level is correlated to severity of sepsis.
Furthermore, ZFAS1 was detected to be downregulated in
sepsis patients comparing to normal controls and achieved
an Area Under the Receiver Operating Characteristic
(AUROC) of 0.814 in sepsis diagnosis [21].
At present, machine learning methods are widely used

for the biological modeling and biomarker detection. For
instance, Wang et al. reviewed the machine learning tools
in CRISPR gRNA design [22] and proposed GNL-Scorer
to predict the CRISPR on-target activity with well cross-
species generalization using Gradient Boosted Regression
Tree and Bayesian Ridge regression [23]. B. Elkarami et al.

proposed a cost-sensitive classifier and ensembling based
on random forest method for handling the imbalanced
quantity of miRNAs versus other non-coding RNA [24].
Liu et al. applied decision tree to identify gut microbial
biomarkers as potential therapeutic target for atheroscler-
osis patients [25]. Liu et al. identified a 28-lncRNA signa-
ture for sepsis diagnosis using least absolute shrinkage
and selection operator (LASSO) [26].
To the best of our knowledge, all the sepsis related

transcriptome studies are based on the absolute expres-
sion abundance of the detected transcripts, e.g., mRNAs
or lncRNAs. Nevertheless, using the absolute abundance
for diagnosis is not reliable and even biased due to the
systematic experimental bias and technical variation.
Moreover, the investigation of biomarkers using absolute
expression values may suffer from batch effect and the
effect of pre-processing methods. Here, we proposed a
signature for sepsis diagnosis using the relative expres-
sions of lncRNA pairs within sample. We firstly
performed the intra-sample comparison to obtain the
relative expressions of all possible lncRNA pairs and
conducted cross-sample analysis to screen out lncRNA
pairs that significantly altered in direction between sep-
sis and control samples. Then, the identified lncRNA
signature (lncRNA pairs) was evaluated in eight sepsis
expression cohorts and compared with a series of
machine learning models and benchmark signatures.
Finally, these lncRNA pairs were investigated for their
biological functions using enrichment and semantic
analysis.

Material and methods
Expression datasets
We collected nine sepsis expression datasets with nor-
mal controls from the Gene Expression Omnibus (GEO)
database. Only the platform Affymetrix Human Genome
U133 Plus 2.0 Array (AffyU133p2) was considered, be-
cause it is the most comprehensive array platform with
the largest transcript coverage, which is able to reanno-
tate as many lncRNAs as possible from the arrays origin-
ally designed for coding genes. Detailed description for
each dataset was shown in Table 1. For fair comparison,
all the raw data were normalized by the Robust Multi-
array Average (RMA) method [35] and MicroArray Suite
5.0 (MAS5.0) [36], although the normalization step is
not necessary for our proposed algorithm [37].

Reannotation of lncRNAs
Based on the annotation files of the RefSeq database (re-
lease 79), the NetAffx file (release 36, 7/12/16), and the
GENCODE project (release 25), the probes in the
AffyU133p2 array platform were reannotated to achieve
the expression profiles of lncRNAs [12]. Expression data
of 3746 lncRNAs summarized by 4602 probe sets were
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obtained according to the selection criteria, (1) probe
sets with RefSeq IDs labeled “NR_” and annotated with
“long non-coding RNA” in the RefSeq; (2) probe sets
with Ensembl gene IDs annotated as “long non-coding
RNA” in GENCODE. Probe sets meet any of the two cri-
teria were recruited as lncRNAs.

iPAGE
An algorithm, individualized Pair Analysis of Gene Ex-
pression (iPAGE), was used to screen the differential
discoveries. The absolute expression abundance of genes
is frequently varied by plenty of technical variations
including experimental designs, sample handling, RNA
amounts and extraction procedures, library preparation
steps, as well as normalization methods and batch
effects. As evidenced by the previous studies [38, 39],
the relative expression between genes within a sample is
reliable and much more powerful in detecting biological
signals. So, we took advantage of the expression levels
between every possible pair of lncRNAs to retrieve
disease-related lncRNA pairs. The reverse pairs are
defined as the lncRNA pairs with the same relative
expression order (lncRNAi > lncRNAj) in normal cases
while the opposite order (lncRNAi < lncRNAj) in sepsis
patients. After that, we identified the top reverse
lncRNA pairs and used them as a signature for the diag-
nostic prediction of sepsis. The workflow of iPAGE is
described in Fig. 1.
In our iPAGE algorithm, exhaustive comparisons were

carried out between every lncRNAs based on their absolute
abundance. As shown in Fig. 1a, the lncRNAs detected by a

sample are represented by a vector GðkÞ ¼ ðRNAðkÞ
1 ;RNAðkÞ

2

;…;RNAðkÞ
m Þ , where RNAðkÞ

1 ;RNAðkÞ
2 ;…;RNAðkÞ

m are the
absolute abundance of lncRNAs and the superscript (k)
represents the k-th sample in a given dataset. The relative

expression of a lncRNA pair ðRNAðkÞ
i ;RNAðkÞ

j Þ is defined as

r kð Þ ¼ I RNA kð Þ
i −RNA kð Þ

j

� �
ð1Þ

where IðxÞ ¼ 1; if x≥0
−1; if x < 0

�
is an indicator revealing

whether x is greater or less than zero. If RNAðkÞ
i is

greater than or equal to RNAðkÞ
j , the relative expression

of the lncRNA pair ðRNAðkÞ
i ;RNAðkÞ

j Þ will be 1. Other-

wise, the relative expression will be − 1. To convert the
absolute expression abundance into relative expression
within each sample, subtraction was performed between

every two lncRNAs (Fig. 1b), which was RNAðkÞ
i −RNAðkÞ

j ;

∀i; j∈f1;…;mg; i≠ j . R(k) is a vector constituted by the
relative expressions of all lncRNA pairs within the k-th
sample (Eq. 2).
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lncRNA pairs.
The relative expression R(k) of lncRNAs together with

label Y(k) forms a group of training data S = {(R(1), Y(1)),
(R(2), Y(2)),…, (R(n), Y(n))}, where Y(k) equals to 0 for a
normal sample or 1 for a sepsis sample. The rela-
tive expression of lncRNAs pairs within sample is
stable, even though the absolute expression value
may bias among samples ubiquitously. After the
relative expression within sample extracted, the
cross-sample analysis was conducted following the
steps below.

Table 1 Datasets included in the analysis

Dataset accession Cohort description Sample type Number of Septic subjects Number of Normal subjects Total subjects Reference

Discovery cohort

GSE95233 Adults Whole blood 102 22 124 Ref. [27]

Validation Cohorts

GSE57065 Adults Whole blood 82 25 107 Ref. [28]

GSE28750 Adults Whole blood 10 20 30 Ref. [29]

GSE8121 Children Whole blood 60 15 75 Ref. [30]

GSE9692 Children Whole blood 30 15 45 Ref. [31]

GSE13904 Children Whole blood 52 18 70 Ref. [32]

GSE26378 Children Whole blood 82 21 103 Ref. [33]

GSE4607 Children Whole blood 69 15 84 Ref. [34]

GSE26440 Children Whole blood 98 32 130 Ref. [33]
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To screen out the intra-sample signature for sepsis,
cross-sample analysis was performed between sepsis and
normal samples (Fig. 1c). The lncRNA pairs with a

significant difference in their relative expression rðkÞij

between sepsis and normal samples were extracted.

Two situations, rðkÞij ¼ 1 (RNAðkÞ
i > RNAðkÞ

j ) and rðkÞij ¼ −1

( RNAðkÞ
i < RNAðkÞ

j ), were taken into consideration. For
each lncRNA pairs in the normal group, the number of
RNAi > RNAj across n samples was calculated as

a ¼ 1
2

Xn

k¼1
r kð Þ
ij þ 1

� �
� 1−Y kð Þ
� �

; ð3Þ

and the number of RNAi < RNAj is

b ¼ 1
2

Xn

k¼1
1−r kð Þ

ij

� �
� 1−Y kð Þ
� �

: ð4Þ

For the sepsis group, the number of RNAi > RNAj is

Fig. 1 The workflow of individualized pair analysis of gene expression (iPAGE). a The long non-coding RNA (lncRNA) expression data including
both sepsis and normal samples. b Relative expression between every possible lncRNA pairs were calculated in each sample. c Statistical analysis
across all samples in the discovery cohort. d Top lncRNA pairs with significant differentiation ability were identified as the signature. e Validation
using independent datasets. f Diagnostic application of the proposed signature
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c ¼ 1
2

Xn

k¼1
r kð Þ
ij þ 1

� �
� Y nð Þ; ð5Þ

while RNAi < RNAj is

d ¼ 1
2

Xn

k¼1
1−r kð Þ

ij

� �
� Y nð Þ: ð6Þ

Hence, the contingency table was obtained as follows,

RNAðkÞi > RNAðkÞj RNAðkÞi < RNAðkÞj

Normal
a ¼ 1

2

Pn
k¼1

ðrðkÞij þ 1Þ � ð1−YðkÞÞ b ¼ 1
2

Pn
k¼1

ð1−rðkÞij Þ � ð1−YðkÞÞ

Sepsis
c ¼ 1

2

Pn
k¼1

ðrðkÞij þ 1Þ � YðnÞ d ¼ 1
2

Pn
k¼1

ð1−rðkÞij Þ � YðnÞ

After that, Fisher’s Exact Test was utilized to measure
the ability of differentiating sepsis ones from the control
samples for each lncRNA pair. The p value was
calculated by

p ¼
aþ b
a

� �
cþ d
c

� �

n
aþ c

� �

¼ aþ bð Þ! cþ dð Þ! aþ cð Þ! bþ dð Þ!
a!b!c!d!n!

ð7Þ

, where n = a + b + c + d.
Bonferroni correction was then applied for multiple

comparison correction. Base on the adjusted p values,
the significantly altered lncRNA pairs (SALPs) were
screened out between normal samples and septic
samples as the signature (Fig. 1d). In this study, the
SALPs rij was selected with prij smaller than 1 × 10−16.

Classification and evaluation
lncRNA pairs selected in the previous step may serve as
a diagnostic signature. A classifier was built based on the
relative expressions of lncRNA pairs, which were
represented by r1, r2, …, rl for simplification. r is
assigned 1 when a pair RNAi > RNAj indicates sepsis and
r is assigned −1 otherwise. A risk score ρ indicating the
sepsis possibility was calculated by taking the sum of all

the differential lncRNA pairs, which is ρ ¼ 1
2

Pl
q¼1ðrq

þ1Þ: The classifier was evaluated by Area Under the
Receiver Operating Characteristic (AUROC) on eight
independent validation cohorts (Fig. 1e) and then can be
applied for diagnosis prediction (Fig. 1f). All the above
experiments were conducted using Python 2.7.

Functional analysis
The interactions between lncRNAs and proteins were
obtained from the RNAinter database [40]. Proteins

interacted with a specific lncRNA were assumed to be
involved in the similar biological functions with the
lncRNA. We used hypergeometric test to evaluate the
statistical significance of functional enrichment, mining
functional terms or pathways that a set of proteins are
overrepresented [41–43]. The functional similarity
between two sets of genes or proteins was measured by
semantic similarity using Wang’s algorithm [44]. These
calculations were carried out using clusterProfiler [45]
and GOSemSim [46] in R environment.

Results
Data curation
We performed a systematic search for microarray
datasets that collected whole blood from sepsis samples
and identified three adult datasets and six children’s
datasets (Table 1). The dataset GSE95233 with most
sepsis samples was selected as discovery cohort. The
other two adult datasets served as independent
validation sets for the same group and six children’s
dataset were utilized for divergent group validation.
After Robust Multiarray Averaging (RMA) [35]
normalization and reannotation, 3745 lncRNAs were
obtained for individualized pair analysis of gene
expression (iPAGE) to identify the significantly altered
lncRNA pairs (SALPs). Moreover, the eight validation
datasets normalized by MicroArray Suite 5.0 (MAS5.0)
[36] were applied to evaluate the model performance
across distinct normalization methods.

Intra-sample signature discovery
A total of 7,010,640 intra-sample lncRNA pairs were ac-
quired from 3745 lncRNAs using exhaustive comparison
between every lncRNA. Among these pairs, 14 lncRNA
pairs are the most significantly different between the
septic patients and control samples after performing
cross-sample analysis (P value < 1 × 10−16, Fisher’s Exact
test). The 14 lncRNA pairs are named SepSigLnc and
can be used as a transcriptional signature for sepsis diag-
nosis (listed in Fig. 2b). In the discovery cohort, the
lncRNAs on the left are smaller than the ones on the
right column in expression level among all the normal
samples, whereas the relative expression reverse in the
sepsis samples, i.e., from RNAi < RNAj to RNAi > RNAj.
Three lncRNAs are involved in multiple pairs among the
14 pairs, resulting in 19 individual lncRNAs. Specifically,
ECRP, AC090627.1, and LOC101927974 are implicated
in five, four, and three pairs, respectively.
A circos plot shows the location of SepSigLnc on

chromosomes with each line linking a pair of lncRNAs
(Fig. 2a). Mean expression levels of lncRNAs in normal
and sepsis samples among discovery cohort are
displayed in blue and red bars, respectively. The
expression levels of lncRNAs in a pair reverse between
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sepsis and control samples. For instance, C5orf66 has
higher expression level than AC090627.1 among the
sepsis patients, whereas it expresses lower than
AC090627.1 among the normal samples. For the eight
validation cohorts, the identified 14 lncRNA pairs
illustrate distinct expression patterns between normal
and sepsis samples (Fig. 2b). Specifically, the proportion
of samples with relative expression equal to − 1 among
normal samples is no less than that among sepsis
patients in each cohort. In another aspect, normal
individuals have fewer reverse lncRNA pairs than sepsis

ones (Supplementary Figure S2 in Additional file).
Figure 2c provides the detailed information of the 19
lncRNAs in SepSigLnc.

Model comparison
For comparison, we also trained machine learning
methods on the discovery cohort including logistic
regression, nearest neighbors classifier, linear support
vector machine (SVM), gaussian process classification
(GPC), random forest, and neural network. As the
workflow presented in Supplementary Figure S1 (see

Fig. 2 Statistics and characteristics of 14 lncRNA pairs in SepSigLnc. a A circular plot showing the location of the identified lncRNA pairs in
chromosome. Nodes represent lncRNAs and edges represent the lncRNA pairs between sepsis and normal states. Red and blue bars represent
the mean absolute abundance in discovery cohort. b A grid of pie charts showing the percentage of the lncRNA pairs’ relative expression
between sepsis and normal samples in the eight validation cohorts. Each pie represents the percentage of samples in a cohort whose lncRNA
pair follow the relative expression (equal to − 1) shown on the left. c The genetic information of the lncRNAs in SepSigLnc
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Additional file), the top 19 significantly differential
lncRNAs, the same number of lncRNAs as SepSigLnc,
were extracted by independent student’s T-test as fea-
tures for machine learning models. After tuning with 10-
fold cross validation and grid search, the optimal num-
ber of estimators for random forest was 10, maximum
depth was 2. As for neural network, two hidden layers
with 20 neurons for each layer had the best performance
through grid search. Also, we compared SepSigLnc with
existing genetic signatures SeptiCyte [10] and sNIP [9].
The AUROCs for all the methods on the discovery
cohort are shown in Fig. 3a.

Validation by adult data sets
GSE57065 and GSE28750, the same age group as the
training cohort, were employed as independent validation
cohorts to test the performance of SepSigLnc on adults.
SepSigLnc achieved the AUROC of 0.995 on GSE57065
and AUROC of 0.990 on GSE28750 (Fig. 3b and c). We
compared the performance of SepSigLnc with other
machine learning methods using the same number of
lncRNAs. Logistic regression and linear SVM had the
highest AUROC of 1 on GSE57065, while the SepSigLnc
achieved a comparable result of 0.995. Nevertheless,
SeptiCyte and sNIP performed not as well as SepSigLnc.
As for GSE28750, SepSigLnc performed better than all the

other models listed, especially logistic regression
(AUROC= 0.600) and linear SVM (AUROC= 0.650).
Taking the results on GSE57065 and GSE28750 into
overall consideration, SepSigLnc has the comparably best
performance.

Validation by children’s data sets
To test the performance of relative expression on
various groups of cohorts, we applied SepSigLnc to six
children’s data sets GSE8121, GSE9692, GSE13904,
GSE26378, GSE4607, and GSE26440. SepSigLnc attained
AUROCs over 0.900 on most of the cohorts except
GSE9692 and GSE13904(Fig. 3d, supplementary Table
S1, and Figure S3 in Additional file). Compared with
other machine learning models, SepSigLnc performed
better overall. Besides, it surpassed SeptiCyte and was
comparative to sNIP. Although the nearest neighbor
classifier performed better with AUROC = 0.933 on
GSE9692 and AUROC = 0.865 on GSE13904, it almost
randomly classified sepsis and normal cases on
GSE4607. Neural network achieved AUROC between
0.790 and 0.900 among all the children’s cohorts.
Comprehensively, no model can dominate on all
cohorts, but SepSigLnc is superior to the others on
average.

Fig. 3 AUROC of SepSigLnc, machine learning methods, and benchmarks in discovery cohort and validation data sets. a AUROC of SepSigLnc,
machine learning methods, and benchmarks on discovery cohort GSE95233. b Performance on adult validation cohort GSE57065 measured by
AUROC. c Performance on adult validation cohort GSE28750 measured by AUROC. d Boxplots of performance in six children’s validation cohorts
measured by AUROC. e Boxplots of performance measured by AUPRC on totally eight validation cohorts normalized with RMA and MAS5.0
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Validation by MAS normalization
Validation was also conducted on data with different
normalization methods to evaluate the robustness of
SepSigLnc. We exerted SepSigLnc and machine learning
methods on the same independent adult and children’s
cohorts as the previous experiments but normalized by
MAS5.0. For the MAS5.0 normalized cohorts, SepSigLnc
outperformed machine learning models and other
signatures (Fig. 3e, supplementary Table S2, and Figure
S4 in Additional file). Furthermore, SepSigLnc appeared
to maintain the same level of performance between the
two normalization methods, while machine learning
methods, SeptiCyte, and sNIP declined on MAS5.0
normalization in comparison to RMA normalization. In
consequence, SepSigLnc is superior to the listed
machine learning models, SeptiCyte and sNIP across
different normalization methods.

Functional analysis of SepSigLnc
We investigated the functional mechanisms of the
lncRNAs in SepSigLnc using the rule of guilt by
association. First, the interactions between lncRNAs and
proteins were established based on the RNAInter
database [40]. Then, the common proteins interacted by
a pair of lncRNAs were used for function enrichment
analysis (Fig. 4a). Specifically, the lncRNA RP11-
533E19.7 interacts with 1095 proteins and AC100830.4
interacts with 307 proteins, 273 out of which are shared
by the lncRNA pair (Fig. 4b). Gene Ontology (GO)
enrichment analysis shows the overlapping proteins are
implicated in the biological processes of covalent
chromatin modification, histone modification, DNA-
templated transcription and initiation, cell fate commit-
ment, steroid hormone mediated signaling pathway, etc.
(Fig. 4c).
Concentrating on the common target proteins of the

AC008753.4 - LOC101928817 pair (Fig. 4d), we found
most of the enriched functions are the same as the
RP11-533E19.7 - AC100830.4 pair, including DNA-
templated transcription and initiation, cell fate commit-
ment, steroid hormone mediated signaling pathway, etc.
(Fig. 4e). Interestingly, the two lncRNA pairs have an
extremely high function similarity, revealing that the
SepSigLnc members tend to be implicated in the same
pathway associated with sepsis.
On top of the two independent pairs mentioned

above, the other 12 pairs composed three connected
motifs, including five, four, and three pairs, respectively
(Fig. 5a). For instance, the largest motif contains five
lncRNA pairs among six lncRNAs, i.e., ECRP, CTD-
2012 K14.6, LOC101926943, MCM3AP-AS1, MGC27345,
and STARD7-AS1. All the five pairs share a single
lncRNA ECRP. Importantly, a substantially high proportion
of target proteins are shared by the five lncRNA pairs (Fig.

5b), indicating that the motif tends to be involved in similar
biological processes. Apart from one pair without common
target proteins, indeed, the other four lncRNA pairs
functions are remarkably similarly based on the enrichment
analysis (Fig. 5c). Specifically, ECRP separately shares 62,
46, 66, and 62 proteins with STARD7-AS1, LOC101926943,
MCM3AP-AS1, and CTD-2012 K14.6, the functions
enriched by which are pretty consistent, including
covalent chromatin modification, histone modification,
DNA-templated transcription and initiation, cell fate com-
mitment, cellular response to steroid hormone stimulus,
etc. (Fig. 5c).
We further used semantic similarity (SS) to measure

the functional similarity between different groups of
proteins. As shown in Fig. 5d, the SS scores of all these
lncRNA pairs are close to 1 except MGC27345 (about
0.6), which is significantly higher than the randomly
picked up lncRNA pairs (Ranksum test, P < 1.34e-22,
Fig. 5e). To simulated the SS of random pairs, we
grabbed around 20,000 proteins from the RNAinter
database [40] and calculated the similarity among any
two arbitrarily picked-up protein sets with size ranging
from ten to 100 for 10,000 times. Moreover, we evalu-
ated the functional similarity of all the lncRNAs in
SepSigLnc and observed a high consistency of them in
semantic similarity. Most of the SS scores were over 0.7
(Fig. 5f), which is also significantly higher than the simu-
lated data (Ranksum test, P < 1.51e-18, Fig. 5e). Since no
target proteins have been detected yet for AC090627
and LOC101927974, the other two motifs were not deci-
phered in this study. These results indicated that an ex-
pression alteration of a pair of lncRNAs may be involved
in critical biological pathways that affect sepsis progres-
sion through disrupting the balance of the lncRNA-gene
regulatory network.

Discussion
Rapid diagnosis through molecular detection contributes
to early intervention for rescue which can reduce the
morbidity and mortality of sepsis. Studies revealed that
lncRNAs regulate inflammation-related genes and may
serve as potential biomarkers or signatures for sepsis
diagnosis. Nevertheless, prediction using the absolute
expression levels of lncRNAs may deviate since high-
throughput platforms are sensitive to various forms of
technical bias. The generated continuous measurements
were not measurable and comparable, even though they
were preprocessed by plausible normalization methods.
Using individualized pairwise analysis of gene expression
(iPAGE) based on relative expression instead of the ab-
solute abundance, we identified 14 lncRNA pairs named
SepSigLnc. The signature’s relative expression of normal
controls and sepsis patients are complements to each
other respectively and very stable. Importantly, we
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examined the SepSigLnc on two independent adult as
well as six children validation cohorts and demonstrated
our model overall outperforms machine learning models
and existing biomarkers on the basic of absolute gene
expression level. Therefore, SepSigLnc is a reliable and
robust signature for the diagnosis and initial evaluation
of sepsis. Our results also revealed that the relative ex-
pression is more reliable than the absolute abundance in
the sepsis high throughput data, which further confirm
the previous discoveries [39, 47].
We further tested the diagnosis capability of

SepSigLnc across different normalization methods. As
shown in Fig. 3e, the performance of SepSigLnc does
not reduce (or is even better) when examined on the
expression cohorts normalized using another method
MAS5.0, whereas it does for other machine learning

methods as well as Septicyte and sNIP. To retrieve the
absolute abundance of genes from systematic bias of
experiments, normalization methods such as RMA and
MAS5.0 adjust the expression value according to specific
assumptions. Using relative expression of lncRNAs pairs
obviates the disturbance brought by normalization, since
different normalization methods result in different gene
expression patterns, based on disparate assumptions
[37, 48, 49].
Theoretically, iPAGE is able to perform cross-platform

analysis by integrating expression cohorts from different
resources. The absolute expression levels of genes may
vary when detected by different high throughput
technics such as RNA-seq and microarray, different pro-
filing platforms, or different production batches. iPAGE
extracts the relative expression of lncRNA pairs within

Fig. 4 Functional analysis of the lncRNAs in SepSigLnc. a The common proteins targeted by a pair of lncRNAs were used to derive the functions
of the lncRNA pair. b Venn diagram of the proteins targeted by RP11-533E19.7 and AC100830.4. c The most significantly enriched biological
processes for the overlap proteins targeted by RP11-533E19.7 and AC100830.4. The node color represents the enrichment significance and the
node size refers to the number of genes in the functional category. d Venn diagram of the proteins targeted by AC008753.4 and LOC101928817.
e The most significantly enriched biological processes for the overlap genes targeted by AC008753.4 and LOC101928817
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samples for diagnosis instead of using the absolute abun-
dance and consequently stable across experimental as-
says and platforms. Validation for the assumption are
left for future work.
From the function enrichment analysis of SepSigLnc,

the members in a five-lncRNA motif are significantly
similar and they share a large amount of interacting pro-
teins, which are implicated in the biological processes of
covalent chromatin modification, histone modification,
DNA-templated transcription and initiation, cell fate

commitment, steroid hormone mediated signaling path-
way, etc. (Figs. 4 and 5). In particular, steroid hormone
mediated signaling pathway involves in the biological
process related to sepsis, which shows high consistence
with the previous clinical findings. Sepsis patients often
show acute alterations in hormones, including downreg-
ulation of hormones such as thyroid stimulating hor-
mone, triiodothyronine, testosterone and estrogen, and
upregulation of other hormones such as cortisol and
vasopressin [50]. The alteration of hormones partially

Fig. 5 Functional analysis of three connected motifs in SepSigLnc. a Twelve out of 14 lncRNA pairs in SepSigLnc compose three connected
motifs. b Venn diagram of the proteins targeted by ECRP, CTD-2012 K14.6, LOC101926943, MCM3AP-AS1, and STARD7-AS1. c The most
significantly enriched biological processes for the overlap proteins targeted by ECRP, CTD-2012 K14.6, LOC101926943, MCM3AP-AS1, and STARD7-
AS1. d The heat map of function similarity between the above five lncRNAs. e Semantic similarity (SS) between lncRNAs. Blue line represents the
distribution of the SS between all lncRNAs pairs. Bright red boxplot shows the SS between the lncRNAs in SepSigLnc. Dark red boxplot displays
the SS between lncRNA ECRP, CTD-2012 K14.6, LOC101926943, MCM3AP-AS1, and STARD7-AS1. f The heat map of function similarity between 14
lncRNA pairs in SepSigLnc
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reflects the physiological response of sepsis patients and
it has significant effects on clinical outcomes. For in-
stance, thyroid hormone levels were reduced by different
mechanisms during sepsis. Patients with mild illness
often have euthyroid sick syndrome, i.e., a decrease in
serum levels of triiodothyronine and a mild increase in
thyroxine. Moreover, the degree of hormone alteration is
associated with disease severity and has been served as a
predictor of poor outcome in sepsis [51].
Notably, the function analysis of lncRNA pairs in

SepSigLnc implies the regulation mechanism may not
only rely on the upregulation or downregulation of a
single lncRNA or protein-coding gene, but also through
the switch of ordering between lncRNAs in a pair. For
instance, SPI1 and GATA1 is a well-studied pair in the
hematopoietic system. SPI1 specifies the myeloid lineage,
where SPI1> >GATA1, while GATA1 specifies the eryth-
roid lineage, featured by GATA1> > SPI1 [52].
Although we constructed a large-scale study covering

nine cohorts and 768 samples, all the transcriptome
datasets were detected using microarray instead of se-
quencing techniques. We call for large-scale RNA-seq
datasets of sepsis to promote and facilitate the develop-
ment molecular detection. Additionally, converting the
lncRNAs into relative expressions loses information con-
tained in absolute value and hence needs more lncRNA
pairs for accurate diagnosis. In the near future, we will
validate SepSigLnc through reverse transcription-
polymerase chain reaction (RT-PCR) for clinical utility.
While the specific role of SepSigLnc in sepsis diagnosis
remains unclear, the regulation mechanism needs to be
investigated through in vivo experiments such as the
cecal ligation and puncture (CLP) model of mouse.
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