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Abstract

Background: Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate
haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their
morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of
physiological processes involved in host-parasite interaction, such as evasion of the immune system and its regulation,
digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and
physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of
expressed genes and proteins secreted by the adult stage of Fudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an
obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio).

Results: RNA-seq raw reads (324,941 Roche 454 and 149,697,864 lllumina) were generated, de novo assembled, and
filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In
silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms
responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins),
feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and
annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly
immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK?7, tetraspanin)
and ability to digest host macromolecules (cathepsins B, D, L1).
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interactions with the fish hosts.

spectrometry

Conclusions: In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and
comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean
transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated
and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected,
organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their
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Background

Monogeneans, typically ectoparasites of freshwater and
marine fish, are the causative agents of major global fish
diseases. Clinical symptoms of monogenean infections,
such as tissue injury, anaemia, and respiratory and
osmoregulatory dysfunctions, are often accompanied by
secondary microbial infections [1, 2] that can lead to
increased fish mortality. Monogenean infestations in fish
aquacultures result in significant economic losses; in
Norway, for example, annual economic losses due to the
presence of the monogenean Gyrodactylus salaris in
commercial breeding stocks of Atlantic salmon (Salmo
salar) are estimated at over 500 million USD [3].

Despite the economic importance of this group of
ectoparasites, there is a shortage of data on their func-
tional molecular biology and interactions with their fish
hosts. To reveal phylogenetic relationships within the
species-rich monogenean group, several studies focused
on sequencing the mitochondrial genome. This research
investigated, for instance, (a) polytypic parasites G. salaris
[4], which infects salmon, and Gyrodactylus thymalli [5],
which typically infect the grayling; (b) Neobenedenia mel-
leni, a generalist parasite of marine fish [6]; (c) Benedenia
hoshinai [7], a parasite of the striped knifejaw Oplegnathus
fasciatus, and (d) Pseudochauhanea macrorchis [8], which
typically infects the pickhandle barracuda Sphyraena jelloi.

To date, however, only three monogenean genomes
are publicly available, namely the genome of G. salaris
(9], Gyrodactylus bullatarudis, an ectoparasite of guppy
fish Poecilia reticulata [10], and Protopolystoma xeno-
podis, which infects the African clawed frog Xenopus
laevis [11]. G. salaris, G. bullatarudis, and P. xenopodis
represent  phylogenetically different monogenean
subclasses (Monopisthocotylea and Polyopisthocotylea)
with significant differences in their genome size (67.38
Mb, 84.40 Mb, and 617.34 Mb respectively) and the
number of coding genes (15,436, 10,749, and 37,906).
Other publicly available datasets include an EST dataset
containing 6726 sequences for N. melleni (unpublished,
NCBI BioSample SAMNO00169373) and a recent prote-
omic study targeting tissue-specific proteins of the
adult stage of E. nipponicum [12].

E. nipponicum is an oviparous, blood-feeding ectopara-
site which infests the gills of the common carp. During its
unique lifecycle, two larvae (diporpae, post-oncomiracidial
stage) permanently fuse to form the juvenile stage, which
then develops into an adult individual [13, 14]. E. nipponi-
cum was introduced to Europe from Southeast Asia prior
to 1983 [15] and has since become a common parasite of
carp with negative impact on their populations [16]. It
presents a particular problem for intensive pond carp
farming in Europe, which produces over 187,000 tons of
carp a year (based on data from 2018) [17].

Despite the economic importance of E. nipponicum,
only a handful of studies so far investigated the genes of
this parasite, so that to date, only 38 nucleotide and 10
amino acid sequences are deposited in NCBI databases.
Key studies focused on (a) genetics and molecular
biology [16, 18-26], in particular molecular identifica-
tion and characterisation of key peptidases and their
inhibitors, namely cathepsins L, B, and D [21, 22], cysta-
tin [20], serpin [23], and a Kunitz-type inhibitor [24]; (b)
cytogenetics [27] and phylogenetics, with the aim to
further our understanding of monogenean evolution; (c)
morphological adaptations to ectoparasitism [13, 14, 28];
(d) involvement of surface carbohydrates [29] during the
fusion process between diporpae and in interaction with
the fish host, and finally, (e) the effect of somatic fusion
between the two diporpae on the neural system [30-32].
In the present study, we report and make publicly avail-
able the first global investigation into the biology of E.
nipponicum using an integrated transcriptomic and
proteomic approach and escribe certain important new
aspects of the ectoparasite—host relationship.

Results

Transcriptional profile of adult E. nipponicum

A total of 324,941 Roche 454 raw reads (length 424 +
219bp) and 149,697,864 Illumina raw reads (length
100 bp) were processed, assembled, and merged into
94,814 contigs. The contigs were clustered and fil-
tered, resulting in 37,062 protein-coding transcripts
with mean length of 736 bp, which were used for sub-
sequent analysis (Table 1; Additional file 1: Table S1).
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Table 1 Statistics of raw reads and assembled transcripts from
Roche 454 and lllumina reads
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Table 2 Summary of annotation results of the E. nipponicum
transcriptome

Basic statistics of raw reads

Total number of obtained raw reads 150,022,805
lllumina MiSeq 149,697,864
Roche 454 324,941

Average length of obtained raw reads
lllumina MiSeq 100 bp
Roche 454 424+ 219bp

Total number of processed reads 123,774,558

before assembly
lllumina MiSeq 123,555,644
Roche 454 218914

Statistics of transcriptome assembly

Total number of final transcripts 37,062
Mean length of nucleotide 736 bp

sequences

Number of transcripts encoding full- 14,203 (38.32%)

length protein 230 amino acids

Number of transcripts with start 3689 (9.95%)

codon (ATG) only

Number of transcripts terminated 13,092 (35.32%)

by a stop codon only

Complete/partial matches to 248
CEGMA core proteins

978 searched BUSCO groups (%)

69.35, 90.73%

Comp: 776 (79.34) [Single 436
(44.58), Dupl: 340 (34.76)], Fragm:
63 (6.44), Missing: 139 (14.21)

GC content in transcripts 42.30%
N50 1548 bp
N90 360 bp

The transcripts were annotated using seven databases,
resulting in 53% (n=19,644) of transcripts annotated by
at least one database (Table 2; Additional file 2: Table S2).
Analysis of transcript abundance revealed that adult E.
nipponicum parasites are transcriptionally active, with
the top 100 transcripts representing approximately 39% of
total transcription, represented by TPM (Additional file 2:
Table S2). Within these abundantly expressed transcripts,
uncharacterised proteins prevail. Among the annotated
transcripts, ribosome-associated and ubiquitin-related
transcripts are highly transcribed. Consistently with the
haematophagous strategy used by E. nipponicum, key genes
associated with blood feeding and digestion also belong to
the most transcribed: they include a number of ferritins
(iron storage proteins), Kunitz-type inhibitor KT1 (anticoa-
gulation properties), and a CD59-like transcript (inhibition
of the complement cascade) (Additional file 3: Table S3).
Analysis by gene ontology (GO) of the total transcrip-
tome revealed that abundant transcription is associated
with GO terms related to binding, protein synthesis, and

Transcriptome annotation

19,644
(53.0%)

1342 (3.62%)

Total number of annotated transcripts

Number of transcripts homologue to nucleotide DDBJ
database

Number of proteins homologous to entries in protein
used databases

1533 (4.14%)
28 (0.08%)

NCBI non-redundant (nr) protein database
RCSB PDB

UniProtKB/Swiss-Prot 131 (0.35%)

UniProtKB/UniRef100 1886 (5.09%)

UniProtKB/TrEMBL (phylum Platyhelminthes only) 14,020
(37.83%)

MEROPS peptidases
MEROPS peptidase inhibitors

555 (1.50%)
149 (0.40%)

Number of transcripts with assigned KO number 7435
(20.06%)
Number of unique KO numbers 3499
Number of transcripts classified by InterProScan 16,772
(45.25%)
Number of transcripts with assigned GO term/s 11,149
(30.08%)
Number of unique GO terms 1627
Biological process 640
Cellular component 267
Molecular function 720

Analysis of excretory-secretory proteins

Number of ESP identified by mass spectrometry 721 (1.95%)

catalytic activity. In particular, key GO terms associated
with the ribosome (GO:0003735, TPM: 61,254.60, ratio
of TPM values and number of associated transcripts
(referred to herein as TPM/transcript ratio): 189.64; GO:
0005840, TPM: 59,162.10, TPM/transcript ratio: 202.61)
and with proteolysis (GO:0006508, TPM: 11,499.80, TPM/
transcript ratio: 35.94) were among the most expressed
(Fig. 1; Additional file 4: Table S4). Abundant transcription
of GO terms related to iron and haem processing was also
observed; this included ferric-iron binding (GO:0008199,
TPM: 8865.16, TPM/transcript ratio: 227.31), cellular iron
ion homeostasis (GO:0006879, TPM: 8594.39, TPM/tran-
script ratio: 245.55), iron ion transport (GO:0006826, TPM:
8593.63, TPM/transcript ratio: 306.92), iron ion binding
(GO:0005506, TPM: 560.70, TPM/transcript ratio: 23.36),
and haem binding (GO:0020037, TPM: 2419.98, TPM/tran-
script ratio: 96.80).

A recent in-depth analysis of proteins secreted by the E.
nipponicum had shown that extracellular vesicles (EVs)
play a key role at the host—parasite interface. In particular,
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Fig. 1 GO term distribution among E. nipponicum transcripts. The most expressed GO terms, top 20 for each main category (in ascending order,
axis y), and their distribution in the three main GO categories: Cellular component (blue), Biological process (purple), and Molecular function
(orange). Expression level (axis x) is based on the sum of TPM values for all transcripts included for each GO term. A logarithmic scale was used to

display the relative expression of each GO term

they facilitate infection and parasite survival [33]. The role
of extracellular vesicles in relation to monogenean
parasites is yet to be explained but our analysis of adult E.
nipponicum transcriptome identified a number of tran-
scripts associated with extracellular vesicular transport,
which indicates that EVs might play a role in interactions
between the host and E. mnipponicum. In particular,
transcripts associated with the KEGG exosome term
(ko04147, TPM: 38,549.90, TPM/transcript ratio: 57.45)
are abundantly expressed and, consistently with the KEGG
analysis, GO terms related to endocytosis (GO:0006897,
TPM: 42.02), vesicle docking (GO:0048278, TPM: 17.35),
vesicle-mediated transport (GO:0016192, TPM: 1263.80,
TPM/transcript ratio: 10.44), and vesicle docking involved

in exocytosis (GO:0006904, TPM: 100.90, TPM/transcript
ratio: 6.73) were also observed.

Analysis of E. nipponicum metabolism

There is as yet a paucity of data regarding the type of
energy metabolism used by E. nipponicum, but because
the parasite lives in an oxygen-rich environment on carp
gills, one can safely assume that its metabolism is
predominantly aerobic. This hypothesis is supported by
KEGG metabolic pathway analysis, which revealed a
transcription of genes associated with the glycolysis and
gluconeogenesis pathway (ko00010, TPM: 2028.11,
TPM/transcript ratio: 35.58), citrate cycle (ko00020,
TPM: 866.91, TPM/transcript ratio: 19.70) and oxidative
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phosphorylation (ko00190, TPM: 12,081.56, TPM/tran-
script ratio: 67.87), all of which are indicative of aerobic
metabolism (Figs. 2 and 3; Additional File 5: Table S5;
Additional File 6: Table S6).

An analysis of enzymes involved in glycogen synthesis
and catabolism revealed low levels of transcription of
phosphofructokinase (related to glycogen breakdown;
4.30 TPM), which is in keeping with the fact that in oxy-
gen-rich environment, E. nipponicum energy metabolism
relies on its glycogen stores. In comparison, a higher tran-
scription was observed for an enzyme involved in glycogen
synthesis, namely fructose 1,6-bisphosphatase (86.34 TPM),
which may be required for vitelline cell development during
the parasite’s egg formation process [35].

Other key pathways with high levels of transcription
included pathways associated with signal transduction,
which regulate a range of cell function processes and
play a critical role in cellular development (Fig. 3).
Among the KEGG pathways transcribed, we also observed
the digestion process. Ingested blood is partially hydrolysed
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in the gut under slightly acidic conditions (gastric acid
secretion ko04971, TPM: 1443.04, TPM/transcript ratio:
34.36) and released molecules (proteins, fats, carbohydrates,
and vitamins) are processed intracellularly within digestive
cells (protein digestion and absorption ko04974, TPM:
375.11, TPM/transcript ratio: 15.63; fat digestion and
absorption ko04975, TPM: 278.19, TPM/transcript ratio:
14.64; carbohydrate digestion and absorption ko04973,
TPM: 196.92, TPM/transcript ratio: 7.88; vitamin digestion
and absorption ko04977, TPM: 27.62) before being
absorbed (phagosome ko04145, TPM: 10,427.96, TPM/
transcript ratio: 68.61; endocytosis ko04144, TPM: 4931.40,
TPM/transcript ratio: 26.95).

Abundant transcription of peptidases and peptidase
inhibitors

Consistently with recent somatic proteomic analysis of
adult E. nipponicum by Roudnicky and colleagues [12],
peptidases and their inhibitors are highly transcribed in
the adult transcriptome data. Transcripts associated with
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the GO term peptidase (GO:0008233, TPM: 1561.66,
TPM/transcript ratio: 82.19) and endopeptidase (GO:
0004175, TPM: 2693.81, TPM/transcript ratio: 99.77)
are significantly transcribed and dominate the five main
classes of peptidase activity: cysteine-type peptidase
activity (G0:0008234, TPM: 7500.09, TPM/transcript
ratio: 83.33), threonine-type endopeptidase activity (GO:
0004298, TPM: 3257.16, TPM/transcript ratio: 70.81),
serine-type endopeptidase activity (GO:0004252, TPM:
1080.0, TPM/transcript ratio: 15.65), aspartic-type
endopeptidase activity (GO:0004190, TPM: 1050.0,
TPM/transcript ratio: 19.44), and metalloendopeptidase
activity (GO:0004222, TPM: 419.22, TPM/transcript

ratio: 8.56). Key GO terms associated with endopeptid-
ase inhibitory activity also displayed abundant transcrip-
tion within the adult transcriptome (GO:0004867 serine-
type endopeptidase inhibitors, TPM: 4950.51, TPM/tran-
script ratio: 72.80 and GO:0004866 endopeptidase in-
hibitor activity, TPM: 664.42, TPM/transcript ratio:
44.29).

Further in-depth analysis of these transcripts that used
the MEROPS peptidase database identified 555 proteases
and 149 inhibitors, which were classified into 62 peptid-
ase and 15 inhibitor families (Table 3).

Peptidase classification was consistent with the GO
analysis, reflecting a predominance of threonine,
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Table 3 £ nipponicum peptidases and inhibitors divided in
individual catalytic types according to the MEROPS database

Catalytic type Transcripts/TPM Families
Aspartic peptidases 35/226.10 4
Cysteine peptidases 187/1586.49 22
Metallo peptidases 166/2169.10 21
Serine peptidases 121/1849.18 12
Threonine peptidases 46/2434.21 3
Peptidase inhibitors 149/5473.71 15

metallo, serine, and cysteine peptidases (Fig. 1). Of the
three peptidase families with threonine peptidase activ-
ity, the most abundantly transcribed genes belong to
proteasome-related threonine T1 family (PB clan),
which reflects intensive protein turnover during this
parasite stage. Supporting the protein degradation role
played by the proteasome, our analysis shows that
genes associated with the metallo peptidase family
M67, which plays a critical role in deubiquitination of
proteins, are also highly transcribed. Abundant
transcription of genes associated with families Serine
S1 (chymotrypsin family; PA clan) and Cysteine C2
(calpain family; CA clan) similarly support critical pro-
cesses such as development and digestion [36] (family
Serine S1), as well as signal transduction, cellular
differentiation, cytoskeletal remodelling, and vesicular
trafficking (family Cysteine C2) [37].

Analysis of the 15 peptidase inhibitory families showed
a predominance of inhibitors of serine and cysteine
peptidases, specifically inhibitors belonging to family 129,
which consists of inhibitors of C1 papain-like cysteine
peptidases (Table 4). This is consistent with our previous
biochemical characterisation of three key peptidase in-
hibitors highly expressed in the adult parasite secretome,
namely a type I cysteine peptidase inhibitor (EnStef) [20]
and two inhibitors of serine peptidases, namely serpin
EnSerpl [23] and Kunitz-type inhibitor EnKT1 [24].

Key E. nipponicum molecules important for blood feeding
in adult stage parasites

Members of clade Neodermata synthesise haem via
haem biosynthesis pathway consisting of eight enzymatic
steps [38-40]. E. nipponicum, like other haematopha-
gous parasites which after adopting a blood feeding
strategy lost the ability to synthesise haem de novo,
relies during egg production solely on host blood as a
rich source of carbohydrates for energy metabolism,
amino acids, and fatty acids. Still, physiological haem
plays a critical role in a wide range of this parasite’s bio-
logical processes [41]. Interestingly — and in contrast to
many blood-feeding parasites that lost most enzymes be-
longing to the haem biosynthesis pathway — homologues
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of seven such enzymes have been identified in E. nippo-
nicum transcriptome (Table 5).

In fact, only the transcript for 5-Aminolevulinic acid
synthase (ALAS), enzyme responsible for initiation of
the pathway, was absent. Further in-depth genomic
analysis is required to confirm the absence of this crucial
gene and to determine whether this is a feature which E. nip-
ponicum shared with other haematophagous monogeneans.
Similarly, functional analysis of the seven identified homolo-
gous enzymes would determine whether these enzymes
evolved other functions important for the parasite.

Based on the results of structural and histochemical
analyses [42, 43], one can conclude that the blood
digestion process in E. nipponicum resembles intracellu-
lar digestion that takes place inside digestive cells and is
usually found in ectoparasitic haematophagous mites,
such as ticks. Nevertheless, a recent study [21] seems to
indicate that an extracellular phase of digestion, in the
lumen of the gut, is also present and blood digestion in
E. nipponicum thus more closely resembles digestive
processes in liver flukes [44] rather than in ticks. Eryth-
rocytes are probably lysed within the monogenean gut
lumen, releasing haemoglobin tetramers which are then
hydrolysed in specialised haematin cells of the phagolyso-
some [45]. This process releases iron-rich haem which
plays an important role in a number of biological
processes [41] and is a crucial component required for egg
production [46]. To protect the parasite from haem
toxicity and related effects of oxidative stress, iron ions are
stored in intracellular iron storage proteins, ferritins [47].
Analysis of E. nipponicum transcriptome shows that ferri-
tins are amongst the most transcribed genes, represented
by 36 transcripts (14,024.50 TPM). This finding is consist-
ent with studies by Galay and colleagues which show that
multiple ferritins are critical for successful blood feeding
and reproduction in hard ticks [48].

Residual free haem is removed by conversion to haem-
atin crystals which are expelled back into the gut lumen
and regurgitated by the worm into the outer environ-
ment [45]. Similarly to the nematodes and the tick
Ixodes ricinus [49), E. nipponicum does not encode a
gene for haem oxygenase. The process of haem detoxifi-
cation by catabolism is therefore mediated by high affin-
ity haem-binding proteins, glutathione S-transferases
(GSTs) [49, 50], which are abundantly transcribed within
the E. nipponicum transcriptome. We identified 29 tran-
scripts, including 24 mu class and two mitochondrial
kappa class GSTs (3554.0 TPM).

Cathepsin cysteine peptidases are essential for degrad-
ation of host haemoglobin and are abundantly transcribed
in the E. nipponicum transcriptome. Consistent with a
study by Jedlickovd and colleagues [21], adult E. nipponi-
cum transcribe mainly cathepsin L peptidases, specifically
cathepsin L1 and L3 (n =36; 3789.31 TPM) at a ratio of



Vorel et al. BMC Genomics (2021) 22:274

Page 8 of 17

Table 4 Transcripts of E. nipponicum related to families of peptidase inhibitors according to the MEROPS database

Family Transcripts/TPM Target peptidases

1 6/5.46 Serine endopeptidases, referred to as Kazal family inhibitors, inhibit peptidases
from families S1 (chymotrypsin) and S8 (subtilisin)

12 21/7943 Serine peptidases inhibit chymotrypsin peptidases (S1 family) and include trypsin,
chymotrypsin, tissue kallikrein, and plasmin

14 9/449.59 Serine and cysteine endopeptidases inhibit families ST (chymotrypsin), S8
(subtilisin), C1 (papain), and C14 (caspase)

18 3/134.44 Serine and metallo endopeptidases target peptidases belonging to families S1
and M4 (thermolysin)

15 3/68.58 Serine endopeptidases from the chymotrypsin (S1) family

121 3/210.24 Serine endopeptidases from the subtilisin (S8) family

125 1/16.40 Primarily papain-like (C1 family) cysteine peptidases

129 25/2698.10 Papain-like (C1 family) cysteine peptidases

132 9/7.85 Caspases, cysteine endopeptidases from family C14

139 29/23598 Endopeptidases regardless of their catalytic type

143 2/144 Metallo peptidases from the astacin/adamalysin (M12) family

151 3/87.27 Serine carboxypeptidase Y (510.001)

163 9/302.97 Metallo peptidase pappalysin-1 (M43.004)

187 20/1169.99 FtsH metallo peptidase (M41.001)

193 6/5.97 Metallo peptidases, especially M12 family (astacin family)

29 cathepsin L1 (major transcript of cathepsin L1 = 969.02
TPM) to five cathepsin L3s (major transcript of cathepsin
L3 =515.64 TPM) and two unspecified cathepsins L-like,
while the expression of cathepsin B peptidases is lower
(n =4; 468.82 TPM).

We also found a number of transcripts encoding
calcium-dependent, non-lysosomal calpain-like proteases
(n =10; 354.97 TPM), which cleave the blood-clotting fi-
bronectin and thereby facilitate parasite feeding [37, 51].
Cathepsin D aspartic endopeptidase (n = 5; 314.49 TPM)
and aminopeptidases that use a metal ligand within their
active site (n =12; 103.12 TPM), such as aminopeptidase

P3 (also known as Xaa-Pro aminopeptidase) and amino-
peptidase A (or glutamyl aminopeptidase), also probably
play a role in blood digestion, although not to the same
extent as similar molecules in other haematophagous
ectoparasites, such as ticks.

Our biochemical characterisation of key secreted pep-
tidase inhibitors had shown that they play a critical role
during blood feeding [20, 23, 24]. Kunitz-type inhibitor
KT1 is among the most abundantly transcribed genes of
the E. nipponicum transcriptome (n = 68; 16,683.0 TPM).
This interesting serine protease inhibitor has anticoagula-
tion properties and can impair the host complement

Table 5 Proteins of E. nipponicum participating in the haem synthesis pathway

Enzyme Transcripts/  Function
TPM
5-Aminolevulinic acid synthase No hit Formation of 5-aminolevulinic acid (ALA) by condensation of succinyl-CoA and glycine in the
(ALAS) mitochondria
5-Aminolevulinic acid dehydratase 2/31.61 Formation of porphobilinogen (PBG) from ALA after exporting to the cytosol
(ALAD)
Porphobilinogen deaminase (PBGD) 1/8.90 Condensation of four PBGs to the unstable hydroxymethylbilane (HMB)
Uroporphyrinogen Ill synthase (UROS) 1/13.46 Cyclisation of HMB to uroporphyrinogen Il (URO lf)
Uroporphyrinogen Il decarboxylase  3/55.85 Decarboxylation of four acetic side chains to methyl groups to form coproporphyrinogen |ll
(UROD) (COPRO Iy
Coproporphyrinogen IIl oxidase (CPO) 1/12.32 Formation of protoporphyrinogen IX (PP'gen IX) back in the mitochondria
Protoporphyrinogen oxidase (PPO) 2/14.95 Oxidation of PP'gen IX yielding protoporphyrin IX (PP IX)
Ferrochelatase (FC) 2/5.11 Catalyse the insertion of a ferrous ion into PP IX, creation of the final product (the haem)
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system [24]. The adult parasite also transcribes other
serine protease inhibitors, especially serpins (n=20;
41449 TPM), though at lower levels of transcription.
These serpins have been shown to play a role in the sup-
pression of blood coagulation (by targeting mainly factor
Xa), complement activation, and fibrinolysis [23]. Simi-
larly, we identified a number of transcripts encoding a
type I cysteine peptidase inhibitor (cystatin/stefin; n = 6;
574.20 TPM), which has been shown to be involved in the
regulation of haemoglobin degradation [20].

Proteins probably acting at the host-parasite interface
To date, only a handful of proteomic studies have been
carried out for E. nipponicum, namely a gel-based
analysis of secreted proteins that focused on cathepsin
peptidases [21, 22] and a study of microdissected tissue-
specific somatic proteins [12]. In our study, we conducted
a gel-free proteomic analysis of excreted—secreted proteins
(ESP), otherwise known as secretome of adult E. nipponi-
cum, which identified 721 proteins with at least two
unique peptides (Additional file 7: Table S7). Consistent
with the transcriptome analysis, most of these proteins
have not been characterised previously. We identified sev-
eral key proteins involved in blood feeding and digestion,
namely a number of ferritins (n=7; 1.25 NSAF) and
glutathione S-transferases (n=7; 1.95 NSAF), which are
abundantly transcribed in the adult transcriptome and
consequently also abundantly expressed.

We have previously reported that cathepsin L peptidases
dominate the proteolytic activity of adult E. nipponicum
secretome, where they in conjunction with cathepsin B
peptidases play a critical role in haemoglobin degradation.
Both these peptidases were identified in our current secre-
tome analysis (cathepsin L1: 1.26 NSAF; cathepsin B: 0.14
NSAF). Additionally, we observed other key peptidases in-
volved in blood digestion, including (a) calpain, which
cleaves the blood-clotting protein fibronectin and there-
fore has an anticoagulation effect (0.19 NSFA) [51]; (b)
aspartic endopeptidase cathepsin D (0.04 NSFA), which
probably cleaves haemoglobin [52]; (c) saposin, involved
in red cell lysis (0.01 NSFA) [53]; and (d) cathepsin C, also
known as dipeptidyl peptidase I (0.13 NSFA), which
in schistosomes may in conjunction with leucine ami-
nopeptidases play a role in the terminal hydrolysis of
haemoglobin-derived peptides [54].

Despite the high levels of gene transcription, the
Kunitz-type inhibitor KT1 previously characterised by us
[24] was not highly abundant in the secretome (0.02
NSAF). In fact, marginally higher levels based on NSAF
values were observed for serpin (0.24 NSAF) and stefin
(0.12 NSAF) inhibitors. In situ hybridisation studies
localised the KT1 gene transcript to haematin (or digest-
ive) cells and not the digestive tract [24], which is
consistent with its lower expression in the secretome.
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Analysis of the most abundant proteins in the secretome
of adult E. nipponicum revealed a predominance of pro-
teins involved in immunomodulation, which is critical for
parasite survival (Table 6). The second most abundant sin-
gle protein was a peptidyl-prolyl cis-trans isomerase (1.37
NSFA), which, as previous studies have shown, is involved
in the modulation of dendritic and T cell responses in
other parasitic platyhelminths [56, 57]. In addition to their
role in haemoglobin degradation, cathepsin L peptidases
(1.11 NSFA) also play a key role in immunomodulation
[21, 22, 54]. Other important abundant molecules present
in the E. niponnicum secretome which probably play a
role in the modulation/suppression of host immune re-
sponse are fatty acid binding proteins (n = 3; 1.05 NSAF)
and CD59-like molecules (n = 4; 1.08 NSAF) (Table 6).

As shown above, adaptation to a blood feeding strategy
leads among other things to increased levels of oxidative
stress resulting from the release of iron from haemoglo-
bin. To neutralise or reduce the levels of free radicals,
the parasite produces a range of antioxidants, including
superoxide dismutase (SOD; 0.70 NSAF), thioredoxin
(TRX; 0.30 NSAF), and peroxiredoxin (PRX; 0.26 NSAF),
which are then found in the secretome.

Discussion

Monogeneans are the most species-rich group of fish-
infecting parasites within the phylum Platyhelminthes.
They evolved unique morphological adaptations associ-
ated with parasitism, including varying shape and size of
their attachment organs and hooks, which are widely
used for species identification. These traditional morpho-
logical methods are nowadays often combined with
molecular sequencing technologies to provide more
robust determination approaches [70]. On the other hand,
despite the advanced methods for -classifying these
parasites, the amount of molecular and biochemical data
pertaining to them is meagre. In this study, we conducted
in-depth transcriptome and secretome analyses to further
our understanding of adult E. nipponicum parasites, which
helped us provide novel insights into this blood-feeding
parasite’s feeding strategy.

E. nipponicum is an obligate blood-feeding ectopara-
site. As a consequence, fish infected with it suffer from
decreased levels of haemoglobin [71] and hypochromic
microcytic anaemia, characterised by increased ratio of
immature red blood cells [2]. The process of blood
feeding is initiated following attachment to the fish host,
where the gill tissue is mechanically damaged by pressure
created by suckers located in parasite’s oral cavity, which
leads to bleeding from host’s superficial capillaries. There
is currently no evidence that this process is supported by
peptidases secreted by the parasite that would digest the
host tissue, as has been reported for mucus-feeding mono-
geneans which most employ use elastase-like serine
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Table 6 The most abundant individual proteins in E. nipponicum secretome quantified by NSAF

Protein NSAF (%) Function

Neuroglobin-like isoform X3 141 Well-characterised in vertebrates, probably alternative function to oxygen transport [55]

Peptidyl-proly! cis-trans isomerase (cyclophilin) ~ 1.37 Binding of immunosuppressive drugs, host immunomodulation, modulation of dendritic
and T cell response [56, 57]

Cathepsin L1 1.11 Macromolecules digestion, immunomodulation [21, 22, 58]

Actin gamma 1.05 Intracellular multi-functional protein, in insect described as extracellular immune factor
which interacts with bacteria [59]

Neuroglobin-like isoform X2 094 Described above

Peptidyl-prolyl cis-trans isomerase (cyclophilin)  0.93 Described above

SmKK7 0.74 Schistosoma mansoni antigen [60, 61]

Actin 0.73 Described above

Fatty acid-binding protein 0.63 Anti-inflammatory protein, inhibitor of Toll-like receptor 4 (TLR4) [62, 63]

Superoxide dismutase 0.59 Antioxidant enzyme which accelerates the dismutation of superoxide to hydrogen
peroxide [64]

Annexin 0.57 Fundamental biological activities (metabolism, cell adhesion, growth, subcellular
transport, membrane repair), modulation of vertebrate host immune response [65, 66]

Annexin 0.53 Described above

Actin 0.50 Described above

Glyceraldehyde-3-phosphate dehydrogenase ~ 0.50 Inhibits complement cascade by binding to complement C3 in Haemonchus
contortus [67, 68]

CD59-like protein 0.50 Inhibition of the complement cascade [69]

peptidases to that purpose [21]. In the case of E. nipponi-
cum, some proteins it secretes are involved in preventing
blood coagulation and digestion in its gut lumen and spe-
cialised digestive (haematin) cells [45].

In this respect, the E. nipponicum resembles other
blood-feeding platyhelminths which initiate haemoglobin
processing extracellularly. For instance, the schistosomes
digest the bloodmeal extracellularly in the gut lumen
using a range of cathepsin peptidases secreted from their
gastrodermis [72], while the liver fluke Fasciola hepatica
combines extracellular digestion in the gut facilitated by
cathepsin L peptidases with intracellular digestion by
cathepsin C and aminopeptidases following absorption
of haemoglobin peptides in its gastrodermal epithelial
cells [44]. Intriguingly, the process of fully intracellular
blood digestion resembles most closely the strategy of
blood-feeding tick I ricinus [73], which presents a clear
contrast to other blood-feeding arthropods, mainly
insects, that rely solely on extracellular digestion [74].

Despite the different location and use of various digest-
ive enzymes that play a role in haemoglobin digestion, the
biochemistry E. nipponicum digestion resembles that of
other blood-feeding platyhelminths which use a range of
cathepsin peptidases and peptidase inhibitors. Our
analysis of adult parasite transcriptome and secretome re-
vealed that the parasite abundantly expresses several key
peptidases, including cathepsins B, D, L1, and L3, which
play a critical role in haemoglobin processing [22]. We

have previously shown that serine peptidase inhibitors,
Kunitz-type inhibitor EnKT1, and serpin EnSerpl target
host peptidases belonging to the coagulation cascade, such
as factors Ila (thrombin) and Xa [23, 24]. Our current ana-
lysis of the adult transcriptome and secretome had more-
over revealed that the genes which encode these peptidase
inhibitors are highly transcribed and that the abovemen-
tioned inhibitors are indeed secreted by adult parasites, al-
though they are not present in the ESP in large quantities.
This secretome analysis is consistent with our previous
characterisation of the EnSerpl [23]. Similarly, in situ
hybridisation studies localised the EnKT1 gene transcript
to the haematin (or digestive) cells and not the digestive
tract [24], which is consistent with its low expression in
the secretome.

Our analysis of the transcriptome and secretome had
also revealed that ferritin proteins and GSTs play an
important role in the life of adult E. mnipponicum, in
particular its iron and haem processing. Ferritins are
globular proteins which store and transport iron ions in
a soluble and non-toxic form. Although ferritins are
essential for all blood-feeding parasites [75-79], their
abundance in the E. nipponicum transcriptome and
secretome seems more akin to the blood-feeding strategy
of ticks [48]. Also abundantly expressed in the secre-
tome, at comparable levels, are GST molecules which
are part of the phase II detoxification system. Studies of
blood-feeding ticks and nematodes had shown that in
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addition to being involved in drug metabolism, these
molecules also play an essential role in haem detoxifica-
tion. In ticks, gene transcription of detoxification en-
zymes such as the GSTs is upregulated following blood
feeding [38, 49]. Similarly, it has been shown that nema-
todes Haemonchus contortus and Caenorhabditis elegans
express Nu-class GSTs which can bind the haem [50].
Further investigation is required to determine the class
and function of the E. nipponicum GSTs to determine
what role they might play in haem detoxification.

Both free-living and parasitic nematodes have lost the
ability to synthesise haem de novo, a fact reflected in the
absence of haem biosynthesis pathway [38]. Platyhelmin-
thes, on the other hand, retained the genes associated
with haem biosynthesis pathway, although several para-
sitic platyhelminths adopted a blood-feeding strategy,
which may indicate that the haem biosynthesis pathway
may be of importance during nonblood-feeding stages as
well [38]. There is currently little information on the po-
tential for de novo haem biosynthesis in monogenean
parasites. For instance, the G. salaris genome encodes all
enzymes involved in this pathway [38], which is consist-
ent with this parasite’s feeding strategy that relies on
mucus and skin rather than blood. Our analysis of the E.
nipponicum transcriptome shows that the first enzyme
in the haem biosynthesis pathway, 5-aminolevulinic acid
synthase (ALAS), is absent in its transcriptome. More-
over, all other enzymes belonging to this pathway are
transcribed at low levels, which implies that haem bio-
synthesis is not active in this parasite, at least not during
the adult stage. Further analysis is required to determine
whether all components of the pathway are present in
the E. nipponicum genome, whether they are differently
regulated during its distinct lifecycle stages, and to test
whether these enzymes are functional. Similarly, further
investigation of monogeneans is required to determine
whether they all use a conservatived strategy (and keep
on synthetising the haem themselves) or whether some
of those rely on absorption of host haem.

As an ectoparasite, E. nipponicum is not subjected to
the same host immune response that endoparasitic
platyhelminths which migrate throughout the host must
deal with. Still, E. nipponicurn must employ evasion
strategies to target molecules within the host blood. Key
molecules identified in the E. nipponicum secretome that
likely play a role in the modulation/suppression of host
immune response include several fatty acid-binding pro-
teins (FABPs) and CD59-like molecules. The function of
FABPs in monogeneans is currently unknown, but in F.
hepatica these molecules play a role in fatty acid uptake
from host blood and in immunomodulation, where they
suppress Toll-like receptor (TLR) stimulation and signal-
ling [62, 63, 80, 81]. CD59-like molecules are abundantly
expressed in E. nipponicum secretome and they may play
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a role in modulating/inhibiting the host complement
system by molecular mimicry in a fashion similar to that
described in other platyhelminths [82]. It has been shown
that infections with ectoparasites, such as Ichthyophthirius
multifiliis, stimulate the expression of the carp complement
system [83] and in salmonid fish, the host complement has
a lethal effect on monogeneans Gyrodactylus derjavini and
G. salaris [84, 85].

Conclusions

In the present study, we explored the transcriptome and
secretome of adult E. nipponicum worms using bioinfor-
matic analyses of RNA-seq and LC-MS/MS data. The
datasets and results we obtained are unique for parasitic
monogeneans because a similarly comprehensive tran-
scriptomic/secretomic study has not been undertaken be-
fore. The reported primary dataset can be used for further
monogenean research as well as for identification of
protein molecules involved in host—parasite interactions.
Our insight into transcribed molecules of E. nipponicum
revealed a machinery of highly expressed proteins critical
for (a) the suppression of anticoagulation processes of the
fish host by deployment of protease inhibitors (Kunitz-
type inhibitors and serpins, CD59-like proteins); (b) diges-
tion of blood proteins (cathepsins) and iron processing
(ferritin), and (c) modulation of immune reaction (pepti-
dyl-prolyl cis-trans isomerase, fatty acid binding proteins,
and tetraspanin).

Methods

Parasite material

E. nipponicum adults were collected during the summer
periods from the gills of naturally infected and freshly
sacrificed carp (C. carpio) bred in the ponds of a local
commercial fishery in southwestern Czech Republic
(Rybarstvi Trebon, Plc., Ttebon basin, South Bohemia,
Czech Republic).

Collection of excretory-secretory proteins (ESP)

ESP were collected from 100 adult worms. Worms were
gently washed in sterile tap water and incubated in 10
mM PBS, pH7.2, for three hours at room temperature
in Eppendorf tubes. ESP were purified and concentrated
20 times by centrifugation using an Amicon Ultra 3 kDa
column (Merck Millipore) to a final volume of 5 ml. Pro-
tein concentration (0.01 pug - ul™ ') was determined using
Quaint-iT Protein Assay Kit (Life Technologies) and
SpectraMax i3 fluorometer (Molecular Devices). The
ESP sample was stored at — 80 °C until used.

RNA extraction, library preparation, and sequencing

Total RNA was isolated from ten E. nipponicum adults
(two independent replicates of five worms) using
TriPure Isolation Reagent (Roche) according to
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manufacturer’s instructions. This was followed by DNase
I treatment as previously described [86]. RNA concen-
trations were quantified spectrophotometrically (Nano-
Drop 8000, Thermo  Fisher Scientific) and
fluorometrically (Qubit 2.0, Life Technologies), and in-
tegrity was verified by gel electrophoresis using 2100
BioAnalyser (Agilent). GS FLX Titanium Rapid library
was prepared from one replicate of five worms using
1.2 ug of total RNA according to manufacturer’s instruc-
tions (GS FLX Titanium Rapid library preparation kit v.
3.0, 454 Life Sciences). Illumina TruSeq RNA library
(non-stranded TruSeq RNA Library Prep Kit v. 2, Illu-
mina) was prepared from 1pg of total RNA extracted
from the second replicate of five worms as previously
described [87]. The libraries were sequenced using ap-
propriate sequencing platforms, namely GS FLX Titan-
ium Roche 454 (single-end sequencing) and MiSeq
[lumina (short-insert paired-end sequencing, 2 x 100 bp
long reads). Sequencing was carried out by BGI Group,
Hong Kong (Illumina sequencing) and by the Faculty of
Medicine in Hradec Kréalové, Charles University, Czech
Republic (Roche 454 sequencing).

Processing of raw reads, de novo assembly, and
annotation
The quality of raw sequencing paired-end Illumina
reads, exported in FASTQ format, was evaluated using
FastQC v. 0.11.3 [88]. Sequencing adaptors and nucleo-
tides with Phred quality score below 28 were trimmed
using Trimmomatic v. 0.33 [89] and sequencing errors
and mismatches corrected using SPAdes v. 3.6.0 [90]
(BayesHammer tool; —-only-error-correction and --care-
ful modes). Contaminating reads from the fish host were
removed using TopHat v. 2.0.14 [91] by aligning RNA-
seq reads to the carp genome (NCBI Genome ID 10839).
Processed reads were finally assembled by Oases v.
0.2.08 [92] with coverage cut-off ranging from 2 to 26
(increasing by one) and k-mers values ranging from 19
to 67 (increasing by two). All assembled transcriptomic
datasets were statistically evaluated in the following
steps: (a) Basic transcriptome assembly quality analysis
was carried out by Transrate v. 1.0.3 [93]; (b) Highly
conserved eukaryotic core genes were classified using
CEGMA v. 2.5 [94] and BUSCO v. 3.0.1. (Metazoa data-
set) [95]; (c) The raw sequencing reads were mapped to
the assembled contigs by Burrows-Wheeler Aligner
(BWA-backtrack algorithm) v. 0.7.13 [96], and (d) Trans-
decoder v. 3.0.1 [97] was used to calculate the representa-
tion of nucleotide sequences encoding a protein (from
each nucleotide contig only the longest protein-coding
part was selected, with minimal protein length 30 amino
acids).

Read information from the SFF file generated by
Roche 454 sequencer was extracted and converted into a
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FASTQ format using tool sff2fastq v. 0.9.2 [98]. The
quality of raw reads was evaluated using FastQC v.
0.11.5 [88]. Adaptors and nucleotides with Phred quality
score below 18 were discarded by Trimmomatic v. 0.36
[89] and sequencing errors corrected by Pollux v. 1.0.2
[99]. Contaminating reads from the fish host were iden-
tified by Burrows-Wheeler Aligner (BWA-SW algo-
rithm) v. 0.7.13 [100] by mapping to the carp genome.
Final assembly was performed by SPAdes v. 3.9.0 [90]
(rnaSPAdes tool) based on three datasets generated from
the Illumina data (k-mer value 53 and coverage cut-off
value 8; k-mer value 57 and coverage cut-off value 9; k-
mer value 55 and coverage cut-off value 10) and four
datasets generated from the Roche 454 reads (k-mer
values 99, 95, 87, and 83). Statistical evaluation of assem-
blies was performed as above. Duplicate sequences were
removed after clustering using CD-HIT-EST (nucleotide
identity threshold 95%) [101]. The final transcript dataset
used for further analysis was based on sequences repre-
senting the longest open reading frames encoding at least
30 amino acids, which were selected by Transdecoder.

Annotation of the E. nipponicum transcripts was car-
ried out by BLAST analysis with a cut-off of le > (v.
2.7.1 [102];) using the following databases: (a) NCBI
non-redundant protein database [103]; (b) MEROPS
database of peptidases and their inhibitors [104]; (c) Uni-
ProtKB/UniRef100 database; (d) UniProtKB/TrEMBL
database, which only includes sequences related to the
Platyhelminthes (Taxon 6157) [105]; (e) UniProtKB/
Swiss-Prot [106]; (f) RCSB PDB database of proteins
with known structure [107]; (g) nucleotide DDB] data-
base [108].

All transcripts with high sequence similarity to potential
contaminating sequences (virus, bacteria, cyanobacteria,
yeast, fungi, algae, green plants, or carp) were removed
from the dataset prior to further analysis. Additionally, we
also excluded any sequences with a potential open reading
frame of less than 50 amino acids with no putative anno-
tation. Further in silico analysis was conducted using the
following tools: (a) KAAS (KEGG Automatic Annotation
Server [34, 109]); (b) Gene Ontology (GO) prediction was
performed using InterProScan v. 5.30-69.0 [110] with
default search parameters; (c) transcript abundance was
quantified using RSEM v. 1.3.1 [111] by mapping trimmed
and corrected Roche 454 and Illumina reads onto the final
transcriptome. The resulting TPM values were averaged,
which was necessitated by the varied character of sequen-
tial data (single-end and paired-end), while Roche 454 and
Ilumina reads have to be mapped separately. Transcrip-
tion abundance was measured by the sum of the TPM
values of all the participating transcripts in a given set.
Additionally, we calculated a ratio between the TPM value
and the number of participating transcripts was calculated
to provide information regarding how many transcripts
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were responsible for transcription abundance. GO terms
and KEGG pathways with less than 10 transcripts were
excluded from this analysis.

Identification of the excretory—secretory proteins by mass
spectrometry

ESP sample was digested using filter-aided sample
preparation with 1ug of trypsin (sequencing grade,
Promega). For peptide separation for MS/MS analysis,
we used UltiMat 3000 RSLCnano liquid chromatography
(LC) system (Thermo Fisher Scientific). Separation was
achieved using a capillary column filled with the nonpo-
lar stationary phase (500 mm x 75 pm, C18 anchors,
3 um particles, Acclaim PepMap, Thermo Fisher Scien-
tific) during a 135 min gradient elution (0.5 pl - min™ ).
Mobile phase consisted of a polar (0.1% formic acid
(FA)) and nonpolar phase (80% acetonitrile (ACN), 0.1%
FA). Eluted peptides (2 pug) were ionised by a nanospray
(PicoView 550 nano source) and analysed in a mass
spectrometer (Orbitrap Elite, Thermo Fisher Scientific).
MS data were acquired in a data-dependent mode,
selecting up to top ten precursors based on precursor
abundance in the survey scan (resolution 60,000 in the
range 350-2000 m/z). Maximum accumulation time for
MS/MS spectra acquisition was 500 ms (resolution 15,
000 at 400 m/z) and isolation window for fragmentation
was set to 2m/z. The resulting MS data were recali-
brated using 445.120028 signal from the first 10 min and
used for identification of proteins. Mass spectrometric
raw data files were analysed using Proteome Discoverer
software (Thermo Fisher Scientific; v. 1.4) with in-house
Mascot search engine (Matrixscience; v. 2.5.1.3) set up
to search an in-house protein database containing 37,
062 protein sequences derived from the E. nipponicum
transcriptome sequencing, carp-specific proteins derived
from C. carpio genome (63,928 sequences, NCBI Gen-
ome 10839), and cRAP contaminants (110 sequences).
Modifications for all database searches were set as fol-
lows: oxidation (M), deamidation (N, Q), and acetylation
(Protein N-term) as variable modifications, with carba-
midomethylation (C) as a fixed modification. Enzyme
specificity was semitryptic with one allowed miscleavage.
Percolator was used for postprocessing of search results.
Only peptides with q-value <0.05, rank 1, and with at
least six amino acids were considered. LC-MS/MS ana-
lysis was conducted at Proteomics Core Facility, CEIT
EC, Masaryk University, Czech Republic.
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