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Abstract

Background: Mammalian centromeres are satellite-rich chromatin domains that execute conserved roles in
kinetochore assembly and chromosome segregation. Centromere satellites evolve rapidly between species, but little
is known about population-level diversity across these loci.

Results: We developed a k-mer based method to quantify centromere copy number and sequence variation from
whole genome sequencing data. We applied this method to diverse inbred and wild house mouse (Mus musculus)
genomes to profile diversity across the core centromere (minor) satellite and the pericentromeric (major) satellite
repeat. We show that minor satellite copy number varies more than 10-fold among inbred mouse strains, whereas
major satellite copy numbers span a 3-fold range. In contrast to widely held assumptions about the homogeneity
of mouse centromere repeats, we uncover marked satellite sequence heterogeneity within single genomes, with
diversity levels across the minor satellite exceeding those at the major satellite. Analyses in wild-caught mice
implicate subspecies and population origin as significant determinants of variation in satellite copy number and
satellite heterogeneity. Intriguingly, we also find that wild-caught mice harbor dramatically reduced minor satellite
copy number and elevated satellite sequence heterogeneity compared to inbred strains, suggesting that
inbreeding may reshape centromere architecture in pronounced ways.

Conclusion: Taken together, our results highlight the power of k-mer based approaches for probing variation
across repetitive regions, provide an initial portrait of centromere variation across Mus musculus, and lay the
groundwork for future functional studies on the consequences of natural genetic variation at these essential
chromatin domains.
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Background
Centromeres are chromatin domains that are essential
for chromosome segregation and the maintenance of
genome stability [1–4]. Centromeres serve as focal
points for the assembly of the kinetochore complex,
which provides the protein interface linking chromo-
somes to microtubules during mitosis and meiosis [1–4].
Mutations that abolish or reduce centromere function
can impair kinetochore assembly and lead to

spontaneous chromosome loss, cell cycle arrest, or
chromosome mis-segregation [5]. Thus, the loss of
centromere integrity can have adverse consequences for
genome stability and represents an important mechan-
ism leading to both cancer and infertility [6–10].
In most vertebrate species, centromeric DNA is com-

prised of tandem arrays of one or more satellite repeat
units [11–13]. As a consequence of this satellite-rich
architecture, centromeres are predisposed to high rates
of structural mutation via replication slippage, unequal
exchange, and transposition [9]. These processes actively
contribute to satellite repeat size and sequence variability
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between species [14–17]. For example, in mammals,
centromere repeat sizes range from 6 bp in the Chinese
hamster (Cricetulus griseus) to 1419 bp in cattle (Bos
taurus taurus), with GC content ranging from 28 to 74%
[18]. The remarkable size and sequence variability of cen-
tromeres, combined with their critical and highly con-
served cellular roles in chromosome segregation and
genome stability, impose an enduring biological paradox.
Due to their inherent repeat-rich nature, centromeres

persist as gaps on most reference genome assemblies. To
date, only a handful of mammalian centromeres have
been fully sequenced and assembled [19–21]. The near
absence of high-quality reference sequences and the
challenge of uniquely anchoring short reads within
repeat-rich regions pose significant barriers to the dis-
covery and analysis of genetic variation across these
functionally critical regions. Consequently, the scope of
centromere structural and sequence diversity within and
between populations remains largely unknown.
Defining levels of centromere diversity represents a

crucial first step towards understanding the potential
phenotypic consequences of variation at these loci. Prior
studies in humans have identified centromere variants
that associate with differences in the stability of kineto-
chore protein binding, which can, in turn, influence the
fidelity of chromosome segregation [6]. Investigations in
mice and monkeyflowers (Mimulus) have shown that
differences in centromere size can lead to biased, non-
Mendelian chromosome transmission in heterozygotes, a
phenomenon known as centromere drive [22–24]. How-
ever, owing to an incomplete catalog of centromere di-
versity and the omission of variants in these regions
from GWAS and linkage studies [6, 25], the contribution
of centromere variation to phenotypic variation, includ-
ing disease, has yet to be fully realized.
House mice (genus Mus) provide an ideal system for

ascertaining population level centromere satellite diver-
sity and evaluating its functional consequences for sev-
eral reasons. First, prior investigations have identified
the focal Mus musculus centromere satellite repeat se-
quences and defined core features of house mouse
centromere architecture [26–29]. Specifically, the M.
musculus centromere is composed of two primary satel-
lite domains. The minor satellite domain is a tandem
array of a 120-bp sequence that cumulatively extends
over ~ 1Mb of sequence per chromosome. This satellite
array delimits the region where the centromere-specific
histone variant CENP-A is bound and defines the core
centromere [1]. The minor satellite region is flanked by
a 234-bp major satellite repeat array that extends over ~
2Mb of sequence per chromosome. The major satellite
region forms the pericentromeric heterochromatin,
which is important for sister chromatid cohesion during
cell division [1, 30]. Second, mouse centromere satellite

arrays are reported to be homogenous both within and
between chromosomes [26, 29], a feature that simplifies
the task of quantifying centromere satellite variation in
genomes. This contrasts with the architecture of human
centromeres, which are composed of distinct repeat ar-
rays that form higher order repeats that vary between
chromosomes [15, 16, 26]. Third, whole-genome se-
quences from diverse wild and inbred M. musculus, as
well as more divergent Mus taxa are publicly available
[31–33]. These resources enable surveys of centromere
diversity along several dimensions, including among in-
bred strains, within natural populations, between sub-
species, and between species. Finally, as the premiere
mammalian biomedical model system, house mice are
equipped with experimental tools and detailed pheno-
type catalogs that can be leveraged to test the functional
consequences of centromere variation.
Here, we harness these strengths of the M. musculus

model system to carry out the first sequence-based ana-
lysis of centromere diversity and evolution in mice. We
couple k-mer based bioinformatic methods with experi-
mental approaches to uncover remarkable variation in
the size and sequence composition of centromeres
across a panel of diverse inbred strains and wild-caught
house mice. Overall, our study yields a portrait of
centromere satellite diversity across a group of closely
related mammals and lays the groundwork for future
functional studies on the consequences of natural gen-
etic variation at these essential chromatin domains.

Results
k-mer analysis reveals striking differences in the
abundance of centromere satellite repeats across Mus
Standard approaches for surveying sequence diversity
are not readily extendable to the centromere due to its
repeat-rich architecture and gapped status on the mouse
reference (mm10) assembly. To circumvent these chal-
lenges, we employed a k-mer based approach to quantify
the diversity of satellite DNA in mouse genomes. Our k-
mer strategy is predicated on the insight that the relative
frequency of a given nucleotide word of length k, or k-
mer, in a shot-gun sequencing library is proportional to
its frequency in the parent sample genome. Thus, the
observed frequency of a particular k-mer within a pool
of sequenced reads can be used as a proxy for its relative
abundance in a genome. Here, we focus on two values
for k: k = {15, 31}. Both values yield k-mers with high
specificity and, importantly, yield qualitatively similar re-
sults (Fig. 1, Supplementary Figure 1). We normalized k-
mer counts to adjust for potential GC-biases introduced
during library preparation and confirmed through rigor-
ous comparisons of replicate libraries for individual sam-
ples that our corrected k-mer counts provided a reliable
readout of the relative frequency of nucleotide motifs in
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diverse mouse genomes (Supplementary Figure 2; See
Methods).
We first identified the most abundant 15-mers across

a sample of 54 diverse mouse genomes. These genomes
included common inbred mouse strains, wild-caught
mice from multiple populations from each of the three
principle house mouse subspecies (M. m. domesticus, M.
m. castaneus, and M. m. musculus), and three divergent
Mus taxa (M. spretus, M. caroli, and M. pahari). Con-
sistent with prior reports [34], M. musculus minor and
major centromere satellite 15-mers were among the
most abundant k-mers in all surveyed M. musculus ge-
nomes (top 0.01% of all 15-mers). Centromere 15-mers

were also among the most differentially abundant 15-
mers across M. musculus genomes (Fig. 2, Supplemen-
tary Figure 3), a finding that hints at extensive centro-
mere satellite copy number variation in this species.
Mus spretus shares an identical minor satellite consen-

sus sequence with Mus musculus [27] and, as expected,
exhibited a high abundance of minor satellite centro-
mere 15-mers (Fig. 2, Supplementary Figure 3). In con-
trast, Mus caroli harbors divergent centromere satellite
sequences from those in M. musculus [35]. We observed
very weak enrichment for M. musculus major and minor
consensus centromere 15-mer sequences in the M. car-
oli genome. Similarly, we found no enrichment for M.

Fig. 1 Significant differences in consensus centromere satellite copy number across Mus musculus. a Schematic overview of the approach used to
quantify the frequencies of k-mers in centromere satellite repeats. b Boxplots showing the distribution of major (yellow) and minor (blue) satellite
consensus 31-mer frequencies across inbred strains and wild-caught mouse populations
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musculus major and minor centromere 15-mers in M.
pahari, suggesting that M. pahari centromeres are also
defined by a unique and divergent satellite.

Strain and population-level variation in the abundance of
Mus musculus consensus centromere satellites
Owing to the high prevalence and striking variability in
the abundance of centromere satellite 15-mers among
Mus genomes (Fig. 2, Supplementary Figure 3), we
sought to further define strain, subspecies, and popula-
tion variation in both major and minor satellite copy
number. Below we present data for 31-mers (Fig. 1b),
but again note that we observe qualitatively identical re-
sults for 15-mers (Supplementary Figure 1).
We first carried out pairwise comparisons between the

distributions of minor and major satellite 31-mer fre-
quencies in the surveyed inbred strain panel (Fig. 1b).
Most pairwise comparisons are highly statistically signifi-
cant for both satellite repeats (84/91 strain pairs with
TukeyHSD, P < 0.05; Supplementary Table 1). Similarly,
22 of 28 wild-caught M. musculus population pairs ex-
hibit significant differences in the frequencies of both
minor and major satellite 31-mers (Supplementary Table
1; Tukey HSD, P < 0.01).
We next converted our normalized k-mer counts into

absolute satellite copy number estimates to assess strain
and population differences in consensus centromere size
(see Methods). We estimate between 1320 and 260,220
minor satellite copies and 236,080–713,020 major

satellite copies in the genomes of 14 inbred M. musculus
strains. These copy number differences translate to
minor (major) satellite array size differences of 3.96 kb –
780.66 kb (1.381Mb – 4.171Mb) per chromosome on
average. Similarly, we estimate between 2900 and 37,240
minor satellite copies and 20,250–70,460 major satellite
copies in wild-caught M. musculus, corresponding to
minor and major satellite array size ranges of 8.7 kb –
111.7 kb and 118.4 kb – 412.2 kb per chromosome, re-
spectively. The greater number of major satellite repeats
relative to minor satellite repeats is consistent with the
known size differences between the major and minor
satellite array in M. musculus [26, 34, 36]. These esti-
mates include only exact matches to the consensus satel-
lite sequences and ignore the potential presence of other
sequence elements that contribute to centromere size
differences between samples. Nonetheless, the 197- (3-)
fold range in absolute minor (major) consensus satellite
copy number between closely related inbred M. muscu-
lus strains and the 13- (3-) fold range in absolute minor
(major) consensus satellite copy number between wild
caught M. musculus subspecies further suggests remark-
able differences in centromere size between strains and
subspecies.
We next sought to estimate the proportion of variation

in both major and minor satellite copy number that is
attributable to differences between inbred strains, rather
than technical artifacts from library preparation and
other sources of error. To this end, we modeled minor

Fig. 2 Consensus centromere 15-mers are the most abundant and the most variable 15-mers in diverse Mus genomes. Heatmap displaying the
observed frequencies of the 1000 most variable 15-mers (columns) across a sample of diverse Mus genomes (rows). The color scale represents
the normalized frequency of 15-mers. 15-mers present in the Mus musculus minor and major satellite consensus sequences are noted by the blue
and yellow boxes, respectively
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(major) satellite 31-mer counts as a function of strain
identity and sequencing library and estimated the associ-
ated variance components. Over 80% of the variance in
minor satellite 31-mer frequencies is due to strain differ-
ences (80.3%; F13,168 = 1940.25, p < 10− 16), whereas only
0.62% is attributed to variation between independent se-
quencing libraries (F11,168 = 17.94, p < 10− 16). Similarly,
strain identity accounts for 56.4% of the variance in
major satellite 31-mer frequencies (F13,168 = 1548.3, p <
10− 16), with library variation accounting for just 11% of
the observed variance (F11,168 = 357.9, p < 10− 16). Thus,
the majority of observed variation in both major and
minor satellite 31-mer frequencies is due to intrinsic
genomic differences between strains.
We adopted a similar ANOVA framework to estimate

the proportion of variation in 31-mer frequencies that is
explained by subspecies, population, and individual-level
differences in wild-caught mice. Subspecies identity ac-
counts for the majority of variation in minor satellite 31-
mer frequencies (83.9% of variance; F2,1836 = 47,863.28,
p < 10− 16), with only a minor contribution explained by
variation between populations (1.3% of variance;
F5,1836 = 300.36, p < 10− 16) or inter-individual differences
within a population (2.6% of variance; F50,1836 = 58.32,
p < 10− 16). The partitioning of variance in major satellite
31-mer frequencies follows a similar trend: 43.4% is ex-
plained by subspecies differences, 4.7% is attributable to
population level differences, and 5.7% is due to inter-
individual differences. We conclude that centromere sat-
ellite 31-mer frequencies are most differentiated between
reproductively isolated subspecies, but only modestly dif-
ferentiated between and within populations.
Although both major and minor satellite k-mer fre-

quencies are influenced by strain and subspecies identity,
there is only a weak correlation between the median
major and minor satellite consensus copy numbers
within genomes (adjusted R2 = 0.33, P = 0.05). Thus,
samples with more major satellite copies do not neces-
sarily have more minor satellite copies. Despite being
physically linked, copy number variation at these two
centromere satellite domains has evidently been shaped
by distinct evolutionary and/or mutational processes.
Beyond strain, subspecies, and population-level vari-

ation, our dataset also reveals a striking difference in
minor and major satellite k-mer frequencies between in-
bred strains and wild-caught mice. On average, inbred
strains exhibit significantly higher satellite 31-mer fre-
quencies than wild mice (Fig. 1b; Student’s t-test =
212.76; P < 2.2 × 10− 16). Indeed, Principle Component
Analysis (PCA) of minor and major satellite 31-mer fre-
quencies across diverse M. musculus samples identified
inbred versus wild (i.e., outbred) as the major axes of
differentiation (Supplementary Figure 4). This outcome
is not an artifact of systematically undercounting

centromere satellite k-mers with sequence mismatches
to the consensus, as we also observe a reduced fraction
of reads mapping to the centromere satellite consensus
sequences in wild mice compared to inbred strains (Sup-
plementary Figure 5). We speculate that inbreeding may
lead to the expansion of centromere repeats in house
mice, similar to observations and an earlier proposal for
maize [37].

Cytogenetic validation of strain differences in consensus
centromere satellite abundance
We used quantitative FISH (qFISH) to validate our k-
mer based estimates of strain variation in consensus
centromere satellite abundance (Fig. 3). We focused on a
subset of strains that encompass a range of estimated
minor satellite copy numbers and span three principal
house mouse subspecies: CAST/EiJ (M. m. castaneus),
WSB/EiJ (M. m. domesticus), LEWES/EiJ (M. m. domes-
ticus), and PWK/PhJ (M. m. musculus) (Fig. 1b). We ob-
served strong concordance between relative copy
number and qFISH signals at both the minor and major
centromere satellites (Fig. 3b). Notably, both k-mer and
qFISH methods yielded a similar rank order of strains with
respect to minor satellite abundance (median fluorescent
intensity ranking in arbitrary units; WSB/EiJ = 3440 <
CAST/EiJ = 3780 < LEWES/EiJ = 3820 < PWK/PhJ = 7055).
Interestingly, in WSB/EiJ and LEWES/EiJ, several chromo-
somes consistently showed a higher minor satellite signal
intensity relative to other chromosomes (Fig. 3a). This ob-
servation contrasts with the more uniform intensity of the
minor satellite signal across all chromosomes in CAST/EiJ
and PWK/PhJ (Fig. 3a). These findings point to
chromosome-specific minor satellite accumulation and/or
loss in some M. m. domesticus strains, highlighting an
additional dimension of centromere diversity.

Centromere satellite heterogeneity at the strain and
population levels
Using k-mers with exact matches to the consensus se-
quences, we have uncovered significant variation in con-
sensus centromere satellite copy number across diverse
M. musculus samples. However, focusing on k-mers with
exact matches to the consensus limits our ability to dis-
cover and analyze centromere repeat diversity within a
genome. To study this important class of centromere
variation, we estimated the average number of pairwise
sequence differences between centromere satellite re-
peats in each M. musculus sample (see Methods). We
refer to this metric as the centromere diversity index
(CDI).
The minor satellite CDI is lower in inbred strains

(range: 12.1–23.0) than in wild mice (range: 24.8–35.6).
At the extremes, mice from the Kazhak population of M.
m. musculus have minor satellite arrays that are nearly 3
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times as diverse as those in the inbred strains
ZALENDE/EiJ and FVB/NJ (Fig. 4a). For both inbred
and wild mice, the average minor satellite CDI (inbred =

17.6 ± 3.49, wild = 30.2 ± 3.37) is slightly higher than the
major satellite CDI (inbred = 16.9 ± 2.39, wild = 28.1 ±
2.02), despite the increased length and greater genomic

Fig. 3 Quantitative FISH validates consensus centromere satellite copy number variation across inbred mouse strains. a Representative FISH
images from four genetically diverse inbred strains: CAST/EiJ, WSB/EiJ, LEWES/EiJ, and PWK/PhJ. Individual color channels were manually
manipulated using the Color Balance feature in FIJI for presentation purposes. Only raw, unedited images were used for quantification.
Quantification of fluorescent intensity using DNA probes derived from the (b) major and (c) minor centromere satellite repeats across inbred
strains. Points correspond to fluorescent intensity measurements for a single chromosome. A minimum of 40 centromeres from 36 cells were
examined per strain. Fluorescent intensity is represented in arbitrary units (AU)
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Fig. 4 (See legend on next page.)
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abundance of the major satellite. We conclude that in M.
musculus the minor satellite harbors appreciably higher
sequence diversity than the major satellite (Fig. 4).
We next asked how variation in CDI is influenced by

subspecies and population designation in wild mice.
Pairwise comparisons of CDI values between subspecies
and populations reveal significant differences at these
levels of taxonomic organization (Tukey HSD for all
pairwise tests; P < 0.05). Subspecies identity accounts for
39.2% of the variance in minor satellite CDI (F2,15 =
74.74, P < 10− 15), and population differences account for
an additional 48.1% of the variance (F4,15 = 45.83, P <
10− 16). Variation in the major satellite CDI is most
strongly influenced by subspecies origin (43.1%; F2,15 =
23.687, P < 10− 8), with a smaller contribution from
population identity (13.4%; F4,15 = 3.70, P = 0.01).

Relationship between centromere diversity and satellite
copy number
Centromere diversity and consensus satellite copy num-
ber are highly variable across inbred strains and wild
mice, prompting us to investigate the relationship be-
tween these two measures of centromere variation.
Overall, there is a negative correlation between satellite
copy number and CDI for both the minor and major sat-
ellite repeats (Fig. 4a and b; minor satellite: Spearman’s
rho = − 0.40, P = 0.08; major satellite: Spearman’s rho =
− 0.7, P = 0.001). Samples with high satellite copy num-
ber tend to have more homogenous repeats, whereas
samples with lower satellite copy numbers tend to have
greater repeat heterogeneity. This relationship is largely
driven by the striking distinction between wild-caught
mice and inbred strains. Relative to inbred strains, wild-
caught mice harbor smaller and more diverse centro-
mere arrays. The similarity in minor satellite size and di-
versity in inbred strain CAST/EiJ and wild-caught M. m.
castaneus represents one possible exception to this pat-
tern (Fig. 4a). We hypothesize that the inverse relation-
ship between centromere satellite copy number and
heterogeneity could be driven by differences in the op-
portunity for unequal crossing over. Homogenous re-
peats are more susceptible to unequal crossover events,
leading to spontaneous repeat expansion and ultimately,
large, homogenized repeat arrays [38]. In contrast, a re-
peat array with higher heterogeneity is expected to ex-
perience lower rates of unequal crossing over, leading to

increased mutation accumulation at the locus and a self-
perpetuated increase in repeat heterogeneity [38]. This
hypothesis, combined with our observed differences be-
tween inbred strains and wild-caught mice, raise the
possibility that phenomena specific to inbred strain ge-
nomes (or, potentially, the very process of inbreeding it-
self) may have influenced house mouse centromere
architecture in pronounced ways.

Sequence landscape of Mus musculus satellite diversity
Our CDI measure captures overall centromere satellite
diversity within single genomes but does not pinpoint
specific satellite sequence positions that are subject to
high variability. To investigate the landscape of sequence
polymorphisms along the major and minor centromere
satellite repeats, we relaxed the criterion for perfect k-
mer matching by considering all 15- and 31-mers with ≤
2 and ≤ 5 mismatches, respectively, from the M. muscu-
lus centromere satellite consensus sequences. These re-
laxed edit-distance k-mers map to regions of the mm10
reference genome with extremely limited frequency,
yielding minimal background noise from non-
centromere regions (Supplementary Table 2). In
addition, this larger set of k-mers can be unambiguously
assigned to positions in the minor and major satellite
consensus sequences allowing us to quantify the propor-
tion of k-mers harboring nucleotide mismatches at each
site. Using the percentage of non-consensus nucleotides
at each position, we then identified sites with variable
nucleotide usage across samples.
Overall, sequence diversity is not uniformly distributed

across the minor and major satellite sequences, but in-
stead restricted to a limited number of sites that are
variable between genomes (Fig. 5). Despite its smaller
size, the minor satellite harbors more sites with at least
20% non-consensus nucleotide usage than the major sat-
ellite (107 versus 79; Fig. 5a and b). Although divergence
from the satellite consensus is concentrated at a minor-
ity of sites, different samples vary in the frequency of
non-consensus nucleotides present at a given position.
For example, LEWES/EiJ, WSB/EiJ and 129S1/SvImJ
have similar CDIs (CDI = 17–18), but their minor satel-
lite sequence landscapes are distinct (Fig. 5a).
Intriguingly, three positions around the CENP-B

(Centromere protein B) binding motif of the minor sat-
ellite (positions 62–78) show high levels of nucleotide

(See figure on previous page.)
Fig. 4 Negative correlation between centromere satellite copy number and sequence diversity in Mus musculus. Estimated centromere satellite
copy number and centromere diversity index for the (a) minor or (b) major satellite sequence. Copy number was estimated from the median
frequency of consensus centromere 31-mers in each sample. The three primary house mouse subspecies are denoted by different colors: red - M.
m. musculus, purple - M. m. domesticus, and green - M. m. castaneus, orange – M. m. molossinus. Shapes distinguish inbred strains (circles) from
wild-caught mice (triangles)

Arora et al. BMC Genomics          (2021) 22:279 Page 8 of 20



Fig. 5 Landscape of nucleotide variation across centromere satellite repeats. Heatmap of non-consensus nucleotide usage for positions in the (a)
minor satellite consensus sequence and (b) major satellite consensus sequence. Each row corresponds to a single sample with sample names
colored by subspecies origin: green – M. m. castaneus, red – M. m. musculus, purple – M. m. domesticus, orange – M. m. molossinus
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variability among M. musculus [39]. In particular, we
identified high nucleotide variability at two minor satel-
lite positions within the CENP-B binding region (posi-
tions 75 and 78) and at one position immediately
adjacent to the binding motif (position 79) (Supplemen-
tary Figure 6). Remarkably, despite incredible variation
in nucleotide usage across inbred strains and wild-
caught mice (Supplementary Figure 6), position 75 is
critical for CENP-B binding in human centromere satel-
lite DNA [40]. Overall, we estimate that approximately
45% of mouse minor satellites do not contain the func-
tionally critical “G” nucleotide at position 75, and there-
fore do not facilitate CENP-B binding. In addition,
position 78 exhibits more variability in the proportion of
non-consensus nucleotide usage than any other minor
satellite position in both inbred strains and wild-caught
mice. Prior investigation has established that CENP-B
binding is important, albeit dispensable, for kinetochore
assembly and chromosome segregation [8]. However,
more recent work has posited a role for CENP-B in both
CENP-A assembly and heterochromatin formation, and
in counteracting functional differences between hetero-
zygous centromeres, thereby attenuating the potential
for meiotic drive [41, 42]. We speculate that the ob-
served variation in and around the CENP-B box could
influence CENP-B binding efficiency across diverse M.
musculus strains and wild populations, a possibility that
merits future functional investigation in the context of
meiotic drive.
We also uncover clear differences in the satellite se-

quence landscape between wild-caught mice and inbred
strains. On average, inbred strains have lower rates of
non-consensus nucleotide usage (minor satellite 2.9–
4.9%; major satellite 3.6–4.4%) compared to wild-caught
mice (minor satellite 4.8–6.8%; major satellite 5.7–6.5%).
This finding aligns with the higher CDI observed in
wild-caught compared to inbred mice, lending further
support to the conclusion that wild-caught M. musculus
have more diverse and heterogenous centromere satel-
lites than inbred strains.

Phylogenetic distribution of minor satellite copy number
and repeat heterogeneity
To investigate how centromere architecture evolves in
house mice, we analyzed the distribution of centromere
diversity metrics in a phylogenetic framework [43]. We
quantified the proportion of variation in major and
minor satellite copy number and CDI that is explained
by the phylogenies relating inbred strains (Fig. 6a) and
wild-caught mice (Fig. 6b). If variation in a given satellite
diversity metric is well-predicted from the evolutionary
relationships among samples, the metric should exhibit a
high phylogenetic heritability, H2

P . In contrast, if centro-

mere copy number or CDI evolve at exceptionally high
rates, these measures of centromere variation may be-
come decoupled from the signal of shared descent
among organisms and exhibit a weak phylogenetic herit-
ability (i.e., low H2

P ). Owing to the stark differences in
their centromere architecture and breeding history, in-
bred strains and wild-caught mice were analyzed
independently.
Across inbred strains, the phylogenetic heritability of

both minor satellite copy number (H2
P = 0.56; P = 0.15)

and CDI (H2
P = 0.15; P = 0.21) is low, and not signifi-

cantly different from zero. Evidently, both measures of
minor satellite variation evolve sufficiently rapidly to
outpace signals of strain relatedness. In contrast, vari-
ation in both major satellite copy number (H2

P = 0.98;
P = 0.24) and CDI (H2

P = 0.99; P = 0.07) exhibited a high,
albeit non-significant, phylogenetic heritability. Although
modest sample sizes limit the power of this analysis, the
absolute differences in the H2

P estimates between the
minor and major satellites align with the conclusion that
these two centromere satellites evolve via distinct re-
gimes, potentially mediated by differences in selective
pressures or mutational mechanisms.

In wild mice, variation in both satellite copy number
and satellite heterogeneity were well-predicted by the
evolutionary relationships among samples (minor satel-
lite copy number H2

P = 0.99; P = 0.003, major satellite
copy number H2

P = 0.98; P = 0.003, minor satellite CDI
H2

P = 0.98; P = 0.0009, major satellite CDI H2
P = 0.89;

P = 0.01). The contrast in minor satellite H2
P estimates

between the inbred and wild-caught mice provides fur-
ther support for the hypothesis that inbreeding fosters a
unique setting for the evolution of centromere
architecture.

Assessing the phenotypic consequences of centromere
diversity in Mus musculus
Centromere integrity is essential for genome stability
and if not maintained can lead to cancer and infertility
[6–10]. We next asked whether observed centromere
satellite diversity influences the stability of genome
transmission. Using publicly available phenotype data
from the Mouse Phenome Database (https://phenome.
jax.org/) we searched for correlations between centro-
mere satellite copy number and micronuclei formation,
a hallmark of chromosome instability [44, 45]. We found
no significant correlation between this measure of gen-
ome stability and either major or minor satellite consen-
sus copy number (Supplementary Figure 7). However,
small sample sizes, uncertainty in our copy number esti-
mates, and imprecision in the chromosomal instability
phenotype may conceal true functional links.
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Fig. 6 (See legend on next page.)
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Centromeres are reservoirs for the accumulation of
selfish drive elements that can hijack the inherent asym-
metry of female meiosis to bias their own transmission
into the oocyte [24, 46, 47]. We next asked whether
centromere satellite copy number differences among in-
bred strains lead to systematic meiotic drive in diverse
mouse populations. We profiled datasets from the Diver-
sity Outbred (DO) mouse population, a heterogenous
stock population founded from 8 strains with distinct
centromere satellite copy number states [48]. We
scanned genotypes of DO mice from 12 successive gen-
erations of outbreeding for evidence of over-
transmission of centromere-proximal alleles from one
(or more) founder strain(s). We found no evidence for
non-Mendelian transmission of centromere-proximal re-
gions in the DO (Supplementary Figure 8). This result
suggests (i) the absence of centromere-mediated meiotic
drive in this complex population, (ii) the lack of power
to detect weak drive signals, (iii) that drive is influenced
by multiple genetic factors [49], or (iv) that aspects of
centromere architecture other than minor satellite copy
number may be critical for defining drive potential.

Discussion
Evolutionary theory predicts that genomic regions with
key cellular roles should exhibit reduced rates of evolu-
tion in order to preserve their biological function. Cen-
tromeres are paramount for chromosome segregation
and the maintenance of genome stability, but, paradoxic-
ally, centromere satellite sequences are known to evolve
rapidly between species [17, 50–52]. Despite this know-
ledge, comparatively little is known about the extent of
centromere variation over shorter evolutionary time-
scales, including at the population level. Here, we devel-
oped a powerful k-mer based workflow for quantifying
centromere satellite copy number and sequence diversity
from whole genome sequence data. We apply this ana-
lytical framework to 100 genomes from diverse inbred
and wild-caught mice to characterize multiple dimen-
sions of mouse centromere variation.
We discovered key differences in the mode and rate

of evolution of the M. musculus major and minor sat-
ellite sequences. Most notably, minor satellite arrays
exhibited more extreme variation in copy number and
CDI in comparison to the major satellite arrays (Fig.
1b and Fig. 4). These findings presumably manifest

from the distinct biological functions of the major
and minor satellite domains. The major satellite re-
peat forms the pericentromeric heterochromatin and
is responsible for the establishment and maintenance
of sister chromatid cohesion [1]. The minor satellite
repeat binds to CENP-A, a specialized centromeric
histone variant responsible for kinetochore complex
specification and assembly [1]. In many animal spe-
cies, CENP-A is rapidly evolving, which imposes a
complementary selection pressure on the centromere
satellite sequence to ensure protein-DNA compatibil-
ity [53–55]. The CENP-A amino acid sequence is per-
fectly conserved among M. musculus subspecies, but
sequence diversity at the centromere satellite could
influence the efficiency of CENP-A binding, with po-
tential downstream consequences for kinetochore as-
sembly and chromosome segregation [22, 56]. The
co-evolutionary dynamics between the minor satellite
DNA and important kinetochore proteins have likely
contributed to the accelerated evolution of the minor
satellite relative to the major satellite, which does not
serve as a sequence substrate for kinetochore proteins. In-
deed, at least in inbred strains, we show that shared evolu-
tionary history is a poor predictor of minor satellite copy
number and sequence heterogeneity, suggesting that
minor satellite arrays evolve sufficiently rapidly to outstrip
signals of recent shared descent. In contrast, strain re-
latedness is a stronger predictor of both copy number and
sequence heterogeneity across the major satellite, although
our analysis lacks sufficient power to obtain statistically
significant results (Fig. 6c).
Our genomic survey also reveals pronounced differ-

ences in centromere satellite copy number between in-
bred mouse strains. ZALENDE/EiJ, a wild-derived
inbred strain of M. m. domesticus that harbors numer-
ous Robertsonian chromosomal fusions, carries the low-
est minor satellite k-mer frequencies of any sample in
our survey. This finding reinforces conclusions from
prior investigations of centromere size in this strain [22,
24]. Interestingly, ZALENDE/EiJ does not exhibit a par-
allel decrease in the amount of major satellite DNA rela-
tive to other inbred strains, indicating that the
mechanism of Robertsonian fusion only leads to the loss
of significant amounts of minor satellite DNA. At the
other extreme, PWK/PhJ, a wild-derived inbred strain of
M. m. musculus, has the greatest abundance of minor

(See figure on previous page.)
Fig. 6 Phylogenetic distribution of centromere satellite copy number and satellite heterogeneity in inbred strains and wild mice. a Maximum
likelihood phylogenetic tree for 11 inbred house mouse strains and the outgroup, SPRET/EiJ. For each strain and for both the major and minor
satellites, estimated satellite copy number and CDI are indicated by boxes shaded according to the corresponding color scales to the right of
each heatmap. b Maximum likelihood phylogenetic tree for wild M. musculus samples and the outgroup of Mus spretus samples. The mouse
subspecies and species are denoted by different colors: red - M. m. musculus, purple - M. m. domesticus, green - M. m. castaneus and black -
M. spretus
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satellite k-mers. This strain is divergent from the M. m.
domesticus-derived centromere consensus sequence,
suggesting that our exact-match k-mer estimate may
undercount centromere-derived k-mers from this gen-
ome, leading to a downwardly biased estimate of centro-
mere size in this strain. Indeed, the proportion of
sequenced reads from this strain that map to the con-
sensus minor satellite sequence is greater than expected
based on the frequency of exact match k-mers (Supple-
mentary Figure 5). Beyond these extreme outliers, me-
dian minor satellite k-mer frequencies still span a 10-
fold range between closely related inbred mouse strains,
implying a potential 10-fold size difference in the core
CENP-A binding centromere region. CENP-A ChIP-seq
and cytogenetic experiments in diverse strains are
needed to determine whether CENP-A recognizes po-
tential centromere-embedded sequences other than the
minor satellite, and to assess whether strains vary in the
proportion of the minor satellite array that is CENP-A
binding.
We also uncover significant subspecies variation in

centromere copy number among wild-caught M. muscu-
lus. As in the inbred strains, there is greater variation in
minor as opposed to major satellite abundance among
wild house mice. M. m. castaneus harbors the highest
frequency of minor satellite k-mers, followed by M. m.
domesticus and M. m. musculus. We observe only mod-
est variation for both major and minor satellite k-mer
frequencies between and within populations of wild-
caught animals. These findings suggest that differences
in centromere size are potentially reinforced through re-
productive isolation between subspecies, whereas levels
of gene-flow between house mouse populations are suffi-
cient to counteract the emergence of large population
differences in centromere size.
In addition to centromere size, we also uncover sig-

nificant variation in the magnitude of satellite hetero-
geneity among inbred strains and among wild-caught
house mouse populations. On average, across inbred
strains, any two minor satellite repeats differ at ~ 17
sites, corresponding to ~ 14% nucleotide divergence.
These values are notably higher for wild-caught mice
(minor satellite: ~ 30 variable sites, ~ 25% nucleotide
divergence). Our k-mer based and consensus mapping
strategies are agnostic to chromosome of origin, beg-
ging the question of whether satellite repeats are
more similar within versus between house mouse
chromosomes. At the very least, it is clear that there
are striking chromosome-level differences in minor
satellite array size among some inbred strains (Fig. 3).
On-going long-read sequencing projects for house
mice may yield the needed data to address this ques-
tion. Nonetheless, while it has been widely assumed
that inbred house mouse centromeres are highly

homogenous, our findings call into question whether
this is a fair statement.
Our work also identified surprising differences in

centromere satellite architecture between wild-caught
and inbred mice. Wild-caught mice exhibit lower major
and minor centromere satellite copy numbers and
greater satellite heterogeneity than the inbred strains
(Fig. 5). Similar observations have been previously re-
ported for centromeres in inbred and outbred maize
[37]. Together, these findings suggest that the inbreeding
process itself might drive the homogenization of satellite
arrays and facilitate the fixation of larger centromeres.
Indeed, prior studies have established that larger centro-
meres may recruit more kinetochore proteins than
smaller centromeres, enabling larger centromeres to self-
ishly bias their own segregation into the oocyte during
asymmetric female meiosis, a process known as centro-
mere drive [22, 24, 57]. In the context of inbreeding,
such “strong centromeres” should be rapidly fixed. Re-
current bouts of de novo centromere expansion and fix-
ation could lead to rapid, run-away amplification of
centromere satellites in bottlenecked inbreeding popula-
tions compared to large, randomly mating wild mouse
populations. Thus, centromere size and repeat hetero-
geneity within inbred strains may not faithfully capture
the native state of M. musculus centromeres. Future in-
vestigations that chronical changes in centromere size
from the earliest stages of inbreeding onward could pro-
vide a real-time window into the mutational processes
that promote this architectural shift.
Our analyses define the extent of centromere copy

number and sequence diversity in diverse inbred strains,
motivating investigation into the phenotypic conse-
quences of this variation. As an initial attempt to address
this outstanding challenge, we looked for correlations
between satellite copy number and a phenotype proxy
for chromosome instability: the frequency of spontan-
eous micronuclei formation in peripheral blood cells.
We observed no significant relationship between these
variables, although the tested phenotype – spontaneous
micronuclei formation – is likely an imprecise measure
of centromere-mediated genome instability [45]. Fur-
thermore, our analysis was limited to a small number of
inbred strains with available published data and is
underpowered to find small to moderate strength
genotype-phenotype correlations. We also tested
whether variation in minor satellite copy number leads
to centromere drive in a mouse population developed
from eight inbred strains with variable minor satellite
copy numbers [48]. We found no evidence for strong
non-Mendelian transmission of centromere-proximal
variants although again, our analysis likely suffers from a
lack of statistical power to find weak to moderate drive
signals. By providing the first quantitative estimates of
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centromere satellite diversity in a panel of widely used
inbred strains, our investigation critically informs strain
choice for future studies that aim to rigorously and ex-
plicitly test how centromere diversity influences the fi-
delity of chromosome segregation and genome stability.
Ultra-long read sequencing technologies are now en-

abling sequence-level resolution of mammalian centro-
meres [19–21, 58]. However, the high cost of these
methods and their labor-intensive analyses put their use
out of reach for most investigators and effectively limit
the number of population samples that can be analyzed.
Our powerful k-mer-based workflow for assaying the
architectural and sequence diversity of centromeres cir-
cumvents these critical limitations and is readily extend-
able to large numbers of genomes. Using only short read
data in public repositories, our work has provided key
evolutionary insights into the scope of population and
subspecies variation across house mouse centromeres,
establishing the needed foundation for functional tests
of centromere diversity in an important biomedical
model system.

Conclusions
Our study presents the largest survey of population-level
centromere variation in mammals to date, encompassing
both inbred and wild mice from three cardinal M. mus-
culus subspecies. We provide the first quantitative esti-
mates of centromere size and satellite heterogeneity
between house mouse subspecies, populations, and in-
bred strains, uncovering significant variation at each of
these taxonomic levels. We show that the major and
minor satellite arrays in M. musculus exhibit distinct
patterns of diversity, consistent with the action of unique
evolutionary pressures at these two functionally distinct
satellite domains. We further identify striking differences
in centromere architecture between inbred strains and
wild-caught mice, suggesting that inbreeding actively
leads to the expansion and homogenization of centro-
mere satellites. Taken together, our work presents a
powerful bioinformatic framework for probing centro-
mere diversity that can be readily extended to other taxa
and adapted to interrogate diversity at other satellite rich
genomic regions. Moreover, our analyses yield a catalog
of centromere diversity across diverse mice that will
guide future investigations on the functional conse-
quences of centromere variation in mammals.

Materials and methods
Whole genome sequencing data
Illumina whole genome sequences from 100 house
mouse (Mus) genomes were obtained in bam and fastq
formats from public repositories (Supplementary Table
3). These samples include 33 inbred house mouse strains
of predominantly Mus musculus domesticus ancestry

[32], 27 wild M. m. domesticus mice from four popula-
tions, 22 wild M. m. musculus from three populations,
ten wild M. m. castaneus from India, eight wild Mus
spretus from Spain [33], a wild-derived inbred strain of
Mus caroli (CAROLI/EiJ), and a wild-derived inbred
strain of Mus pahari (PAHARI/EiJ) [31]. M. caroli and
M. pahari sequence reads were mapped to the M. mus-
culus reference (mm10) using bwa mem version 0.7.9
[59]. Optical duplicates were removed using the rmdups
command in samtools version 1.8 [60].

k-mer frequencies and normalization
We computed the observed frequency of all k-mers in
each mouse genome on a per-library basis. Briefly, each
sequenced read in a sample’s fastq file was decomposed
into its constituent nucleotide words of length k, or k-
mers, using a custom Python script (KmerComposi-
tion.py). We selected two lengths for k: k = {15, 31}.
These k values were selected to balance computational
speed (k = 15) and provide high sequence specificity (k =
31). Each analyzed genome captured 440–965 million
unique 15-mers and 1.1–14.5 billion unique 31-mers.
The efficiency of PCR amplification is not uniform

with respect to GC-content, and this can lead to biases
in the nucleotide composition of sequencing libraries
[61]. If uncorrected, such biases could cause false infer-
ence of differences in k-mer abundance between inde-
pendent libraries and samples. We implemented a GC-
correction to rescale raw k-mer counts by the extent of
the observed GC-bias in each library. Briefly, we ran-
domly selected a set of ~ 100,000 k-mers that occur
uniquely in the mouse reference genome (mm10). For
each sample, we modeled the observed counts of these
unique k-mers as a function of their GC-content using
LOESS regression, with the span parameter set to 0.4.
The LOESS regression produced a predicted k-mer
count for each GC-content bin; these values correspond
to the magnitude and direction of the empirical GC-bias
in the sequencing library and represent the expected
“amplification” of a k-mer based on its GC-content. Fi-
nally, observed k-mer frequencies were normalized by
the LOESS predicted count for the corresponding GC-
content bin:

Normalized k−mer count ¼ log10
observed k−mer count

LOESS predicted k−mer count
;

Normalized values were used for comparisons across
libraries and samples.
We used reads derived from multiple independent se-

quencing libraries from a single inbred strain to confirm
that our strategy was robust to potential artifacts intro-
duced during library preparation. After GC-correction,
we observe excellent concordance of centromere k-mer
frequencies among replicate libraries for a given strain
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(Pearson correlation 0.990 < R2 < 0.999; Supplementary
Figure 2). As expected, concordance between strains was
generally weaker (Pearson correlation 0.41 < R2 < 0.998;
Supplementary Figure 2).

Identification of highly variable k-mers across house
mouse
To identify k-mers that differ in abundance across ge-
nomes, we selected a representative subset of n = 54 di-
verse Mus samples (see Supplementary Table 3) and
computed the variance in observed 15-mer frequencies
across their genomes:

Xn

s¼1

Fs−F
� �2

n−1
;

where F is the absolute 15-mer frequency standardized
by the read depth of strain s and F is the average nor-
malized frequency of the 15-mer across the selected 54
strains. The 1000 15-mers with the largest variance were
plotted as a heatmap using the R package pheatmap.

Quantifying centromere satellite abundance
We used a reference-informed approach to quantify the
relative copy number of centromere satellites in each
mouse genome. We first decomposed the minor and
major satellite consensus sequences into their constitu-
ent k-mers [26]. We then queried the GC-corrected fre-
quency of these centromere k-mers in each analyzed
library and compared the distribution of these centro-
mere k-mer frequencies across libraries and samples.
The relative copy number of a centromere satellite

consensus sequence in a given mouse genome was esti-
mated from the median frequency of all constituent k-
mers. For example, if the median log10 GC-corrected
count for k-mers present in the major satellite in a given
genome was 5, we estimated 105 copies of the major sat-
ellite in that genome. This quantity is highly correlated
with the overall percentage of sequenced reads that map
to the minor and major consensus sequences (Pearson
correlation; minor: R2 = 0.73, P = 2.64 × 10− 5; major:
R2 = 0.85, P = 1.65 × 10− 7; Supplementary Figure 5), sug-
gesting that it provides a faithful readout of centromere
satellite copy number.
We observe little variation in centromere satellite copy

number among wild-caught mice sampled from a single
population and replicate sequencing libraries from a sin-
gle inbred strain (Supplementary Figure 9). A subset of
our analyses therefore combined all individuals from a
given population to produce a single population-level
copy number estimate. Similarly, for inbred strains with
multiple sequencing libraries, GC-corrected k-mer
counts were aggregated across libraries.

Quantifying within genome centromere satellite diversity
To quantify centromere satellite diversity within a gen-
ome, we computed the average number of sequence dif-
ferences between independent satellite repeats, a metric
we term the centromere diversity index (CDI). We first
mapped sequenced reads to the major and minor
centromere consensus sequences using bwa version 0.7.9
[59]. We then partitioned reads using samtools version
1.8 [60] based on (i) whether they mapped to the major
or minor satellite, (ii) whether they mapped to the for-
ward or reverse strand to prevent comparing sequences
to their reverse complement, and (iii) their mapped pos-
ition along the consensus sequence. For each pair of
reads mapping to an identical site in the same orienta-
tion on the major or minor satellite sequence, we com-
puted the average number of observed sequence
differences, dij. We then derived the CDI by averaging
over all N tested read pairs:

Centromere Diversity Index CDIð Þ ¼

X

strand

X

L

X

ij

dij

N

where L is the length of the satellite repeat unit (L = 120
and L = 234 for the minor and major satellites
respectively).

Variance component estimation
We adopted an ANOVA framework to estimate the pro-
portion of variation in satellite copy number and CDI
that was explained by various levels of taxonomic
organization. Major and minor satellite values were ana-
lyzed independently. For inbred strains, we modeled k-
mer counts and CDI as a function of strain identity and
library. For wild mice, we modelled k-mer counts and
CDI as a function of subspecies, population, and sample.
For each ANOVA, a Tukey HSD post hoc test was ap-
plied to evaluate the significance of pairwise compari-
sons between groups. All analyses were performed in R
using the baseR aov and TukeyHSD functions.

Quantifying consensus centromere satellite
polymorphisms
To summarize the sequence polymorphism landscape
across centromere satellite repeats, we identified k-mers
with a fixed edit distance (h) of the minor and major sat-
ellite consensus sequence. For k = 15, we allowed h ≤ 2,
and for k = 31 we allowed h ≤ 5. We used the frequen-
cies of these relaxed edit distance k-mers, in conjunction
with their positions across their respective satellite con-
sensus sequences, to derive a vector of relative nucleo-
tide probabilities for each position in the satellite
consensus sequence. At a given position, we computed
the total frequency of k-mers with an “A”, “C”, “G”, or
“T” at the focal position. These per-nucleotide k-mer
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frequencies were then converted to relative probabilities
summing to one and used to populate a 4xN “polymorph-
ism matrix” for each analyzed sample, where N = 120 for
the minor satellite sequence and N = 234 for the major
satellite. Note that this approach ignores the contribution
of indel mutations to sequence polymorphism at centro-
mere satellite repeats. We then compared the percentage
of non-consensus nucleotides for each strain across the
minor and major consensus satellite sequence.

Phylogenetic analysis of centromere diversity
Maximum likelihood trees for inbred strains and wild-
caught mice were independently constructed using
RAxML version 8.2.12 [62]. The phylogenetic tree for in-
bred strains was constructed from 56,500,187 high qual-
ity SNPs identified in 12 inbred M. musculus genomes
and the outgroup SPRET/EiJ. The phylogenetic tree for
wild mice was constructed from 1,547,278 high quality
SNPs from 78M. musculus and M. spretus genomes. To
create each tree, an initial set of 20 ML trees was con-
structed using the GTRGAMMA substitution model.
These trees were used as input for subsequent branch
length and topology refinements in order to estimate the
tree with the highest likelihood. We then used GTRCAT
to derive bootstrap support values for the best ML tree,
with the number of random seeds set to 12,345.
We applied Lynch’s phylogenetic comparative method

to estimate the phylogenetic heritability of centromere
satellite copy number and CDI [43]. Under a neutral
(i.e., Brownian motion) model of evolution, the extent of
phenotypic divergence between samples should be pro-
portional to their genetic divergence. We computed
phylogenetic variance-covariance matrices from the in-
bred strain and wild caught M. musculus ML phyloge-
nies and then used these matrices to estimate the
proportions of variation in both major and minor satel-
lite copy number and CDI that are explained by the
underlying trees. These quantities were then divided by
the total variance in satellite copy number and CDI to
calculate the phylogenetic heritability (H2

P) of each diver-
sity parameter. The significance of observed values was
assessed by an ad hoc permutation test. We shuffled ob-
served satellite copy number and CDI values across the
tree tips and then re-estimated H2

P on each permuted
dataset. Empirical P-values were determined from the
quantile position of the observed H2

P value along the dis-
tribution of 1000 permuted values.
All analyses were performed in R using the Analysis of

Phylogenetics and Evolution (ape v5.3) package [63].

Animal husbandry
The following inbred mouse strains were obtained from
The Jackson Laboratory: CAST/EiJ, LEWES/EiJ, PWK/

PhJ, WSB/EiJ. Mice were housed in a low barrier room
and provided food and water ad libitum. Mice were eu-
thanized by CO2 asphyxiation or cervical dislocation in
accordance with recommendations from the American
Veterinary Medical Association.

Mouse embryonic fibroblasts cultures
Three to seven primary mouse embryonic fibroblast
(MEF) lines were isolated from E12.5-E13.5 embryos
from four inbred strains: CAST/EiJ, LEWES/EiJ, PWK/
PhJ, and WSB/EiJ. We used a total of four pregnant fe-
male mice (one from each inbred strain) to obtain
enough MEF lines for the biological replicates required
for the experiment. MEFs were cultured in MEF media
composed of Dulbecco’s Modified Eagle medium
(DMEM) supplemented with 10% FBS (Lonza), 100μg/
mL Primocin (Invivogen) and 1xGlutaMAX (Thermo
Fisher Scientific/GIBCO). MEFs were cultured in 150
mm tissue culture-treated plates (Thermo Fisher Scien-
tific) at 37 °C in a humidified atmosphere with 5% CO2.

Metaphase chromosome spreads and FISH
MEFs were used for the preparation of metaphase
spreads. Briefly, MEFs were cultured in MEF media to ~
80% confluency at 37 °C in a humidified atmosphere
with 5% CO2 in MEF media. Cells were subsequently
serum starved on MEF media without FBS and exposed
to 0.02 μg/ml Colcemid (Thermo Fisher Scientific/
GIBCO) for 12 h to synchronize and arrest cells in meta-
phase. MEFs were subsequently shaken off and resus-
pended in hypotonic solution (56 mM KCl) for 60 min.
The harvested cells were then gradually fixed in 3:1
Methanol:Glacial Acetic Acid under constant agitation.
Cells were pelleted by centrifugation, the fixative dec-
anted off, and re-fixed for a total of 3–4 times. Following
the final fixation round, cells were suspended in a 1–2
mL volume of fixative and dropped onto slides from a
height of ~ 1m. Slides were allowed to air dry for ap-
proximately 10 min and then stored at -20C until
hybridization.
Commercially synthesized oligos corresponding to the

M. musculus major and minor satellite sequences were
PCR amplified and fluorescently labelled via nick trans-
lation. Primer sequences are listed in Supplementary
Table 4. Briefly, 250–1000 ng of PCR-amplified DNA
was combined with nick translation buffer (200 mM Tris
pH 7.5, 500 mM MgCl2, 5 mM Dithiothreitol, 500mg/
mL Bovine Serum Albumin), 0.2 mM dNTPs, 0.2 mM
fluorescent nucleotides, 1 U DNAse (Promega) and 1 U
DNA Pol I (Thermo Fisher Scientific). One of three
fluorescent nucleotides was used for each satellite probe
set: Fluorescein-12-dUTP (Thermo Fisher Scientific),
ChromaTide Texas Red-12-dUTP (Thermo Fisher Sci-
entific/Invitrogen), and Alexa Fluor 647-aha-dUTP
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(Thermo Fisher Scientific/Invitrogen). The reaction mix-
ture was incubated at 14.5 C for 90 min, and then termi-
nated by addition of 10 mM EDTA. Probes ranged from
50 to 200 bp in size, as assessed by gel electrophoresis.
Probes were used in FISH reactions on MEF meta-

phase cell spreads. Probes were denatured in
hybridization buffer (50% formamide, 10% Dextran Sul-
fate, 2x saline-sodium citrate (SSC), mouse Cot-1 DNA)
at 72 °C for 10 min and then allowed to re-anneal at
37 °C until slides were ready for hybridization. Slides
were dehydrated in a sequential ethanol series (70, 90,
100%; each 5 min) and dried at 42 °C. Slides were then
denatured in 70% formamide/2x SSC at 72 °C for 3 min,
and immediately quenched in ice cold 70% ethanol for 5
min. Slides were subjected to a second ethanol dehydra-
tion series (90, 100%; each 5 min) and air dried. The
probe hybridization solution was then applied to the
denatured slide. The hybridized region was then cover-
slipped and sealed with rubber cement. Hybridization
reactions were allowed to proceed overnight in a hu-
midified chamber at 37 °C. After gently removing the
rubber cement and soaking off coverslips, slides were
washed 2 times in 50% formamide/2x SSC followed by
an additional 2 washes in 2x SSC for 5 min at room
temperature. Slides were counterstained in 0.05 ng/mL
DAPI (Thermo Fisher Scientific/Invitrogen) for 10 min
and air dried at room temperature. Lastly, slides were
mounted with ProLong Gold AntiFade (Thermo Fisher
Scientific/Invitrogen) and stored at -20C until imaging.

Image capture and fluorescence intensity quantification
FISH reactions were imaged at 63x magnification on a
Leica DM6B upright fluorescent microscope equipped
with fluorescent filters (Leica model numbers: 11504203,
11504207, 11504164), LED illumination, and a cooled
monochrome Leica DFC7000 GT 2.8 megapixel digital
camera. Images were captured using LAS X (Version
3.7) at a resolution of 1920 × 1440 pixels. Images were
collected at a plane with maximal intensity using con-
sistent exposure settings across slides (DAPI at 20 ms,
TxRed at 50 ms and FITC at 200 ms). The mean inten-
sities of FISH signals at each centromere were calculated
in areas drawn around centromeres based on threshold-
ing with background subtraction. Signals were quantified
from all centromeres within a cell (n = 40). FISH fluores-
cent intensity signals were collected from two independ-
ent cell lines (biological replicates) from each strain and
two independent experiments were conducted for each
cell line with fluorophores swapped for each sequence
(technical replicates). We collected images from 8 to 10
cells per replicate, amounting to > 320 individual centro-
mere measurements per replicate (40 centromeres
signal/cell × 8 cells = 320). Differences in fluorescent in-
tensity between strains were assessed by ANOVA

(baseR). Fluorescent intensity is represented in arbitrary
units (AU). Thresholding and signal quantification were
performed using Fiji [64].

Evaluating signals of meiotic drive in the diversity
outbred mapping population
We utilized genotype probability data from five Diversity
Outbred (DO) mapping studies conducted on mouse co-
horts from outbreeding generations 11 to 22 (Bult
MegaMUGA, Svenson-183 MegaMUGA, Churchill-181
MegaMUGA, Attie-232 GigaMUGA, and Chesler-192
MegaMUGA; all data from https://www.jax.org/
research-and-faculty/genetic-diversity-initiative/tools-
data/diversity-outbred-database). All DO mice were ge-
notyped at a common set of loci [48]. For mice in each
outbreeding generation, we first determined the fre-
quency of each parental haplotype at every genotyped
marker. We then looked for linked clusters of markers
that exhibit a consistent departure from the expected
haplotype frequency (0.125) and that displayed a mono-
tonic increase in the frequency of one or more haplo-
types over outbreeding generations.

Mouse phenotype data
Spearman correlation tests were used to examine rela-
tionships between chromosome instability phenotypes
and estimated centromere satellite copy number across
inbred lab strains. Chromosome instability phenotypes
were obtained from the Mills1 dataset deposited in the
Mouse Phenome Database [65].

Abbreviations
qFISH: Quantitative fluorescence in situ hybridization; ANOVA: Analysis of
Variance; PCA: Principal Component Analysis; CDI: Centromere Diversity
Index; CENP-B: Centromere protein B; CENP-A: Centromere protein A;
DO: Diversity Outbred; Mb: Megabases; bam: Binary alignment map; FIJI: Fiji
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Additional file 1: Figure S1. Variation in consensus centromere satellite
15-mers across diverse Mus musculus. Boxplots of the distribution of
major (yellow) and minor (blue) satellite consensus 15-mer frequencies
across inbred strains and wild-caught mouse populations.

Additional file 2: Figure S2. Concordance of GC-corrected k-mer
counts among strains and replicate libraries within a strain. Heatmap of
pairwise Pearson correlations between GC-corrected consensus centro-
mere 31-mer frequencies from replicate sequencing libraries across in-
bred Mus musculus strains. Both color intensity and circle size correspond
to the magnitude of the R2 correlation coefficient. Red lines delimit repli-
cate libraries for single inbred strains.

Additional file 3: Figure S3. Consensus centromere 15-mers are the
most abundant and the most variable 15-mers in 54 diverse Mus ge-
nomes. Heatmap displaying the observed frequencies of the 1000 most
variable 15-mers (columns) across 54 diverse samples (rows). The color
scale represents the normalized frequency of 15-mers. 15-mers present in
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the Mus musculus minor and major satellite consensus sequences are
noted by the blue and yellow boxes, respectively.

Additional file 4: Figure S4. Inbred strains and wild-caught mice ex-
hibit distinct consensus centromere k-mer frequencies. Principal compo-
nent analysis of (A) major and (B) minor satellite consensus 31-mer
frequencies in inbred strains and wild-caught M. musculus samples.

Additional file 5: Figure S5. Centromere consensus 31-mer estimates
of relative copy number strongly correlate with the percentage of reads
mapping to the centromere consensus. Correlation plots for the median
frequency of GC-corrected centromere consensus 31-mers and the per-
centage of reads mapping to the centromere consensus for the (A) minor
and (B) major satellite. Subspecies are represented by color. Inbred and
wild-caught mice are distinguished by shape.

Additional file 6: Figure S6. Non-consensus nucleotide proportions at
positions 75, 78, and 79 along the minor satellite consensus sequence.
The x-axis represents the fraction of centromeric k-mers with each nu-
cleotide at the specified position. Each strain is depicted as a single row.
The consensus nucleotide at each position is indicated by a black outline.

Additional file 7: Figure S7. No correlation between micronuclei
frequency and centromere satellite consensus copy number. Spearman
correlations between the proportion of peripheral blood cells (red blood
cells and micronuclei) with micronuclei and median minor (left) or major
(right) satellite 31-mer frequencies. The proportion of cells with micronu-
clei was determined for 12-month-old mice (top) and 20-month-old mice
(bottom).

Additional file 8: Figure S8. Haplotype frequencies at centromere-
proximal regions in the Diversity Outbred populations are not consistent
with strong centromere drive. Chromosome coordinates of genotyped
markers in megabases (Mb) are provided on the x-axis. The difference in
the frequency of each strain haplotype between generation 22 and gen-
eration 11 is shown on the y-axis. Line colors correspond to each of the
8 DO founder strains.

Additional file 9: Figure S9. Centromere consensus 31-mer frequencies
exhibit low variance between independent sequencing libraries and
among wild-caught individuals from a single population. Boxplots reveal
the distribution of minor centromere satellite 31-mer frequencies for indi-
vidual sequencing libraries and wild-caught individuals.

Additional file 10: Table S1. Results from TukeyHSD post-hoc tests
comparing the distributions of minor and major satellite 31-mer frequen-
cies in inbred strains and wild-caught mice.

Additional file 11: Table S2. The frequency of relaxed edit distance
centromere satellite 31-mers in the mouse reference (mm10) genome.

Additional file 12: Table S3. House mouse (Mus) whole genome
sequence samples. Numbers represented in the data source column
correspond to the following data sources: (1) The Mouse Genomes
Project Release 1502/REL-1502 [32]; (2) Whole genome sequencing of
Mus caroli and Mus pahari [31]; (3) Wild Mouse Genomes Project [33].
*We excluded Mouse Genomes Project libraries with read length < 75 bp.

Additional file 13: Table S4. Sequences and primers used for FISH
experiments.
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