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and its conservation.

Background: The relict gull (Larus relictus), was classified as vulnerable on the IUCN Red List and is a first-class
national protected bird in China. Genomic resources for L. relictus are lacking, which limits the study of its evolution

Results: In this study, based on the lllumina and PacBio sequencing platforms, we successfully assembled the
genome of L. relictus, one of the few known reference genomes in genus Larus. The size of the final assembled
genome was 1.21 Gb, with a contig N50 of 8.11 Mb. A total of 18,454 genes were predicted from the assembly
results, with 16,967 (91.94%) of these genes annotated. The genome contained 92.52 Mb of repeat sequence,
accounting for 7.63% of the assembly. A phylogenetic tree was constructed using 4902 single-copy orthologous
genes, which showed L. relictus had closest relative of L. smithsonianus, with divergence time of 14.7 Mya estimated
between of them. PSMC analyses indicated that L. relictus had been undergoing a long-term population decline
during 0.01-0.1 Mya with a small effective population size fom 8800 to 2200 individuals.

Conclusions: This genome will be a valuable genomic resource for a range of genomic and conservation studies
of L. relictus and will help to establish a foundation for further studies investigating whether the breeding
population is a complex population. As the species is threatened by habitat loss and fragmentation, actions to
protect L. relictus are suggested to alleviate the fragmentation of breeding populations.
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Background

The relict gull (Larus relictus) (Charadriiformes, Laridae,
Larus), a middle-sized gull with a black-coloured head,
had been known for nearly 50years before it was
regarded as a unique species [1]. It is classified as vulner-
able (VU) on the IUCN Red List and is a first-class na-
tional protected bird in China. Its population size has
been estimated at 10,000—-19,999 (BirdLife International,
2020), and the vast majority of L. relictus (90%) reside in
Hongjian Nur with very low genetic diversity [2]. Their
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main wintering place is situated on the west coast of the
Bohai Sea [3]. A small number of winter migratory indi-
viduals have been sighted in Hong Kong [4]. Therefore,
the main threats to L. relictus are lake shrinkage on
breeding grounds and at stopover sites, as well as the
loss of intertidal flats on wintering grounds [5]. A novel
data-driven habitat suitability ranking approach for L.
relictus using remote sensing and GIS indicated that
three threat factors, road networks, developed buildings
and vegetation, affect suitable habitat for this species
most severely [6].

On the whole-genome level, DNA sequencing technol-
ogy is usually used to characterize genetic variation and
acquire comprehensive molecular characterizations [7].
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At present, only limited genetic information, in the form
of mitochondrial markers and inferred population struc-
ture, is available for L. relictus [2, 8—10]. However, no
genome has been published for L. relictus which limits
our understanding about the molecular mechanisms of
evolutionary and genetic processes.

High-throughput sequencing technology has notably
reduced sequencing costs [11] and marked the start of a
new era of genomic studies [12]. Among them, long-
read sequencing technologies such as Pacific Biosciences
(PacBio) [13] can produce average read lengths of over
10,000 bp [12]. PacBio technology has been used to ob-
tain high-quality genome assemblies for several avian
species, such as Gallus gallus (Galliformes) [14] and
Malurus cyaneus (Passeriformes) [15].

In this study, the first contig-level genome of L. relic-
tus was constructed using both Illumina HiSeq and Pac-
Bio sequencing platforms. We assessed various genomic
characteristics and performed comparative analyses.
These genomic data will facilitate population studies of
L. relictus and support the comprehensive protection of
this vulnerable avian species.

Results
Genome sequencing and assembly
Approximately 106.29 Gb of raw sequencing data were ob-
tained using the Illumina HiSeq platform, including three
250-bp insert libraries and two 350-bp insert libraries (Table
S1). The sequencing depth was 87.85X. We used the PacBio
sequencing platform with three 20-Kb libraries to obtain
long reads for assembling the genome and retained approxi-
mately 3050 Gb raw data. The sequencing depth was
25.42X. After filtering out low-quality and short-length reads,
the read N50 and mean read length were 12,712bp and
8418 bp, respectively (Table S2, S3). Finally, a 1.21 Gb assem-
bly with a contig N50 of approximately 8.11 Mb was ob-
tained for L. relictus, with a GC content of approximately
43.11%. The genome consisted of 1313 contigs, with the lon-
gest contig being approximately 29.7 Mb long (Table S4).
Approximately 99.96-99.97% of the cleand Illumina
reads could be mapped to the contigs, with 93.33-93.77%
properly mapped reads (Table S5). The CEGMA v2.5 ana-
lysis identified 416 core eukaryotic genes (CEGs), account-
ing for 90.83% of all 458 CEGs, and 175 CEGs (70.56%)
could be detected with homology to the 248 highly con-
served CEGs (Table S6). In addition, 4555 (92.7%) of the
4915 highly conserved Aves orthologues from BUSCO
v3.0.2 were identified in the assembly (Table S7). These
results show that the assembled L. relictus genome se-
quence was complete and had a low error rate.

Genome annotation
The consensus gene set included a total of 18,454 genes
were predicted by three different strategies (Methods
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section for details) (Table S8). The average gene length,
exon length, and intron length were 20,749.08 bp,
164.24 bp, and 1996.77 bp, respectively. The final predic-
tion results revealed 17,452 (94.57%) supported by
homology-based and RNA-seq-based methods (Fig. S1),
which showed a good gene prediction efficiency com-
pared to gene annotations of genomes in five known
species of Laridae, human and G. gallus (Table S9) [16,
17]. A total of 16,967 (91.94%) predicted genes in the L.
relictus genome were annotated and functionally classi-
fied by the Gene Ontology (GO) [18], Kyoto
Encyclopedia of Genes and Genomes (KEGG) [19], Clus-
ter of Orthologous Groups for eukaryotic complete ge-
nomes (KOG) [20], Translated EMBL-Bank (TrEMBL)
[21] and NCBI non-redundant amino acid sequences
(NR) [22] databases (Table S10).

Noncoding RNAs were also identified and annotated,
including 208 microRNA genes (miRNAs), 73 rRNAs
and 289 tRNAs. A total of 221 pseudogenes were identi-
fied in the L. relictus genome.

A total of 92.52 Mb of repeat sequence was annotated,
composing 7.63% of the total genome length. We found
that class I transposable elements (TEs) (RNA transpo-
sons or retrotransposons) occupied ~approximately
8.22% of the genome assembly. Among class I TEs,
1.12% were long terminal repeat elements (LTRs), 5.85%
were long interspersed elements (LINEs) and 0.02% were
short interspersed elements (SINEs) (Table S11). The
LINE percentage from 4.95 to 6.03% and SINE percent-
age from 0.1 to 0.15% in five known species of Laridae
genomes, respectively [17]. While the content of SINEs
in L. relictus were obviously less common than in Lari-
dae and this novel phenomenon needs to be futher stud-
ied. The L. relictus genome also contained class II TEs
(DNA transposons), which occupied approximately
0.28% of the genome.

Gene families

Comparison of the L. relictus genome assembly with the
genomes of eleven other Charadriiformes species
showed that a total of 14,453 genes of L. relictus could
be clustered into 13,799 gene families, including 201
unique genes belonging to 62 gene families. The propor-
tion of species-specific genes within L. relictus genome
(1.1%) was obviously larger than that of other sampled
genomes (0.0-0.1%) (Table S12). In addition, 5100 gene
families were shared among all sampled species. The
phylogenetic relationships based on 4902 single-copy
orthologous genes indicated that all seven gulls were cat-
egorized into one branch, and L. relictus was genetically
most related to another member of the order Laridae, L.
smithsonianus in kinship (Fig. 1) with divergence time of
14.7 million years ago (Mya) (time 8—21 was supported
by 95% highest posterior density (HPD) (Fig. 2).
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Nycticryphes semicollaris SAMN12253838
100 -Arenaria interpres SAMN12253884
o0 Stercorarius parasiticus SAMN12253778
106 Rynchops niger SAMN12253840
06 Phaetusa simplex SAMN12253896
100 Rissa tridactyla SAMN12253991
0 7égrus smithsonianus SAMN12253848
100 Larus relictus SAMN04542848
Chroicocephalus maculipennis SAMN12253928
Charadrius vociferus SAMN02296710
i Ibidorhyncha struthersii SAMN12253964
Pluvianellus socialis SAMN12253906
Fig. 1 Topology of Maximum likelihood (ML) tree for 12 Charadriiformes species. Tree reconstruction based on single-copy orthologues protein
sequences under IQ-TREE v1.6.11. BioSample numbers are indicated following species name. Numbers on nodes are bootstrap values

Positive selection genes and functional enrichment

We found that 842 single-copy orthologous genes were
under positive selection in the L. relictus genome (Table
S13). The GO annotation classifies the positively se-
lected genes (PSGs) in terms of three categories: cellular
component, biological process, and molecular function.
Cellular component annotations were primarily cytosol
and nuclear speck. Molecular functions were mainly
ATP binding and chromatin binding. Biological process
annotations were mainly positive regulation of transcrip-
tion from RNA polymerase II promoter and ubiquitin-
dependent protein catabolic process. In addition, we also
identified the biochemical pathways of the PSGs. The

KEGG annotation of the PSGs suggested that the path-
way of RNA transport had the highest ratio, followed by
spliceosome. (Fig. S2).

Effective population size of L. relictus

Pairwise sequentially Markovian coalescent (PSMC)
analysis showed the demographic history of L. relictus
from 100,000 years ago to 10,000 years ago. L. relictus
had experienced a long period of population size de-
cline, with the effective population size (Ne) from ap-
proximately 8800 individuals to 2200 individuals
(Fig. 3).
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Fig. 3 The PSMC analyses result of Larus relictus. An individual re-sequencing raw data was obtained in NCBI with accession number
SRR14041273. One hundred iterations were performed
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Discussion

Genomic characteristics

The genome size of L. relictus was similar to those of five
known species in Laridae, such as L. smithsonianus (1.20
Gb). The GC content of the L. relictus genome (43.11%)
was higher than that of other known Laridae (42.28—
42.95%) [17]. This proportion of repeat sequences is simi-
lar to that found in previous studies, in which almost all
avian genomes contained lower levels of repeat elements
than other animal genomes, with percentages of approxi-
mately 4.1-24.09%, except for the Red-headed Barbet
(Eubucco bourcierii), with approximately 29.89% of its
genome, the Coppersmith Barbet (Psilopogon haemace-
Phalus) with 31.17%, and the Acacia Pied Barbet (Tricho-
laema leucomelas) with 31.47%, respectively [16, 17].
Genomes in different vertebrate lineages can have very
different contents in repeate elements: the genomes of the
primates contains more repeat elements (45-50% of the
genome) than the genomes of mouse and rat (39-40%)
and dog (34%) [23, 24].

Topological structure and evolution

Phylogenetic tree supported that Stercorariidae was so
antiquated that it was divided out earlier than others in
undergoing different selection pressures [25]. In Larus,
L. relictus should be belonged to the Black-headed spe-
cies, L. smithsonianus was belonged into White-headed
species, but Chroicocephalus maculipennis was catego-
rized into Masked species, respectively [26].

The timescale results indicated that the ancestral line-
ages of L. relictus and L. smithsonianus diverged ap-
proximately 14.7 Mya (Fig. 1). The genus Larus was split
with Rissa tridactyla at approximately 20.51 Mya, which
was close to that divergence time of the genus between
Larus and Rissa. Pluvianellus socialis was divided out

from other species were estimated at approximately
69.81 Mya, which is in agreement with the divergence
time of the Charadriiformes as a whole (79-102 Mya)
[27].

Population dynamics

PSMC analyses revealed that L. relictus had took a long
period of population size decline from 0.01-0.1 Mya,
with very low effective population size 0.22 x 10°~0.88 x
10° individuals (passenger pigeon, 1.3 x 10°-2.4 x 107)
[28]. Decrease in genetic diversity was reflected from this
phenomenon, and consistent with previous studies (Pi,
0.00008—0.00041), then leaded the loss of many alleles in
the population [2]. The average estimated expansion
time of L. relictus was from 0.09 to 0.23 Mya, since the
late to Middle Pleistocene (0.13—0.78 Mya) and early to
Late Pleistocene (0.01-0.12 Mya) [2]. Synthetic analysis,
recent range expansions following recovery from a
bottleneck were determined between Middle Pleistocene
and Late Pleistocene. The repeated glacial-interglacial
changes during the Pleistocene period (0.01-1.9 Mya)
might have influenced the expansion of L. relictus.
Neverthelessly, we infered that the population size of L.
relictus would be going a downward trend in the end of
Late Pleistocene period and early Holocene.

Conclusions
The whole-genome sequence of L. relictus was assem-
bled employing the Illumina and PacBio sequencing
platforms. The size of the final assembled genome was
1.21 Gb, with a contig N50 of 8.11 Mb and 92.52 (7.63%)
Mb of repeat sequence, and 18,454 genes were predicted
with 16,967 (91.94%) of these genes annotated.

Relict gull (L. relictus) has been holding a small effect-
ive population size and it has been experiencing very
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low genetic diversity and a long period of population de-
cline while lacking a large geographical population. In
this study, the genome information of L. relictus which
is one of the few known reference genomes in genus
Larus, will be effectively to investigate the evolutionary
and molecular mechanisms of some significant processes
in this species.

Methods

Sampling information

A naturally dead L. relictus fledgling from Hongjian Nur
(39°04" N, 109°53" E), Yulin, Shaanxi Province, was col-
lected and identified by H. Xiao, and the specimen (vou-
cher number YGO1l) was deposited in the animal
specimens museum of the Shaanxi Institute of Zoology,
Xi'an, Shaanxi Province, China. Our team is a wildlife
protection agency under the Shaanxi Academy of Sci-
ences (China), cooperating and working with the author-
ity department on Hongjian Nur for nearly 20 years,
mainly devoted to the protection of the relict gull. To
protect L. relictus, this project has been approved and
received permission from the Nature Reserve Authority
of Hongjian Nur.

DNA and RNA extraction

DNA was extracted from the muscle using the Cetyl Tri-
methyl Ammonium Bromide (CTAB) method, and total
RNA was extracted from the heart, liver, spleen, lung
and kidney of L. relictus using TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA) following the protocol recom-
mended by the manufacturer. DNA and RNA
concentrations were measured using NanoDrop 2000,
Qubit 2.0 and Agilent 2100. Only DNA with an DNA in-
tegrity number (DIN) and RNA with RNA integrity
number (RIN) score>8.0 and 1.8 <0D260/280 < 2.2
were used for the preparation and construction of Pac-
Bio and Illumina libraries.

Library preparations (DNA and RNA) and sequencing
Both Illumina HiSeq 4000 and PacBio RSII sequencing
platforms were used. For the Illumina pipeline, five short
fragment paired-end libraries (three of 270bp and two
of 350 bp) were constructed using the standard Illumina
protocol. The details of library construction are as fol-
lows: the genomic DNA was broken randomly using the
ultrasonic method, and target fragments were filtered
using magnetic beads for nucleic acid purification. The
small fragment sequencing library was constructed
through the steps of end repair, addition of polyA and
adaptor, selection of target-size fragments and PCR.

For the long fragment libraries (three of 20 Kb) in the
PacBio pipeline, the details of library construction are as
follows: The genomic DNA was sheared using g-TUBE,
followed by DNA damage-repair and end-repair. The
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dumbbell-type adapters were ligated, and exonuclease
digestion was performed. BluePippin was used to select
segments to obtain the sequencing library.

For the RNA fragment libraries (one of 280bp and
one of MicroRNA SE50) in the Illumina pipeline, the de-
tails of library construction are as follows: Briefly, rRNA
was isolated from total RNA using Epicentre Ribo-Zero™
Kit and then fragmented randomly with Fragmentation
Buffer. The first-strand cDNA was synthesized with ran-
dom hexamer primers using the fragmented rRNA-
depleted RNA as a template, and the second-strand
¢DNA was synthesized with DNA polymerase I (New
England Biolabs) and RNase H (Invitrogen). After end
repair, A-tail, adaptor ligation and purification with
AMPure XP beads, PCR amplification was conducted.

The size and quality of all constructed libraries were
evaluated using an Agilent 2100, NanoDrop 2000 and
Qubit 2.0. Eligible libraries were sequenced on the Illu-
mina HiSeq 4000 platform to generate 150bp paired-
end reads and PacBio RSII platform to generate Raw se-
quence data >30.0GB. The Illumina HiSeq 4000 plat-
form was also used for sequencing RNA data.

Genome assembly assessment

Raw reads were filtered to remove adapter sequences
(-e 0.1 -a AGATCGGAAGAGCACACGTCTGAACT
CCAGTCAC -A AGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGT -m 100 --cut 0 -O 3) and low-
quality data (multi_rules, -u 0.1 -q 0.5 -w 10 -Q 33;
Q20/30, —q 0.95/0.85 -w 30 -Q 33), with clean reads as-
sembled using Trinity v2.4.0 [29]. After filtering out low-
quality and less than 500 bp in length PacBio reads, LoR-
DEC v0.7 [30] software was used for error correction of
PacBio data employing HiSeq data. The HiSeq data were
preliminarily assembled by Platanus v1.2.4 [31] software.
Using dbg2olc v4 [32] software, mixed assembly was car-
ried out by using the data after error correction and the
preliminary assembly results of HiSeq data. Pilon v1.22
[33] software was used to correct the assembly results
using HiSeq data. To assess the completeness of the L.
relictus genome assembly, we used two methods, with
the first remapping the Illumina paired-end reads to the
assembled genome and the second employing CEGMA
v.2.5 [34] and BUSCO v3.0.2 databases.

Genome annotation

Methods of ab initio-based, homologue-based and RNA-
seq-based were used to predict gene structures, namely.
EVM vl1.1.1 [35] software was used to integrate the pre-
dicted genes and generate a consensus gene set. Then,
GENSCAN v1.0 [36], Augustus v2.4 [37], GlimmerHMM
v3.0.4 [38], GenelD v1.4 [39] and SNAP v4.0 [40] were
first used to perform the ab initio prediction. For
homologue prediction, GeMoMa v1.3.1 [41] was used,
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primarily employing five species as references, i.e., G.
gallus, Meleagris gallopavo, Taeniopygia guttata, Fice-
dula albicollis and Parus major. Third, whole-
transcriptomic data from the liver and an equal mix of
five tissue RNA samples were used to assist genome an-
notations. HISAT v2.0.4 and StringTie v1.2.3 [42] were
used for assembly based on RNA-seq reference data, and
TransDecoder v5.0.1 [43] and GeneMarkS-T v5.1 [44]
were applied to predict genes. PASA v2.0.2 [45] was
used to predict unigene sequences assembled based on
the whole transcriptome data without references. Finally,
EVMvl1.1.1 [35] was used to integrate the prediction re-
sults obtained by the above three methods, and PASA
v2.0.2 [45] was used to predict alternative splice variants.

Software including LTR-FINDERv1.05 [46], MITE-
Hunter v2011-11 [47], RepeatScout v1.05 [48] and PILE
R-DF v2.4 [49] was used for prediction of repetitive se-
quences in the L. relictus genome. A combination of
structure-based and de novo strategies was used to con-
struct repeat databases and then merged with Repbase
[50] to form a final database. RepeatMasker v4.0.6 [51]
was used to identify repeat sequences with this final re-
peat database.

Using the Rfam [52] and miRbase [53] databases as
references, rRNA and microRNA were identified by In-
fernal v1.1 [54]. The tRNA was predicted using
tRNAscan-SE v1.3.1 [55]. GenBlastA v1.0.4 [56] was
used to search homologous gene sequences on the gen-
ome whose gene loci had been shielded. Pseudogenes
were then identified via GeneWise v2.4.1 [57] with pre-
mature stop codons and frame shifts.

To assign gene functions in the L. relictus genome, we
aligned the genes to five functional databases using
BLASTv2.2.3 [58] (E-value = 1le-5). The databases in-
cluded GO, KEGG, KOG, TrEMBL and NR.

Phylogenetic analyses

We used the whole-genome sequence of L. relictus and
11 published whole-genome sequences of Charadrii-
formes species (Arenaria interpres, Charadrius vocifer-
ous,  Chroicocephalus  maculipennis,  Ibidorhyncha
struthersii, L. smithsonianus, Nycticryphes semicollaris,
Phaetusa simplex, P. socialis, R. tridactyla, Rynchops
niger and Stercorarius parasiticus). Orthofinder v2.4
(diamond, e =0.001) was used to cluster gene families
[59]. To assign gene functions of species-specific
orthogroups, we aligned the genes to GO and KEGG
functional databases using clusterProfile v3.14.0 [60].

A total of 4902 single-copy orthologues were identi-
fied, with protein sequences used for constructing phylo-
genetic trees. The protein sequences were aligned using
MAFFT v7.205 (--localpair --maxiterate 1000) [61], with
PAL2NAL v14 transferred protein alignment results into
codon sequences [62]. Gblocks v0.91b (-b5 =h) [63] was
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used to remove the regions with poor alignments, and
then concatenated into a combined dataset (super gene).
ModelFinder was used to obtain the best model of
GTR + F + [ + G4 [64]. phylogenetic tree was constructed
using the maximum likelihood (ML) algorithm with the
JTT amino acid substitution model implemented in 1Q-
TREE v1.6.11 (bootstrap 1000) [65]. P. socialis was se-
lected as outgroup.

Divergence times and ages of fossil records were de-
rived from TimeTree (https://www.timetree.org/) and
applied as the time control, ie., 63.3-75.4 Mya of P.
socialis-S. parasiticus, 59—80 Mya of L. smithsonianus-N.
semicollaris, and 3.3-25.7 Mya of L. smithsonianus-R.
tridactyla. Based on the results of phylogenetic tree, di-
vergence time was estimated using the MCMCTree pro-
gram in PAML v4.9i with model JC69 and correlated
molecular clock. The consistency of the two repeated
calculations was 1, and iteration parameters of a Markov
chain: -burnin 5,000,000 -sampfreq 30 -nsample 5,000,
000 [66]. MCMCTreeR v1.1 was used for graphical
presentation.

In addition, the CodeML program in PAML v4.9i [66]
included single-copy genes (F3x4 model of codon fre-
quencies) was used to detect positively selected genes in
the clade containing L. relictus, L. smithsonianus, C.
maculipennis, R. tridactyla and P. simplex. Among them,
the branch-site model was used, and likelihood ratio
tests (LRTs) were calculated (P < 0.01) between Model A
(foreground clade > 1) and null Model (any sites for-
bidden w >1). Posterior probability was calculated in
Bayes empirical Bayes method (BEB).

PSMC analyses

Consensus sequences of an individual re-sequencing
(average depth: 29X; coverage ratio 10X: 92.44%) were
called (SNP calling) using SAMtools v1.12, then con-
verted into the fastq format using BCFtools v1.10 and
Vcfutils (varFilter -D100 > var.flt.vcf). Bases of low se-
quencing depth (less than a third of the average depth)
or high depth (twice the average depth) were masked.
Sequences were split into short segments of 50 kb to es-
timate the demographic history with the Hidden Markov
Model (HMM) model in PSMC v4.0.22 following param-
eters of -N25 -t15 -r5 -b -p (4 +25x 2 +4 +6) [67]. The
generation time (g=2.5) and mutation rates per year
(u=5x10"%) were used. One hundred bootstraps were
performed.
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