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Abstract

The past years have seen the rise of genomic biobanks and mega-scale meta-analysis of genomic data, which
promises to reveal the genetic underpinnings of health and disease. However, the over-representation of Europeans
in genomic studies not only limits the global understanding of disease risk but also inhibits viable research into the
genomic differences between carriers and patients. Whilst the community has agreed that more diverse samples
are required, it is not enough to blindly increase diversity; the diversity must be quantified, compared and
annotated to lead to insight. Genetic annotations from separate biobanks need to be comparable and computable
and to operate without access to raw data due to privacy concerns. Comparability is key both for regular research
and to allow international comparison in response to pandemics. Here, we evaluate the appropriateness of the
most common genomic tools used to depict population structure in a standardized and comparable manner. The
end goal is to reduce the effects of confounding and learn from genuine variation in genetic effects on
phenotypes across populations, which will improve the value of biobanks (locally and internationally), increase the
accuracy of association analyses and inform developmental efforts.

Keywords: Bioinformatics, Population structure, Population stratification bias, Genomic medicine, Biobanks

Background

Association studies aim to detect whether genetic vari-
ants found in different individuals are associated with a
trait or disease of interest, by comparing the DNA of in-
dividuals that vary in relation to the phenotypes [1]. For
example, the major-histocompatibility-complex antigen
loci are the prototypical candidates that modulate the
genetic susceptibility to infectious diseases. As a result,
association studies aim to identify which loci may pro-
vide valuable information for strategising prevention,
treatment, vaccination and clinical approaches [2]. Such
cardinal questions striking the core differences between
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individuals, families, communities and populations, ne-
cessitated genomic biobanks.

The completion of the human genome allowed gen-
omic biobanks to be envisioned. The International Hap-
Map Project, practically the first international biobank
[3], facilitated the routine collection of data for genome-
wide association studies (GWAS) [4]. GWAS to improve
clarity soon after became the leading genetic tool for
phenotype-genotype investigations. Over time, GWAS
have been used to identify associations between thou-
sands of variants for a wide variety of traits and diseases,
with mixed results. GWAS drew much criticism con-
cerning their validity, error rate, interpretation, applica-
tion, biological causation [5] and replication [6]. Since
much of this criticism was due to spurious associations
yielded from small sample sizes with reduced power of
association analyses, major efforts were taken to recruit
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tens of thousands of participants into studies where their
biological data and prognosis were collected. These col-
lections served as the basis for what is considered today
as a (genomic) biobank [7].

Today, biobanks are known as massive scale datasets
containing many hundreds of thousands of participants
from specified populations. Biobanks have brought enor-
mous power to association studies. Although it was un-
clear whether these new databases would deliver their
most ambitious promises, the potential of biobanks in
enabling personalised treatment was noted before the
technology matured. It was initially expected that these
databases would lead to the rapid discovery of a better
genetic understanding of complex disorders, allowing for
personalised treatments [8]. However, it is now clear
that this expectation was exaggerated [8]. For example, a
comprehensive review of the genomics of hypertension
on its way to personalised medicine concluded that des-
pite the wealth of identified genomic signals, actionable
results are lacking [9]. No new drugs for the treatment
of hypertension were approved for more than two de-
cades. Moreover, the tailoring of therapy to each patient
has not progressed beyond considering self-reported Af-
rican ancestry and serum renin levels [9]. Another ex-
ample is autism, the most extensively studied (40 years)
and heavily funded ($2.4B in NIH funding over the past
ten years [10]) mental disorder with nearly three dozen
biobanks [11]. Despite these major efforts at understand-
ing the disorder, there is still no single genetic test for
autism, not to mention genetic treatment [12]. These
gloomy reports of the state of knowledge in two of the
most studied complex disorders, which typically harness
massive biobanks, were not what the biobank enthusiasts
envisioned at the beginning of the century [8].

Back then, both private and government-sponsored
banks began amassing tissues and data. For example,
Generation Scotland [13] includes DNA, tissues and
phenotypic information from nearly 30,000 Scots [14];
the 100,000 Genomes Project sequenced the genomes of
over 100,000 NHS patients with rare diseases, aiming to
understand the aetiology of their conditions from their
genomic data [15]; and the UK Biobank project se-
quenced the complete genomes of over half a million in-
dividuals [16] with the aim of improving the prevention,
diagnosis and treatment of a wide range of diseases [17].
Pending projects include the Genome Russia Project,
which aims to fill the gap in the mapping of human pop-
ulations by providing the whole-genome sequences of
some 3000 people, from a variety of regions of Russia
[18]. Biobanks are not without controversy. In Iceland,
deCODE genetics has created the world’s most extensive
and comprehensive population data collection on ge-
nealogy, genotypes and phenotypes of a single popula-
tion. However, the economic value of the genomic data
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remained largely inaccessible, and the company filed for
bankruptcy [19]. The experience of deCODE highlighted
the risks in entrusting private companies to manage gen-
omic databases, promoting similar efforts to have at least
partial government control in the dozens of newly
founded biobanks (reviewed in [20]), as illustrated in
Fig. 1. Moreover, as the use of biobanks is expanding be-
yond their locality, for example, in the case of rare con-
ditions where samples need to be pooled from multiple
biobanks, the view of biobanks should be changed from
locally-managed resources to more global resources.
These should adhere to international standards to in-
crease the accuracy of association studies and the use of
biobanks [21].

Even past the formation of biobanks, many associa-
tions results failed to replicate (e.g., [22]) or show a dif-
ference in the effect across worldwide populations, in
traits and disorders like body-mass index (BMI) [23],
schizophrenia [24], hypertension [25] and Parkinsons’
disease [26]. Although strong associations between gen-
etic variants and a phenotype typically replicated within
the population that was studied, they may not have been
replicated elsewhere. This leads naturally to further
questioning the value and cost-effectiveness of associ-
ation studies and biobanks [27] — what do the associa-
tions mean, and what are they useful for? How can we
decide whether the association is relevant for different
individuals, particularly those of mixed origins or those
who may not know their origins? What are the consider-
ations when designing a new biobank or merging data
from multiple biobanks?

We argue that understanding population structure is a
key component to answering these questions and con-
tributing to the usefulness of biobanks and their ability
to serve the general population [28-30]. In the following,
we review the current state of knowledge on the import-
ance of population structure to association studies and
biobanks and the implications to downstream analyses.
We then review biobank relevant models that describe
population structure. We end with the challenges and
benefits of the tools that implement these models.

Main text

Population diversity

Human genetic variation is a significant contributor to
phenotypic variation among individuals and populations,
with single-nucleotide polymorphisms (SNPs) being the
most common form of genetic variation. Of the entire
human genomic variation, only a paucity (12%) is be-
tween continental populations and even less genetic
variation (1%) is between intra-continental populations
[31]. In other words, a relatively small group of SNPs are
geographically differentiated, whilst a much larger group
of SNPs vary among individuals, irrespective of
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geography. However, most of these variants are rare and
non-functional [32]. Both common and functional vari-
ants are strong predictors of geography, phenotypes and
cultural practices that may be linked with the risk for a
disease. Thereby, geographical and ancestral origins can
not only inform us of what risk of disease an individual
has, but also modify the effect of treatment [30]. In gen-
eral, and with the clear exception for high admixture or
migration followed by relative isolation [33-35], most
associations between geographic location and genetic
similarity are expected to hold worldwide (e.g., [36]).
This is due to the exchange of genes and migrants be-
tween geographically proximate populations (e.g., [37—
41]). These relationships are also expected to hold for
common and rare variants [42]. The geographic differen-
tiation between populations underlies their genetic vari-
ation or population structure, and studies in the field
aim to analyse, describe or account for the genetic vari-
ation in time and space, within and among populations.
Unfortunately, worldwide diversity is widely misrepre-
sented in GWAS studies [43]. By 2009, 96% of individ-
uals represented in GWAS were of European descent
[44]. This over-representation was rationalised by the
interest to focus on ancestrally “homogenous” popula-
tions to avoid population stratification bias, i.e., system-
atic ancestry differences due to different allele
frequencies in the studied cohorts that produced false
positives [45]. Consequent efforts to carry out studies on

non-Europeans were met with some success; by 2016,
the proportion of Europeans included in GWAS de-
clined to 81% [46] and further to 78% in 2019 [43].
However, even then, 71.8% of GWAS individuals are re-
cruited from only three countries: the US, UK and
Iceland [47].

Not all major genetic datasets are equally diverse, and
most are skewed towards individuals of European ances-
try (Fig. 2). For example, 61% of the samples in the Ex-
ome Aggregation Consortium (ExAC) dataset (60,252
individuals) [48], 59% of the Genome Aggregation Data-
base (gnomAD) (141,456 individuals) [49], 94% of the
UK Biobank database (500,000 individuals) [16] and an
estimated 97.6% of the deCODE database are Europeans
[50]. The UK Biobank was designed to be representative
of the general population of the United Kingdom; how-
ever, that makeup is only 85% “White” [51]. Such mis-
representation of the global population structure has a
detrimental impact on genomic medicine studies in Eng-
land and international studies that rely on their results
for several reasons: firstly, they promote a simplified
view of “Europeans” as “homogeneous” [36]; secondly,
ignorance of the global population structure prevents
properly correcting the studies for stratification bias;
and thirdly, the unequal representation of diversity
within major genetic datasets increases the risk for false
positives, due to chance or undetected population struc-
ture, and current methods to attempt to correct this
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categorised into five ancestry groups: European, South Asian, African, East Asian and Latin (https://www.nature.com/articles/nature15393; http://

was defined as European (93% Icelandic and 3.1% Polish) [50]

exac.broadinstitute.org/faq; https://gnomad.broadinstitute.org/faq). The deCODE database has been circled in (a) and excluded in (b) because,
when contacted, deCODE genetics were unable to disclose any information regarding the ancestry or number of samples; however, it can
assumed that the database is roughly 97.6% European based on the finding of the recent consensus where 97.6% of the Icelandic population

underlying population structure are inadequate [23].
These limitations were highlighted during the COVID-
19 pandemic, as the UK biobank data were shared inter-
nationally [52] to improve the response to the virus and
protect the public represented in the biobank.
Population stratification may bias GWAS through two
routes: the choice of the cohort and association analysis. Cur-
rently, individuals are matched and grouped mainly using
self-reported “race” rather than genomic ancestry. This cri-
terion is believed to account for the participants’ genetic
background and supposedly allow controlling for population
genetic structure (e.g., [53, 54]). A numerical example of how
a false positive association can be created due to population
stratification is demonstrated by Hellwege et al. [55].
However, grouping based on demographics alone does
not account for differences in genetic ancestry between
individuals, which leads to biased interpretation of the
results or false negative or positive results [30, 56—59].

Genomic medicine and diversity

Personalised medicine is thought of as the utilisation of
epidemiological knowledge to produce a granular clas-
sification of patients into cohorts. These cohorts differ

in their disease susceptibility, disease prognosis or re-
sponse to treatment. It is considered the epitome of
twenty-first century medicine [60]. To facilitate the
accurate identification and classification of individuals
into cohorts, it is necessary to consider their ge-
nomes, which lends credence to the development of
genomic medicine and its aspired derivation, persona-
lised genomic medicine.

Genomic medicine seeks to deploy the insights that the
genetic revolution has brought about in medical practice
[61]. The ability to predict individual risk of disease de-
velopment, guide intervention and direct the treatment
are the core principles of genomic medicine [62]. Most
applications outside of simple Mendelian diseases start
by considering known associations and testing for them
in the sequence of the patient. Harnessing the know-
ledge gained from a small fraction of patients into the
routine care of new patients has the potential to expand
diagnoses outside of rare diseases, determine optimal
drug therapy and effectiveness through targeted treat-
ment, and allow for a more accurate prediction of an in-
dividual’s susceptibility to disease — the pillars of the
genomic medicine vision [63].
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Personalised genomic medicine aims to tailor a treat-
ment to an individuals’ genetic needs. This is expected
to revolutionise disease treatment by using targeted ther-
apy and treatment tailored to the individual to achieve
the most effective outcome [64], as illustrated in Fig. 3.
This form of genomic medicine was made feasible due
to advances in computational biotechnology and its im-
plementation into the health care system [65], illustrated
in Fig. 4, alongside biological advancements that include
the mapping of human genetic variation across the
world through parallel global efforts [66]. However, it re-
mains a futuristic vision rather than an everyday reality,
due to the multiple obstacles that genetic studies face in
deciphering complex genotype-phenotype relationships
[67, 68]. One of the notorious difficulties in the field is
the variation among population subgroups, which is often
due to their genomic background [30]. Personalisation to
the ancestral group-level is a more realistic short-term
goal, yet being well-represented in genomic datasets is the
exception rather than the rule. For example, an individual
of Aramean ancestry living in the UK would be matched
to only a handful of individuals in the UK Biobank. Simi-
larly, individuals from Transcaucasia may be considered
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either “Europeans” or “Asians” and poorly represented by
either, as their populations resemble an older admixture
between these continental groups [36, 69]. The develop-
ment of personalised medicine is, therefore, an area par-
ticularly affected by a lack of diversity in biobanks.

Current biobank standards representing genetic variation
Accounting for population differences requires a reliable
and global population structure model. Regrettably, des-
pite the vast amount of genetic data currently available,
no unified population structure model has been devel-
oped. Instead, population genetic studies typically de-
scribe variation in the data they study, sometimes with
respect to related populations defined in a rudimentary
way, for example, using the 14 (or even just the original
four) HapMap populations [70] or 26 of the 1000 Ge-
nomes populations [42]. Unsurprisingly, without a
model, correcting for population stratification remains
strenuous.

Many association studies ignore population stratifica-
tion or implicitly assume its redundancy if the data were
collected from continental groups (e.g., [71]). Groups are
assigned either by self-identified ancestry or inferred by

Fig. 3 Using the example of COVID-19: a The current method of treatment whereby all patients with the same disease receive the same
treatment. b Personalised medicine, whereby treatment is tailored to an individual to increase effectiveness
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comparison to the HapMap or 1000 Genomes popula-
tions, and each cluster is analysed independently (e.g.,
[71]). This approach does not account for the existence
of fine-scale structure [23] and cannot be applied to
more admixed populations, which is important where
recent massive migrations have occurred, such as in the
Americas.

PCs and GRMs

Currently, “global correction” of such populations using
either Principal Components Analysis (PCA see Supple-
mentary Text S1, e.g., [72]) and/or mixed linear models
(MLM, Supplementary Text S1, e.g. [73]) start with the
Genetic Relatedness Matrix (GRM, Supplementary Text
S1) [74] as the de-facto standard used to describe ances-
try of large-scale genetic datasets. PCA aims to correct
for the largest variation components of the GRM, whilst
MLM aims to correct for the whole matrix, accounting
for recently related individuals.

These tools view the genome as a set of independ-
ent loci whose effect can be simply added up. Unfor-
tunately, depending on sampling and genetic drift,
this can yield spurious results [58, 75-77] including
representing individuals with two ancestrally different
parents as similar to populations that resemble this
mixture. For example, an individual with one

European and one Asian parent may be incorrectly la-
belled as a Middle Eastern individual [58].

Both PCA and MLMs are used for meta-analyses of a
large number of independent studies (e.g., BMI [78]). Meta-
analysis demonstrates replication of effects of genetic risk
loci and hence minimises individual cohort bias. However,
the effect size estimate of meta-analysis is the averaged ef-
fect of the SNP on outcomes across several populations.
The assumption that the effects of an SNP are equal across
populations with different allele frequencies is unlikely to
hold for three main reasons. Firstly, many SNPs identified
in GWAS are not causal variants, but rather are in linkage
disequilibrium (LD) with one or more causal variants, and
LD patterns differ between populations [79]. Secondly,
gene-environment interactions [80] may contribute to the
overall effect of an SNP and these may differ by population
(for example, in BMI and exercise, [81]). Thirdly, statistical
artifacts can arise from differential correction power for
stratification across studies [23]. The resulting bias is prob-
lematic because many downstream applications use sum-
mary statistics from GWAS and do not access the original
dataset.

Implications of population structure

Detecting associations between genotypes and pheno-
types is only the beginning of the process. Different
applications are, to various degrees, affected by a bias
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in the estimates of an effect, which is typically sub-
jected to the very large variance for all but the stron-
gest associations.

Causal analysis using Mendelian randomisation

First outlined by Katan [82] and further developed by
Davey-Smith and Ebrahim, [83], Mendelian Randomisa-
tion (MR) is a statistical approach in which genetic vari-
ants associated with an exposure of interest are used to
examine the causal effect of said exposure on the dis-
ease. Because genotype is assigned at conception and
common genetic variants are typically not associated
with other lifestyle factors, these variants can be used as
“instruments” for causal inference, limiting the problems
of confounding and reversing causality that otherwise
plagues observational epidemiology. MR may, therefore,
offer an affordable and faster alternative to traditional
RCTs [84, 85]. However, MR assumes that there is no
confounding between the genetic polymorphism (which
is a proxy for the exposure) and the disease outcome. If
population stratification occurs due to mismatched an-
cestries, then this assumption will be violated, and any
estimates will be biased. For instance, common genetic
polymorphism in the CHRNA5-A3-B4 gene cluster that
is related to nicotine dependence is often used as an in-
strument for tobacco smoke exposure. Assume that two
alleles, A and C, exist at this polymorphic site, with
those carrying the A allele exhibiting a tendency to
smoke more cigarettes. Europeans without cryptic Afri-
can/East Asian ancestry are unlikely to have the A allele
regardless of their smoking practices, which may bias
the MR study if ancestry is not properly accounted for
in the study design. Within single studies where re-
searchers have access to individual-level data, ancestry
may be accounted for, to some extent, by adjusting for
principal components. However, MR requires very large
sample sizes, which necessitates collaboration across
studies and meta-analysis, which may introduce genetic
heterogeneity. MR’s susceptibility to population stratifi-
cation is a well-recognised bias [86, 87] in case-control
pharmacogenetics studies where differences in ancestry
affect the results (e.g., weekly warfarin dose required to
maintain a therapeutic effect varies by ancestry, likely
due to genetic variation). Other MR limitations include
a reliance on large GWAS, horizontal pleiotropy, and
canalisation [88].

Two-sample Mendelian Randomisation (MR), in which
the SNP-exposure association is estimated in one study
and the SNP-outcome association is estimated in an-
other, is important because it allows sharable summary
statistics to be used for causal inference. Often one or
both associations are determined using summary statis-
tics and the researcher does not access the primary data
[89]. Importantly, summary statistics are usually meta-
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analysed to determine an “average” SNP-exposure esti-
mate across studies, and similarly, further studies are
meta-analysed to determine the SNP-outcome estimate.
Whilst in one step MR, there is an assumption that the
effect of the SNP on the outcome and the effect of the
SNP on the exposure is uniform across the populations
included in any meta-analyses, two-sample MR makes a
further assumption that the population in which the
SNP-exposure estimate is determined is representative
of the population in which the SNP-outcome association
is determined (or that any differences are negligible).
This assumption is questionable when combining an ex-
posure GWAS from Han Chinese and an outcome
GWAS from a Caucasian population, from which MR
may produce biased results [90, 91]. Even the induced
bias of using two different Caucasian populations (e.g.,
an exposure GWAS in a Scandinavian population and
an outcome measured in a southern England population)
is largely unknown. That bias would be most severe for
rare conditions and small cohorts that include diverse
individuals.

Recently, MR studies using a two-sample approach
[92] have been automated using online platforms [93].
In an analysis that is limited to summary data (e.g., [71]),
population stratification bias is difficult to identify, and
the analysis is often run without adjustment for possible
population differences. Sometimes the homogeneity of
the dataset is assumed due to the continental affiliation
of the cohort (e.g., [71, 94] analysed third-party sum-
mary statistics calculated for “Europeans”). LD score re-
gression [95] can estimate the sample overlap between
summary statistics, but this is reliant on relatively large
samples and often not used in MR pipelines. MR as-
sumptions and their consequent estimates would un-
doubtedly be more trustworthy if the underlying GWAS
estimates were more universal and less population
specific.

Polygenic scores

Similar concerns were raised by multiple groups con-
cerning polygenic scores. Sohail et al. [96] reported that
polygenic adaptation signals based on large numbers of
SNPs below genome-wide significance were found to be
extremely sensitive to bias due to uncorrected popula-
tion stratification. Berg et al. [97] analysed the UK Bio-
bank and showed that previously reported signals of
selection were strongly attenuated or absent and were
due to population stratification. Both papers found that
methods for correcting for population stratification in
GWAS were not always sufficient for polygenic trait ana-
lyses and doubted the strength of the conclusions based
on polygenic. Both papers, therefore, advised caution in
their interpretation. Further concerns about polygenetic
scores were raised by other groups [98—100].
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Drug discovery

GWAS are also used to identify druggable target genes
[101]. Whilst it is not essential that the effect sizes are
large, they must be associated with an underlying bio-
logical pathway [102]. There may be several reasons that
limit the utilities of biobanks to identify drug targets, i.e.,
an association between a trait and genomic variant, like
differences in lifestyle between populations, genetic in-
teractions and genetic linkage. Since genetic variation is
partly geographically differentiated, the frequencies of
certain disease-causing genetic variants and variants in
drug-metabolising genes may differ based on geographic
location, leading to geographic disparities in the suscep-
tibility of an individual to a disease and/or specific drug
treatment [103-106]. As a result, the power to detect
these unintended associations with a trait of interest is
expected to grow with biobank size; therefore, correcting
for population stratification will aid in the reduction of
false-positive drug target leads. For pharmacogenetics to
propel the practice of individualised drug therapy to be-
come the standard of care [107], accurate genetic pro-
files should be constructed [30, 108] and genetic tools
must be developed and verified toaccount for confound-
ing effects using DNA sequencing analyses.

Models for population structure

There are two cases to consider for modelling population
structure: when the individual data for all populations are
available and when they are not. With access to the indi-
vidual data, a wide range of options exist, which can be
broadly split again to within-dataset and cross-dataset
analysis. Within-dataset analysis for biobanks must scale
to hundreds of thousands of samples though need not nat-
urally be comparable. Cross-dataset analyses would typic-
ally reference standard datasets, creating a comparable
statistic for each individual. Depending on the usage, these
references may not themselves be biobank scales. Meta-
analysis using summary statistics resembles a cross-
dataset analysis, with the further requirement of the cre-
ation of sharable summary statistics that remains mean-
ingful without individual-level data.

This section summarises the current state of these
methods, whilst the Usage section describes the chal-
lenges and benefits of the various tools that are available
for each function.

Describing genetic variation within a single dataset
Markers for ancestry

Genomic ancestry inference may employ specialized
markers, such as ancestry informative markers (AIMs),
which have significant differences in allele frequencies
between populations. For instance, the T allele of the
SNP rs316598 is very rare in Africans (3.3%) but com-
mon elsewhere and can, thereby, be used to differentiate

Page 8 of 19

Africans from non-Africans. AIMs, combined with other
methods, can thereby be used to identify the origins of
samples, provided that the genomes of worldwide refer-
ence populations are available [36, 58, 109].

One key advantage in using such markers to intensify
the ancestry information, which can lead to its identifi-
cation using downstream tools, is that frequencies of a
particular dataset are sometimes already available as
summary statistics. If frequency information has been
released, then useful ancestry summaries can be ex-
tracted. However, to perform such an analysis in practice
requires a global model to combine data together and
form a meaningful and comparable report on ancestry
for each dataset. This will typically require an examin-
ation of the methods to follow.

Low dimensional representations

PCA aims to reduce the dimensionality of the SNP dataset
by reducing the genetic markers into principal compo-
nents (PCs) [72, 110]. For population genetic inference,
the results are hard to interpret, as the PCs do not mean
anything intrinsically and often require more than two di-
mensions to correctly visualise [75]. Importantly, popula-
tion structure is not always in the top PCs, especially
under uneven sampling or genetic drift [58, 76]. However,
it is fast to compute, which contributed to the popularity
of PCA as a method of first choice. The results of PCA
strongly depend on the choice of markers and samples,
and interpretation is subjective without an actual measure
of “close to” or “cluster with.” Since it has been suggested
that PCs portray some geographic similarity within Eur-
ope [111], modified methods have been proposed, albeit
with limited success. The Spatial admixture analysis
(SPA) [112], for example, had a biogeographical prediction
accuracy of 2% at the country level [36]. These methods
cannot be readily applied to biobank-style data as they
don’t scale [75].

Unfortunately, PCA results may not be reliable, robust,
or replicable as the field assumes [75]. Given enough
samples having been carefully chosen, it may be tweaked
to form patterns that exhibit similarity to geography
(e.g., over 100 K carefully chosen samples identified sev-
eral broad regions in the UK (Fig. 1 in [113]). There are
alternative and complementary approaches that require
consideration.

Identity-by-state (IBS) and the Genetic relatedness matrix
(GRM)

Identity-by-state (IBS) is often used to represent popula-
tion structure and further represents relatedness (see
below). IBS is the proportion of SNPs that are shared be-
tween each pair of individuals and therefore forms an N
by N matrix of genetic similarity. Similarly, the associ-
ation literature uses the “Genetic Relatedness Matrix”
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(GRM) [74], in which SNPs are centred by their fre-
quency and weighted by their variance. The GRM is an
important tool in mixed linear models that jointly ad-
dress population structure and relatedness, perhaps the
most common tools being GCTA [114] and GTAK
[115]. The GRM can be shown to contain the same in-
formation as used by both admixture models and PCA
(e.g., [116] supplementary material). The advantage of
correcting for the complete matrix (rather than the low-
rank approximation used in PCA) is that it retains the
relatedness information. Otherwise, these procedures are
asymptotically equivalent. Fast implementations exist,
such as Bolt-LMM [117], but these may implicitly dem-
onstrate the low-rank structure and hence lower correc-
tion power. Implementations like LMM-OPS [118]
attempt to correct increased type-I error rates and a loss
of power due to heterogeneous ancestry.

Ancestry as a mixture

Admixture or admixture-like analyses originated in the
popular program STRUCTURE [119, 120]. Here, the an-
cestry of each individual is modelled as a proportion of
K admixture components, which are learned automatic-
ally, and represent “historical populations” in the model.
Whilst computation was historically a concern, fast
enough implementations now exist (e.g., faststructure
[121] and terrastructure [122]). However, the ancestral
interpretation is often misleading [123], since sampling
and genetic drift can also create the same representation
for different true histories. Further, the choice of
“proper” K is unclear [123, 124] and can have significant
effects on the inference. Conceptually, ADMIXTURE
uses the same information as PCA [116] and hence suf-
fers from the same limitations [75].

Sibship, kinship and clanship via identity by descent

Since related individuals do not represent statistically in-
dependent samples and may lead to false-positive associa-
tions, association analyses containing related individuals
require special care [125, 126]. The degree of relatedness
is different between individuals and ranges between the
largely known sibship, the often-known kinship, and the
typically unknown clanship. Relatedness can be identified
from DNA, as it is inherited in segments from one’s an-
cestors, whereby long segments are shared between more
recently related individuals. This inheritance pattern is
used to define genetic regions for two pairs of individuals
that are identical by descent (IBD).

The difficulty in estimating relatedness increases as
the relationship becomes more distant because the IBD
DNA segments between individuals are shorter and
more difficult to distinguish from DNA segments that
are IBS. Typically, all the IBD segments that are more
recent than a chosen (average) age of the pairwise
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relationship are sought by thresholding the lengths of
segments.

Alone, IBD is not a measure of ancestry, though its re-
sults can be summarised into a Kinship matrix analogously
to the GRM. Kinship is the probability that two homolo-
gous alleles drawn from each of two individuals are IBD
[127, 128]. The value of IBD for detecting associations in
biobanks has not been explored, likely due to the complex-
ity of the calculation (N by N analyses), which is time-
consuming. One possibility is to create an unbiased random
sample of genes and traits by sampling only one version of
each IBD tract since the two copies are clearly dependent.
Other possibilities are to treat long IBD as a sparse prop-
erty, reducing the need to generate a full pairwise matrix.

Haplotypes

IBD matches may overlap and may ignore some parts of
the genome entirely. An alternative approach is to iden-
tify the closest relative for every individual at each pos-
ition on the genome. This is the approach taken in
Chromosome Painting [116], which allows the identifica-
tion of fine-scale population structure beyond the detec-
tion limit of related approaches [129]. Chromosome
Painting is applicable for samples up to thousands but
cannot be used at biobank scale [130] because of the
same problem of producing an N by N matrix. Consider-
ing large matrices of pairwise haplotype information
(throughout the genome) is not trivial and remains a
challenge for biobanks.

Local ancestry

The purpose of Local Ancestry Inference (LAI) is to ana-
lyse individual segments of DNA to establish changes in
ancestral origin. Being able to assign an SNP as having
originated in a particular ancestry, association testing
can, in principle, be carried out in each ancestry as if it
were a single sample population.

Conceptually, such methods examine a stretch of DNA
and use a model related to the mixture approaches to iden-
tify the source population. The approaches vary in how ap-
propriate stretches of DNA are defined and how they are
matched to the sources. Many approaches use a Hidden
Markov Model (HMM), which is strongly related to
Chromosome Painting to assign genomic segments to spe-
cified reference populations by exploiting LD

Current implementations may scale to the thousands
(see Usage) but are limited in scale for learning popula-
tion structure and are likely to only form a part of a bio-
bank population model when describing external
populations. Additionally, the biological parameters
needed (e.g., genetic maps, recombination and mutation
rate, average ancestry coefficients and average number
of generations since admixture) may be unknown and
are difficult to learn [131]. A considerable effort for
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biobanks would be required to store, report and use the
per-SNP ancestry information returned.

Describing genetic variation with an external reference
Markers for ancestry and projecting PCs

The use of AIMs to represent genetic diversity within a
biobank is not well developed. Because AIMs themselves
are indicative, but not diagnostic, of a particular popula-
tion and are a biased sample of the genome (towards an-
cestry), it is hard to arrive at an ancestry mixture or
other measure of structure. However, with efforts in cali-
bration for external datasets, the information required to
assess large-scale structures is clearly present in AIMs,
which are standard in all commercial microarrays [132].

It is straightforward to project an individual into the gen-
etic variation of a reference dataset when the reference is de-
scribed by Principal Components. Associated with each SNP
and PC is a weighting, and these must simply be summed.
This approach is common in the study of ancient popula-
tions, which, due to the high missingness of their data, are
often described in terms of modern variation [133].

This has not been performed for biobanks because
they contain large variations. However, as discussed
above, a meta-analysis of many small populations leads
to incomplete correction for stratification. Since there is
no standard reference, the results of the projection
would also be dependent on the choice of the reference
populations. Thereby, they can be easily manipulated
and are not comparable across studies [75].

Mixtures of known populations

The ancestry models described above can all be structured
to allow comparison of a sample dataset with respect to a
reference dataset. ADMIXTURE [134] is the most popular
tool to make “supervised” inferences in this way.

When an individual receives ancestry from different
sources, they inherit SNPs and haplotypes in propor-
tion to their ancestry from each source. Therefore,
significant power can be obtained by considering not
only SNPs but also haplotypes, quantified either by
IBD, Chromosome Painting, or some other technique.
These methods describe kinship or haplotype sharing
with the reference. This, in turn, can be used to learn
an individual’s ancestry mixture, which is routinely
done, for example, via Non-Negative Least Squares
(NNLS) [135, 136] or SOURCEFIND [137]. Because
the computational cost of these approaches is linear
in the size of the target dataset, they can be used at
the biobank scale. However, the value of the resulting
mixture has yet to be established.

Gene pool models
Frequently, we do not have samples from the underlying
ancestral components that led to modern populations.
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“Gene pool” models allow inferred putative ancestral
populations to be used in place of fixed reference popula-
tions. Ancestral populations are first generated from
the allele frequencies of a worldwide panel of individ-
uals that correspond to chosen K splits, produced by
ADMIXTURE or alike program. These “populations”
correspond to the putative ancestral populations of all
individuals in the dataset. The advantage of creating
these populations from a diverse panel of global indi-
viduals is that they can be used as a reference to
infer the admixture components (e.g., through a su-
pervised ADMIXTURE) of other individuals without
changing the model. The admixture components can
be used to correct for population stratification [58] in
the same manner as principal components are used,
accepting that they model admixture directly, whereas
PCA does not. This approach, first employed for bio-
geography [36], has been routinely used in population
genetic investigations and was shown to be applicable
to both modern and ancient populations [34, 138,
139]. Despite its promise, it is yet to be implemented
in biobanks; the barriers resemble those of Mixture
Models in that a “correct” set of gene pools is hard
to establish.

Local ancestry models

A local ancestry model can be defined by constructing a
reference dataset and applying the local ancestry models
to identify ancestry structures within the reference.
These approaches have not been widely applied to bio-
banks in the past due to issues of scale. However, as with
the genome-wide haplotype approaches, local ancestry
can be learned at scale — efficient approaches scale
linearly in the biobank size.

Local genomic ancestry tools are typically used to in-
vestigate ancestry on a granular scale, which is necessary
when analysing highly admixed individuals, such as Afri-
can Americans, Latinos or Ashkenazic Jews [33, 42]. The
genomes of these individuals constitute a mosaic of geo-
graphically and genetically distinct ancestral populations,
and local ancestry tools aim to identify the chromosomal
boundaries associated with each ancestral population.

However, the promise of comparing to a standard refer-
ence simultaneously allows the methods to scale suffi-
ciently and allows comparison across datasets. The key
unsolved questions, above those for unlinked methods,
are around value. This approach generates extremely large
datasets of ancestry information potentially at each SNP.
Storing and exploiting such information is a considerable
ongoing challenge. Would a fine-scale representation of
ancestry help understand the distribution of traits? Does it
replace, or complement, the simpler approach of repre-
senting ancestry as a proportion of the genome?
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Usage

Markers for ancestry

AlMs are identified by finding SNPs that are associated
with particular populations or geographic regions. Al-
though many sets of AIMs have been published [109],
they were obtained from a handful of populations and
their specificity was not validated on other populations.
To identify AIMs, it is critical to first assemble a world-
wide panel of populations. The search for AIMs is typic-
ally performed genome-wide. The putative AIMs should
then be evaluated for their specificity and sensitivity in
identifying a fine population structure, ideally using a dif-
ferent panel [140]. Finally, global ancestry tools can aver-
age the ancestry of each contributing population across
the individual’'s AIMs and report the average proportion
contributed by each ancestral or parental population.

Ancestry as a mixture

Global genomic ancestry tools can be categorised as
shown in (Figure S1) (Table S1). Whilst STRUCTURE was
initially the most popular approach, it suffered from sev-
eral disadvantages. First, its accuracy and reliability have
been a source of concern [141, 142]. When the diversity of
the native population is low, STRUCTURE was shown to
produce particularly misleading results [142]. Finally,
STRUCTURE is a notoriously slow tool, which was soon
replaced by dramatically faster implementations.

FRAPPE and ADMIXTURE are based on a similar ap-
proach to STRUCTURE, but both use a maximum likeli-
hood estimation approach to optimise the likelihood for
allele frequencies and group memberships, using slightly
different algorithms. By default, ADMIXTURE uses a
block relaxation algorithm that allows for fast conver-
gence and highly accurate parameter estimates [143] and
has an optional Expectation-Maximisation (EM) algo-
rithm. FRAPPE uses solely the EM algorithm [144],
which optimises the likelihood for both allele frequen-
cies and fractional group memberships [144]. FRAPPE
has been demonstrated to not only be much more com-
putationally efficient than STRUCTURE but also to pro-
duce significantly fewer biased estimates [144]. However,
due to its strict convergence criteria, its EM algorithm is
computationally intensive and slower than ADMIXTURE
[143], which was reported to have higher accuracy than
STRUCTURE and FRAPPE.

Spatial approaches, exemplified by GENELAND [145,
146], TESS [147] and BAPS [148], are conceptually simi-
lar to STRUCTURE but consider geographical coordi-
nates in their prior distributions, allowing identification
of the spatial location of genetic variants between popu-
lations. Therefore, these software not only group individ-
uals genetically into clusters but are also able to estimate
the spatial distribution of these clusters [145-148]. Miti-
gating privacy concerns has the advantage of replacing a
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real location with a genetically induced one. Yet the ap-
proaches are currently rather inaccurate (perhaps due to
population structure being more complex than a simple
mixture). There are also no scalable implementations.
Bayesian clustering models have been known to have
different strengths and weaknesses that depend on the
spatial genetic patterns present and on factors such as
gene flow, dispersal distance and demography. GENELA
ND [145, 146] has been demonstrated to be highly effi-
cient when gene flow is low and genetic discontinuities
correspond to simple shaped boundaries [149-151];
however, it is sensitive to the level of genetic differenti-
ation [152, 153], and its accuracy [150, 154] and speed
in analysing large datasets [145, 146] were criticised. Al-
ternative tools like TESS and BAPS were shown to out-
perform GENELAND and each other under some
scenarios but not in others [145, 146, 148, 154]. Interest-
ingly, Bayesian clustering models are known to overesti-
mate genetic structure in the presence of IBD [151, 155],
which highlights the importance of accounting for other
types of structure in the data such as cryptic relatedness.
Attention should be given to the priors used in Bayesian
analyses and their effect on the final results [156].

Local ancestry and haplotypes

Local ancestry and haplotype tools can be divided into
four categories. Here, we will discuss the four most
popular tools (Figure S2): HAPMIX, ChromoPainter,
LAMP and LAMP-LD (Table S2).

HAPMIX [157] is a popular approach that was limited
to only two source populations and is unsuitable to bio-
banks. The biological parameters that HAPMIX requests
(e.g., genetic maps, recombination and mutation rate,
average ancestry coefficients and the average number of
generations since admixture) are typically unknown
[131]. MOSAIC [158] places an HMM over the haplo-
type estimation performed by ChromoPainter to learn
how frequently haplotypes from different ancestries ap-
pear in unadmixed ancestries. It is, therefore, plausible
to run at biobank scales in principle, though consider-
able effort would be required to report and use the per-
SNP ancestry information returned.

LAMP and LAMP-LD work effectively with three-way
admixture and gain a computational advantage by
ascribing ancestry to pre-defined windows, though nei-
ther scales beyond hundreds of samples or tens of thou-
sands of SNPs [159] and are hence both inapplicable for
biobanks [131].

ChromoPainter is part of the fineSTRUCTURE pipeline
[116], which allows the identification of fine-scale popu-
lation structure that cannot be identified by PCA or re-
lated approaches [129]. Chromosome Painting is
applicable for samples up to thousands but cannot be
used at a biobank scale [130] to examine variation within
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a sample. It can, however, be used to compare large bio-
bank datasets to standardize references. There is an un-
published fast approximation in the PBWT package
[160] that can handle hundreds of thousands of samples
for analysing within-sample variation.

These methods allow characterisation of LAI and gain
power and resolution through analysis of haplotypes.
One typical assumption is that admixture tract lengths
are independent and exponentially differentiated; there-
fore, they are less effective when the admixture is strong
because the admixture tracts are longer than expected
under an exponential distribution [161]. Further, many
require phased data and are therefore susceptible to
phasing errors.

Overall, the popular local ancestry tools are positioned
along the extreme ends of limited models. At one end
are mostly HMM-based tools, that either do not con-
sider LD or are limited to two or three reference popula-
tions. At the other end are more robust tools that aim to
identify haplotypes, but their high memory consumption
limits their usage. An additional limitation of the local
ancestry approach is the challenging evaluation of the
results in follow-up analyses. The local ancestry ap-
proach should be preferred when the loci or region of
interest are known; however, in an exploratory GWA or
MR analyses, it is unclear how to analyse a large number
of segments associated with various ancestral popula-
tions. In this case, grouping the ancestral populations
into geographical regions may be an appropriate com-
promise between accuracy and power considerations.

Sibship, kinship and clanship

Relatedness inference tools exploit different statistical
approaches in analysing IBD segments and identifying
the correct level of relatedness. We will discuss the six
most popular tools: PLINK, KING, fastIBD, GERMLINE,
PC-Relate and REAP (Figure S3) (Table S3).

Kinship can be inferred by kinship coefficient estima-
tion or IBD detection. Kinship coefficient is a classic
measurement of relatedness and can be defined as the
probability that two homologous alleles are drawn from
each of two individuals are identical by descent [127,
128]. Software that estimate the kinship coefficient often
use relatedness estimators to calculate the kinship coeffi-
cient, which falls into two categories based on the
method that they use: likelihood approach to determine
the likelihood of a pair of individuals having a relation-
ships (e.g., half-sibs, full-sibs, etc.) and a relatedness-
based approach to evaluate the probability of IBD [162].

ML estimators mostly use an EM algorithm to esti-
mate the K coefficients (the proportion of genome at
which two individuals share 0, 1, or 2 IBD genes); KING,
REAP and PC-Relate, use the statistical method of mo-
ments to estimate the realised k coefficients [163]. KING
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can produce reliable inferences for large sample sizes
(millions of unrelated and thousands of relative pairs)
[164]. However, KING is prone to biased estimates in
admixed populations and in the presence of population
structure due to the violation of simplifying assumptions
that do not hold in the presence of population structure
and/or ancestry admixture [165]. Conversely, REAP
[166] and PC-Relate [165] are able to account for differ-
ent ancestry backgrounds of admixed individuals by
using individual-specific allele frequencies derived from
model-based population structure analysis methods (e.g.,
ADMIXTURE). Bias in these allele frequencies can lead
to significantly biased relatedness estimates [165]. Des-
pite this, PC-Relate has an advantage over KING and
REAP, because they, unlike PC-Relate, have difficulty
separating unrelated individuals from more distantly re-
lated ones [126]. Both tools have relatively high accuracy
for first through third-degree classification; however,
their accuracy decreased substantially to below 50% for
fourth through seventh and unrelated classification
[167]. Overall, PC-Relate appears to be the most robust
kinship coefficient estimation tool when compared with
KING and REAP due to its ability to work effectively
with admixed populations whilst also being able to dis-
tinguish between unrelated individuals and more dis-
tantly related ones.

Methods for IBD detection identify the similarity be-
tween haplotypes that are statistically unlikely to occur
in the absence of IBD sharing [168]. PLINK [169] incor-
porates a method of moments approach, using an HMM
to infer underlying IBD in chromosomal segments based
on observed IBS states. PLINK was criticised for produ-
cing a high level of false positives (individuals who are
unrelated based on IBS sharing but are called as related)
for second-degree relationships [170]. fastIBD [171] and
GERMLINE [172] detect “seeds” of identical short haplo-
type matches and extend them to nearby sites. fastIBD
can be applied to large sample sizes across genome-wide
SNP data; however, it is obliged to carry out haplotype
phasing and is therefore susceptible to phasing errors,
particularly if the SNP set is small. Computer memory
capacities may also limit the number of individuals that
can be phased at one time; therefore, in practicality, it is
computationally unfeasible to analyse over 100,000 indi-
viduals. Whereas fastIBD is based on shared haplotype
frequency, GERMLINE is based on shared haplotype
length.

Ramstetter et al. [167] tested the accuracy of relation-
ship inference software on SNP data of large Mexican
American pedigrees spanning up to six generations.
They showed that there are no “one size fits all” IBD
tools and that tools vary in their sensitivity to the IBD
segment length, which corresponds to the degree of re-
latedness. The main reason for this is that haplotype-
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based IBD segment detection methods struggle to detect
long IBD segments if the shared haplotype has discord-
ant alleles due to genotype or phasing error. One solu-
tion is to use tools like Refined IBD [173] and recover
the long IBD segment by mending smaller ones using an
external tool [173]. Concurrent methods generally rely
on diploid genotype data, which makes them ineffective
when dealing with ancient data which have a low con-
centration of endogenous DNA and fragmentation [125].
Since all tools underperformed in inferring remote re-
latedness (over 3rd degree) in diverse samples [167], fur-
ther efforts should be made towards the development
and testing of more robust tools.

Conclusions

The rise of genomic biobanks and biological and compu-
tational biotechnology advancements have allowed for
significant developments in the field of personalised
medicine, making the vision of targeted therapies, accel-
erated diagnosis and early disease detection become
more of a reality. However, the geographic differenti-
ation of human genetic variation (population genetic
structure) suggests that the frequencies of certain
disease-causing genetic variants, and variants in drug-
metabolising genes may differ depending on geographic
location, leading to geographic disparities in the suscep-
tibility of an individual to a disease and/or specific drug
treatment. Therefore, the lack of representation of diver-
sity in genomic studies poses a limitation in the current
global understanding of disease risk and intervention
efficacy.

It is widely accepted that increased samples from a
much more diverse range of populations is required.
However, diversity needs to be quantified, compared and
annotated within and between biobanks in order to lead
to insight. Biobanks must therefore contain genetic an-
notations that are comparable, computable and compat-
ible across datasets. Whereas previous studies explored
the applicability of bioinformatics tools for association
studies (e.g., [55]), this review focussed on whether tools
are conceptually comparable and whether they scale.
Therefore, it assesses the confounding effects of stratifi-
cation bias through the identification of population gen-
etic structure in a standardised and comparable manner
with a goal of improving biobanks, increasing the accur-
acy of association analyses and informing developmental
efforts. These tools vary in their strengths and limita-
tions; therefore, it is vital to review these characteristics
in order to apply them appropriately.

Genomic ancestry inference encompasses tools that
are able to identify the ancestry of an individual by uti-
lising specialised markers to compare the genetic simi-
larity of an individual's DNA to other individuals
sampled from a variety of populations or geographic
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regions. Global genetic ancestry tools assess the average
proportion contributed by each ancestral population
across the whole of the individual’s genome, whilst local
ancestry inference tools identify the ancestry of distinct
segments within chromosomes.

Simple descriptions such as Ancestry Informative
Markers (AIMs) and Low Dimensional Representation
with PCA are useful but insufficient. Current best-
practice includes correcting for kinship using the Gen-
etic Relatedness Matrix (GRM) which may be valuable
but does not provide a framework for interpreting exter-
nal datasets.

For global genetic ancestry inference, some tools do
scale well enough to be considered for biobanks. The
limitations include unrealistic assumptions, a tendency
to mistake cryptic relatedness for genetic structure, con-
ceptual issues in the interpretation of admixture, and a
lack of prior research into how global ancestry can be
usefully applied for association studies.

GRM approaches can jointly represent population gen-
etic structure and cryptic relatedness, which can avoid
consequent false-positive associations in GWAS within a
single dataset. More fine-scaled representations exist in
the form of kinship (measuring IBD) and haplotype simi-
larity (Chromosome Painting) matrices, which are scal-
able. In all cases, these capture an inherently noisy and
hence statistical property. Consequently, further efforts
should be made towards the development of more robust
tools for remote degrees of relatedness (over 3rd degree)
in diverse samples, especially in the case of cross-dataset
comparison. Studies are needed in order to explore the
value of these fine-scale approaches for biobanks.

Local ancestry inference tools are still slower, though
they can be deployed similarly to phasing and imput-
ation should a compelling use case be found. Efforts
should be made to develop a new approach that ad-
dresses the common limitations, including a require-
ment of phased data and consequent susceptibility to
phasing errors, ability to model LD, and restrictions in
terms of the number of populations. The local ancestry
approach is clearly deployable when the region of inter-
est is known. It may be useful to group the ancestral
populations by geographic region as a way of comprom-
ising between accuracy and power considerations. Cor-
rectly deployed, local ancestry could correct for local
genetic correlations in a way that is much more power-
ful than simple correlations as captured by LD, though
the value for association studies is yet to be determined.

Furthermore, the rise of paleogenomic medicine and
rapid accumulation of ancient genomes have already
shed light on several conditions (e.g., [174] also requires
the development of specialised kinship inference soft-
ware that are capable of handling ancient DNA). At the
moment, however, most current methods rely on diploid
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genotype data making them ineffective when handling
ancient DNA.

With rapid advances in technology and the dense
amount of genetic variation data available, we can
continue to expect the development of new inference
software and enhancements of existing ones. For ex-
ample, there is much scope for improved modelling
of LD to reduce error rates and improve the ability
to detect subtle population structures. However, a
challenge for the future will be to develop inference
methods that are computationally efficient and applic-
able to large sample sizes whilst being able to fully
exploit the rich information available in the form of
haplotypes. There is also currently a lack of represen-
tation of non-European populations in genetic studies.
Unless populations of diverse ancestries are included,
therefore incorporating an equal knowledge of genetic
variation across ancestry groups, it could contribute
further to health disparities and negatively impact
genomic interpretation. Efforts should be made to in-
clude data from more diverse populations in GWAS
and develop robust population structure models that
can reduce or eliminate the stratification bias from
the cohort. Not only this, but biobanks must begin to
incorporate individual-level genetic annotations that
are comparable, computable and compatible across
datasets. Clinicians must also be properly trained to
understand their output so that they can make an in-
formed decision as to whether or not a genetic vari-
ant may be causative or whether the association is
likely the result of population stratification.

Overall, with increased availability of large genomic
datasets, an equal representation of genetic variation
across ancestry groups and continuous improvement
and development of genetic inference software, popula-
tion structure inference will occur with finite detail. This
will allow for more effective differentiation between
closely related populations, in turn allowing for
individual-level genetic annotations to be incorporated
in biobanks and increasing the accuracy of association
analyses.

In summary, we have identified a gap in the literature
concerning the design and standardization of biobanks.
Started as localised initiatives, the progress in sequen-
cing technologies sparred the rapid growth of biobanks
in size, diversity and geography, although conceptually
they are still thought of as local datasets. This perception
limits the usefulness of biobanks and prevents banking
on their resources in joint analyses. To overcome this
limitation, it is critical to develop a holistic solution to
the problem of population structure. Current strategies
implemented in the various tools aim to expose different
aspects of the data by ubiquitously mapping the ancestry
of individuals, though none could be used as a complete
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solution to ancestry. One unsolved challenge is to create
representations that are useful for meta-analysis without
sharing individual-level data. Natural summaries of ad-
mixtures can be created from means and variances, but
it is an open question to establish whether these are suf-
ficiently accurate and whether alternative representa-
tions can protect privacy whilst maximising research
benefits. PCA’s accuracy, in specific, has been challenged
by several groups. Yet other tools also suffer from limita-
tions related either to their design, which affect their
speed and accuracy, or their basic assumptions concern-
ing human populations, which, in turn, affect the useful-
ness of their output to the population genetics. These
shortcomings, often unacknowledged, limit our ability to
interpret the results and increase the burden of evidence
when using these tools. Further efforts should be made
to explore the limitations of these tools and optimal
usage on global and massive datasets as well as to divide
new approaches that overcome the most common limi-
tations of running time, identification of admixture and
high specificity among human populations.

We end this review with five take-away messages:
firstly, more diverse data are needed worldwide, both
from populous populations who will benefit from in-
clusion in datasets en masse, as well as pockets of
genetic diversity that may shed light on biological
processes that would otherwise remain undiscovered.
Secondly, the methodology to interpret and harmonise
results from diverse datasets is not ready. Thirdly, the
main barrier is in the creation of shareable and
comparable summary statistics from diverse data.
Fourthly, these summary datasets should be carefully
designed to allow effective association correction, as
well as meta-analysis, which we argue requires placing
the genetics into some type of model. Finally, clini-
cians, geneticists and epidemiological researchers will
all have to learn how to exploit the information that
comes from the genomic diversity revolution when it
comes.

As this review is written at the height of the COVID-
19 pandemic and biobank data are internationally shared
to improve diagnosis and treatment outcome, practically
transforming our vision of international biobanks into
reality, we hope that our study would serve to improve
the accuracy, reliability and replicability of association
studies and biobanks.
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