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Abstract

Background: Fatty liver has become a main problem that causes huge economic losses in many aquaculture
modes. It is a common physiological or pathological phenomenon in aquaculture, but the causes and occurring
mechanism are remaining enigmatic.

Methods: Fach three liver samples from the control group of allogynogenetic gibel carp with normal liver and the
overfeeding group with fatty liver were collected randomly for the detailed comparison of histological structure,
lipid accumulation, transcriptomic profile, latent pathway identification analysis (LPIA), marker gene expression, and
hepatocyte mitochondria analyses.

Results: Compared to normal liver, larger hepatocytes and more lipid accumulation were observed in fatty liver.
Transcriptomic analysis between fatty liver and normal liver showed a totally different transcriptional trajectory. GO
terms and KEGG pathways analyses revealed several enriched pathways in fatty liver, such as lipid biosynthesis,
degradation accumulation, peroxidation, or metabolism and redox balance activities. LPIA identified an activated
ferroptosis pathway in the fatty liver. gPCR analysis confirmed that gpx4, a negative regulator of ferroptosis, was
significantly downregulated while the other three positively regulated marker genes, such as acsl4, tfr1 and gcl,
were upregulated in fatty liver. Moreover, the hepatocytes of fatty liver had more condensed mitochondria and
some of their outer membranes were almost ruptured.

Conclusions: We reveal an association between ferroptosis and fish fatty liver for the first time, suggesting that
ferroptosis might be activated in liver fatty. Therefore, the current study provides a clue for future studies on fish
fatty liver problems.
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Background

Fish fatty liver is a common physiological or pathological
phenomenon in aquaculture. The causes are complex and
not well-known, and mainly include imbalance nutrition
diet, environmental pollutants, physiological factors and
genetic mutation [1]. Fatty liver diseases have been found
in most main farmed fish, and caused many problems,
such as low feed efficiency, immune response, flesh and
nutritional quality effects [1-5]. The utilization of artifi-
cially formulated feeds can bring nutritional, physiological
and ecological effects to fish [2, 6-9]. However, exceeding
nutrition, improper artificial formulated diets and over-
feeding have led to a growing concern of liver fatty prob-
lems, such as hepatocyte enlargement, lipid accumulation,
steatosis, fibrosis and necrosis [10, 11].

Fatty liver can be mainly classified as “nutritional fatty
liver” or “oxidative fatty liver” in aquaculture. Nutritional
fatty liver, principally caused by imbalanced nutrition sup-
ply, is common in farmed fish and generally not a patho-
logical symptom. It can be alleviated through adjusting
diet formulation or feeding. If no effective strategy was
carried on, it could be turned to the “oxidative fatty liver”
or directly induced to hepatic fibrosis and necrosis, which
causes irretrievable damages [1]. Oxidative stress might
lead to oxidative fatty liver, which would arouse severe
liver damage [1, 12]. Overall, excess dietary energy intake
and severe peroxidation can cause fish metabolic imbal-
ance and then result in fatty livers. Some researchers sug-
gest that many pathways, such as target-of-rapamycin
complex 1 (Torcl), AMP-activated protein kinase
(AMPK), transcription factor EB (TFEB), peroxisome pro-
liferator activated receptor (PPAR), P53, nuclear erythroid
2-related factor 2 (Nrf2), c-jun Nterminal kinase (JNK),
toll-like receptors (TLRs), myeloid differentiation primary-
response protein 88 (Myd88), and nuclear factor kB (NF-
KB) signaling pathways, might be related to fatty liver
caused by high-fat/carbohydrate or over-nutrition diet
[11-17]. For example, the decreased AMPK pathway can
suppress autophagy and then worsen lipotoxicity in tilapia
fatty liver [11], and its activation can reduce the expres-
sion of genes related to lipogenesis in rainbow trout liver
[16]. However, some results seem to be controversial. For
instance, the activation of Nrf2, JNK and TLRs-Myd88-
NEF-kB signaling pathways could lead to inflammation and
worsen tilapia liver injury [12], while cAMP-JNK/NF-kB-
caspase signaling pathway could protect the fatty liver tis-
sues from more serious damage though regulating the
hemostasis phosphorylation of JNK protein in Japanese
seabass [17]. JNK and NF-kB signaling pathways might
play a dual role in the fish fatty liver. Therefore, the mech-
anism of hepatic lipid accumulation and fish fatty liver are
remaining enigmatic. In addition, too many affected path-
ways were identified and few studies had explored which
key pathway was associated with fish fatty live.
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Gibel carp (Carassius gibelio) is one of the most im-
portant aquaculture species in China [18-23] and the
production yields in China have increased to 2,755,632
tons in 2019 [24]. In lotus-fish farming ponds, we found
some individuals of gibel carp had fatty liver. To find
out the cause, we first analyzed the liver histological
structures and lipid accumulation of normal liver and
fatty liver. Then, we conducted comparative transcrip-
tomic analysis between, and identified a pathway of fer-
roptosis that was significantly activated in fatty liver.
Finally, we confirmed that ferroptosis was activated in
fatty liver by qPCR analysis and mitochondria morpho-
logical observation. Our current study establishes an as-
sociation between ferroptosis and fish liver fatty, which
provides a clue for future studies on fish liver fatty
problems.

Results

Morphological changes in fatty liver

The morphology of fatty liver showed obviously different
from that of normal liver (Fig. 1a). The whole liver was
more hypertrophic and the hepatocytes of fatty liver
were more enlarged (Fig. 1b), showing less hepatocytes
on an area of 10 um square (Fig. 1¢) (» <0.01). And then,
we performed oil red O staining (ORO) to compare the
lipid accumulation between normal liver and fatty liver.
As we expected, fatty liver showed more than 2 times
lipid accumulation than that in normal liver (Fig. 1d-e)
(p <0.01).

Transcriptomic differences between normal liver and fatty
liver

The transcriptomes of six liver samples in two groups were
obtained using BGISEQ-500 Iillumina sequencing plat and
each sample produced an average of 10.16 Gb clean bases.
An average of 83.42 and 69.46% clean reads were mapping
to the gibel carp’ genome and gene sets (Table 1).

Finally, a total of 37,077 unigenes were obtained,
which included 32,679 known genes and 4398 novel
genes. Principal component analysis (PCA) showed
groupings between normal liver and fatty (Fig. Sla). The
correlation coefficient (R?) is >0.93 in group and < 0.83
between groups (Fig. S1b), suggesting the best-fitting re-
gression line for the technical replicates according to
standards and best practices for RNA-Seq. The results
demonstrate that though there are individual differences,
the two groups have a totally different transcriptional
trajectory (Fig. S1) [25, 26].

Enriched GO terms in fatty liver

A total of 3480 differentially expressed genes (DEGs)
were assigned with the correction of p-values using
FDR <0.001 (Table S1). Compared to normal, 1997
genes in fatty liver were upregulated and 1483 genes
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Fig. 1 Histology and lipid accumulation of gibel carp normal liver and fatty liver. a Liver morphology of gibel carp. b Historical structure of liver
tissues. The black column is scale bar (50 um). ¢ Number of hepatocytes on an area of 10 um square. d ORO staining of liver tissues. Red color
indicates lipid droplets. The black column is scale bar (50 um). e ORO red pixels (X 10°) in equivalent area. Asterisks stand for the significant
differences between normal liver and fatty liver (**: p < 0.01). NL: normal liver, FL: fatty liver
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Table 1 Summary statistics of sequencing data
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Sample Total Raw Reads Total Clean Bases

Clean Reads Q20 Clean Reads Q30 Clean Reads

Total Mapping Uniquely

(M) (Gb) (%) (%) Ratio (%) (%) Mapping (%)
NL-1 77.13 10.07 96.50 88.09 87.05 83.05 47.00
NL-2 77.13 10.14 96.50 88.18 87.61 8142 45.64
NL-3 77.13 10.22 96.60 884 8837 81.56 4511
FL-1 73.62 1027 96.55 88.09 93.01 85.16 46.19
FL-2 73.62 10.10 96.58 88.16 9143 84.83 47.37
FL-3 73.62 10.19 96.68 88.44 92.26 84.47 4595

Note: NL normal liver, FL fatty liver

were downregulated (Fig. 2a). All up or downregulated
DEGs were separately annotated into 2568 GO Gene Ontol-
ogy (GO) terms and 3014 GO terms, among them, as visual-
ized in Venn’s diagrams, 964 and 1410 GO terms were just
associated with up or downregulated DEGs (Fig. 2b). Sixteen
and 20 GO terms were significantly enriched with the cor-
rection of g-value <0.05 (Fig. 2 c-d).

Sixteen significantly enriched GO terms with all upregu-
lated DEGs (Table S2), were involved in nine “biological pro-
cesses” (BP), one “cellular component” (CC), six “molecular
functions” (MF) (Fig. 2c). Four GO terms, “fatty acid meta-
bolic process” (15 DEGs, GO 0006631), “fatty acid biosyn-
thetic process” (13DEGs, GO 0006633), “unsaturated fatty
acid biosynthetic process” (6 DEGs, GO 0006636), “unsatur-
ated fatty acid metabolic process” (6 DEGs, GO 0033559),
gave a direct hint that lipid synthesis or metabolism were ac-
tive. Other upregulated GO terms were assigned to “fruc-
tose”, “heme”, “oxidoreductase activity’, “hemoglobin
complex”, and “CoA-related activity”. And these genes might
play important roles in the lipid accumulation, fatty acid
transport and oxidation, redox balance, or other metabolic
regulatory processes [13, 27-29].

Twenty significantly enriched GO terms with all
downregulated DEGs (Table S2), were involved in 5 BP,
9 CC, and six MF (Fig. 2d). Most of the downregulated
GO terms were related to “proteasome” or “peptidase”,
such as “proteasome complex” (27 DEGs, GO 0000502),
“proteasome core complex” (15 DEGs, GO 0005839),
“proteasome accessory complex” (10 DEGs, GO
0022624), “proteasome-activating ATPase activity” (6
DEGs, GO 0036402), “peptidase complex” (31 DEGs,
GO 1905368), “endopeptidase complex” (27 DEGs, GO
1905369), and “threonine-type peptidase activity” (15
DEGs, GO 0070003). Enzymes of them could catalyze
biological reactions rapidly and unidirectionally regulate
diverse basic cellular activities [30], suggesting some
catalytic reactions might slow down in fatty liver.

Significant pathways revealed by KEGG and LPIA in fatty
liver

A total of 2194 DEGs were assigned to 336 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways

[31], and some (43) of them were significantly enriched
with the correction of g-value <0.05 (Fig. 3a; Table S3)
and functionally divided into six categories, including
one “cellular process”, one “environmental information
processing”, six “genetic information processing”, six
“diseases”, 27 “metabolisms”, and two “organismal sys-
tems”. Five enriched pathways, such as “Ferroptosis” (29
DEGs, ko04216), “Non-alcoholic fatty liver disease
(NAFLD)” (65DEGs, ko04932), “Fatty acid biosynthesis”
(15DEGs, ko00061), “Fatty acid degradation” (20DEGs,
ko00071),  “Glycerolipid  metabolism”  (32DEGs,
ko00561), and “Fat digestion and absorption” (32DEGs,
ko04975), were directly associated with lipid biosyn-
thesis, degradation, peroxidation, or metabolism [32, 33].

According to the LPIA method, a total of 316 KEGG
pathways and 962 GO terms with biological process classi-
fication, which two shared at least 1 DEG, were selected
to conduct the pathway-pathway interaction network
(Table S4). Four significant pathways were identified with
LPIA_v_1.pl [34] in Perl with 1000 iterations (Table 2),
such as “Porphyrin and chlorophyll metabolism” (23
DEGs, ko00860) (Fig. S2a), “Hypoxia-inducible factor-
1(HIF-1) signaling pathway” (49 DEGs, ko04066) (Fig.
S2b), “Ferroptosis” (29 DEGs, ko04216) (Fig. 4a), and
“Mineral absorption” (17 DEGs, ko04978) (Fig. S2c).

After the weight Aij was calculated at random walk, a
correlational network was conducted between pathways
that included 43 enriched pathways in KEGG enrich-
ment analysis and four significant latent pathways
(marked with red point) in LPIA method (Table S5). It
was clearly showed that four significant latent pathways
connected with each other in the network (weight scores
>0.1) (Fig. 3b). The pathways “Porphyrin and chloro-
phyll metabolism” (23 DEGs, ko00860) (Fig. S2a) and
“HIF-1 signaling pathway” (49 DEGs, ko04066) (Fig.
S2b) had more connections with other pathways in
KEGG enrichment analysis. Among them, excepting
ZIP8/14 & Ferritin with a up & down expression, gluta-
thione peroxidase 4 (gpx4), a negative regulated gene in
“Ferroptosis” [35-37], was downregulated, while other
DEGs in “Ferroptosis” were all upregulated (Fig. 4a). The
results suggest that the expression levels of genes in
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genes, gpx4 [35-40], acyl-CoA synthetase long-chain

family member 4 (acsl4) [41, 42], transferrin receptor 1
scriptome result, gpx4 was downregulated, while the

selected for qPCR analysis. Consistent with the tran-
others were all upregulated (Fig. 4b).

(tfr1) [43], and Glutamate-cysteine ligase (gcl) [44], were

«

Zhang et al. BMC Genomics

DEGs Numbers o DEGs Numbers "
S fer?
o~ ans)
0 ° [} o & n o v o wn o o
Q M - ®© - o & Jenf o N MmN A = = n o e S™
G O o
i 53
g zbev < -
£ o o o
3 & o o
2 B & o A T
£ E o & ¢ 2
s 38 g W o %ao E
8 2 g & as® e
= = o e =
= o S r
w .M % o 3 2
2 + o s 0
5 &
s S &
= oo o
= o
s 28 & K £
= = = o 3
3 3 E e =
3 % } R z
@ = 8#69 &
EE ¢ S t
g 3 3 [e3 o -
° o A o "
H o o
> ¢
i 2 e S :
= P & 2
a &7 < ~
- 9&? 60//04 5]
= o Oowre -— a
o o
& o & !
o 2 &
o & o
M oerv? %,oaz;
5 e
& o
aa,& & &
¥ /ﬁéa /»044
» o
o »
A o
o e s
o o o
o 3% ¢oaa
L N
e &
< o
o Ao
S Ca
o o o
° K ] &=
& &
ke ow@«ef é.&ep
o S
A O
™
% o .
3 g & o &
g2 = £ o ) &
o a 2 & &
2 2 3 o o
2z & R o
& o 8 &
Bl B o o
mm -
&
o
o
ke o —
T T T T T
= o = e e = o S 2 9 2 e e e
s 3 s e = o Q =1 S 3 = Q 3 8 & ® 8 ¥ & 3
s = e ¥ W - - S S s =1 = - = & & &8 e &
(eouvouBig)oI80T- oned Wl oney yory

<
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diagrams visualize the up or downregulated DEGs associated with GO terms. ¢ 16 enriched GO terms with all up- regulated DEGs (g-value<0.05).
NL: normal liver, FL: fatty liver

Fig. 2 DEGs and GO enrichment analysis of gibel carp normal liver and fatty liver. a Gene expression patterns between two groups. b Venn's
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pathway “Ferroptosis” might be significantly different be-

tween normal liver and fatty liver.

Ferroptosis is activated in fatty liver

To validate the different expressions of genes in “Ferrop-

”

tosis” between normal liver and fatty liver, four marker
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Ferroptosis can also be characterized with the morph-
ology of mitochondria [32, 45]. To observe the morpho-
logical differences of mitochondria between fatty liver
and normal liver, we performed transmission electron
microscopy analysis. There was no significant cellular
dysfunction, but compared to normal liver, the mito-
chondria densities in fatty liver were more condensed,
and some of outer mitochondrial membrane had been
ruptured and seemed like single-membrane (Fig. 5).

Taken together, ferroptosis was more sensitive in the
fatty liver.

Discussion

In this study, we found morphological changes in fatty
liver, such as hepatocyte enlargement and lipid accumu-
lation (Fig. 1). GO and KEGG enrichment analysis
showed that activities related to lipid biosynthesis, deg-
radation, accumulation, peroxidation or metabolism

Table 2 The significant pathways in pathway-pathway interaction network by LPIA method

Pathways Adjusted p-value’ Rich Ratio® g-value?
ko00860-Porphyrin and chlorophyll metabolism 0.00 0.1949 0.0028
ko04066-HIF-1 signaling pathway 0.00 0.0296 0.0033
ko04216-Ferroptosis 0.00 0.1667 0.0057
ko04978-Mineral absorption 0.00 0.1104 0.5570*

Note: Adjusted p-value' was calculated in LPIA method;
Rich Ratio® and g-value? were calculated in KEGG pathways enrichment method
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were more active in fatty liver (Fig. 2e & Fig. 3a). Im-
portantly, a pathway of ferroptosis was significant differ-
ent between normal liver and fatty liver that might be
associated with lipid-related activities (Figs. 4 & 5), sug-
gesting an association between ferroptosis and fish fatty
liver.

Based on the current data, we suggest that a significant
pathway of ferroptosis might be associated with fish fatty
liver. Ferroptosis is actually an iron-catalyzed-lipid per-
oxidation disorder, and is related with lipid peroxidation.
Previous research in fish suggested a possible link be-
tween ferroptosis and lipid. For example, the iron-
catalyzed lipid peroxidation was characterized in zebra-
fish and cultured shrimp [46, 47]. Enzymes, such as
glutathione peroxidase, could reduce the lipid peroxides
in tilapia and other fish [48, 49]. Oxidants could damage

mitochondrial membrane permeability and electron
transport chain integrity in zebrafish and grass carp [50—
52]. However, ferroptosis in fish is not clear. Now, we
establish an association between ferroptosis and fatty
liver through comparative transcriptomic analysis,
marker gene expression and mitochondrion morphology
observation in fish.

Ferroptosis is a new form of regulated cell death that
depends on iron- and lipid-based reactive oxygen species
(ROS), and has been implicated in both normal and
pathological physiology which involves in various bio-
logical contexts of diverse species increasingly and
widely [32, 35, 38, 53]. It is totally different from other
reported forms of cell death, such as apoptosis, autoph-
agy, necrosis and pyroptosis [40, 53, 54], and associated
with various liver problems [38, 55]. In fish, it potentially
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liver, FL: fatty liver
A\

Fig. 5 Electron micrographs of hepatocytes of gibel carp normal liver and fatty liver. a-b Electron micrographs of hepatocytes in normal liver; c-d
Electron micrographs of hepatocytes in fatty liver. Er: endoplasmic reticulum. L: lipid droplet. M: mitochondria. N: nucleus. The white arrows
indicate the condensed mitochondria with outer membrane ruptured. The white scale bar stands for 5um ina & ¢, and 1 um in b &d. NL: normal

was responsible for the lethality of zebrafish VitE-
deficient embryos [56]. It might be activated by low
temperature (Nile tilapia), hypoxia (Silver sillago) stress
and heavy metal (Japanese flounder) [57-59], and could
be induced by Escherichia coli and then led to the red
blood cells (RBCs) death of grass carp [60]. It could be
checked at the gene expression level and characterized
by the morphology of mitochondria [32, 35, 36, 38, 39,
41-45, 61]. Some genes in ferroptosis are classified as
markers. For example, gpx4 is required for the clearance
of lipid ROS. If it was inactivated or inhibited, lipid ROS
would accumulate, and then induced ferroptosis [35—
40]. acsl4, as an essential component for ferroptosis exe-
cution, could dictate ferroptosis sensitivity. The more
upregulated expression of acs/4, the more sensitive to
ferroptosis [41, 42]. In this study, compared to normal
liver, the relative expression of negative regulator gpx4
was significantly downregulated and the relative expres-
sion of three positive actors (acsl4, tfr1 and gcl) were sig-
nificantly upregulated, implying that fatty liver was more

sensitive to ferroptosis. In addition, ferroptosis showed
smaller, condensed and outer membrane ruptured of
mitochondria with crista diminished or vanished in cel-
lular morphological characteristics [62, 63]. Moreover,
the GO and KEGG enrichment analysis suggest lipid-
related activities were active in fatty liver. Therefore, our
results indicate that ferroptosis might be associate with
liver fatty and it is different between normal liver and
fatty liver.

The main method used in this study was LPIA, which
was more appropriate to our study in one challenge with
metabolic relevant. It could give a direct understanding
to the key cellular mechanisms in biological activities
[34, 64]. In this study, four latent pathways were identi-
fied by LPIA (Table 2), including ferroptosis. Among
them, the remaining three latent pathways might also
connect with ferroptosis (Fig. 3b). For example, “Porphy-
rin and chlorophyll metabolism” pathway was associated
with the energy, ion and erythroid heme synthesis regu-
lation, especially in responding to various stresses [65,
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66]. “HIF-1 signaling” pathway was involved in cellular
responses to low oxygen environments and growth fac-
tors [67, 68]. It was noteworthy that both “Porphyrin
and chlorophyll metabolism” and “HIF-1 signaling” path-
ways had more relations with other enriched pathways
(Fig. 3b). Minerals were fundamental nutrients and min-
eral absorption may depend on dietary ingredient com-
position. Some genes in “mineral absorption pathway”
were involved in iron metabolism [69, 70]. These could
explain why they were all identified and suggest that fer-
roptosis may be the key pathway involved in fatty liver.
Overall, as lipid accumulation continued to increase,
lipid peroxidation would also increase [52]. If hepato-
cytes could not be sufficient capacity to eliminate lipid
peroxides, ferroptosis might be activated [32, 53]. Cer-
tainly, more research on the mechanism underlying fer-
roptosis and fish fatty liver need to be carried out. Since
ferroptosis could be regulated and numbers of small
molecule inhibitors, such as Vitamin E, the nature’s
most-efficient ferroptosis inhibitor, have been identified
[32, 33, 40, 56, 71-73], which suggests new prevention
strategies and promising therapies of fish fatty liver.

Conclusion

Based on detailed comparison of histological structure,
lipid accumulation, transcriptomic profile, ferroptosis
marker gene expression, and hepatocyte mitochondria
between normal liver and fatty liver, our study reveals an
association between ferroptosis and fatty liver in fish for
the first time, suggesting that ferroptosis might be acti-
vated in fish liver fatty. The current study provides a
clue for future studies on fish fatty liver and effective
prevention strategies in fish fatty liver problems.

Materials and methods

Animals and sample collection

All experimental procedures in this study were per-
formed in accordance with the guidelines and after ap-
proval of the Animal Care and Use Committee of
Institute of Hydrobiology, Chinese Academy of Sciences
(IHB, CAS, Protocol No. 2016-018). A total of 3000 ju-
veniles of allogynogenetic gibel carp, which came from
same clones, were transported from National Aquatic
Biological Resource Center of Institute of IHB, CAS,
which is located in Wuhan, China, to the Luo-Fu Lotus
Farm, which is located in Jinggangshan, China, for lotus-
fish culturing. Fifty juveniles were selected randomly to
weight (Table S6). Half of the juveniles was set as an
overfeeding group, which was continuing feeding until
without fish activities in apparent satiation two times
per day. The other half was set as a control group, which
was cultured without artificial feeding. All the juveniles
were cultured in lotus-fish culturing ponds at a density
of 150 juveniles per 667 m? Water samples were
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collected from three randomly ponds three times (April
22th, June 3th, October 12th, 2019). Eight physicochemi-
cal water quality parameters (water temperature, dis-
solved oxygen, pH, total nitrogen, ammonia, nitrate,
nitrite and total phosphorus) were analyzed (Table S7).
After 180days, commercial fish were harvested. Fifty
commercial fish of each group were selected randomly
to weight (Table S6). Compared to the individuals in the
control group with normal liver, most of individuals in
the overfeeding group had bulge belly and randomly se-
lected of them had fatty liver in general appearance after
dissecting. Then, the liver samples of three individuals of
the control group with normal liver and three individ-
uals of the overfeeding group with fatty liver were col-
lected randomly for histopathological observation and
molecular analysis.

All fish were first totally immersed and deeply anes-
thetized with tricaine methanesulfonate (MS-222, 35-40
mg/L, Servivebio, Wuhan) until losing all rhythmic oper-
cular movements for a minimum of 30 min, then sacri-
ficed by rapidly cutting off the spinal cord adjacent to
the head. Procedures were performed to minimize fish
suffering as far as possible. All sections of this study
were carried out in compliance with the ARRIVE guide-
lines [74], and a completed ARRIVE guidelines checklist
was included (Checklist S1).

Histological structure, lipid accumulation and
morphological observation

Liver tissues were cut in sections and fixed in 4% para-
formaldehyde (PFA) overnight at 4 °C, and subsequently
embedded in paraffin. One part of sections was stained
with hematoxylin & eosin (HE) (Beyotime, Suzhou) and
performed as previously described [75, 76]. The Carl-
Zeiss microscopy (Analytical & Testing Center, IHB,
CAS) was used for histological structure observation and
photomicrographs.

The other sections were used for detecting the lipid
droplet morphology by ORO staining according to
the previous method [77, 78]. The sections were to-
tally dehydrated with 30% sucrose, and then embed-
ded in optimum cutting temperature (OCT)
compound. After being rapidly frozen and cut in
Thermo CRYOSTAR NX50 microtome at 10pm
thickness, the sections were dyed with ORO (Thermo,
USA) and counterstained with hematoxylin (Servive-
bio, Wuhan). Via the amount of ORO staining from 3
frames per biopsy, liver lipid accumulation was quan-
tified using pixel numbers with Image J [79].

The specimens for morphological observation by elec-
tron microscopy were prepared as described previously
[80, 81]. Liver tissues were fixed with 2.5% glutaralde-
hyde for 24h at 4°C, and in 1% osmium tetroxide
(OsO4) for 2h at 4°C, and then gradiently dehydrated
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with ethanol. After that, sections were embedded in
epoxy resin Epon812 for overnight and cut in Leica
DMIRB ultrathin microtome at 60-80nm thickness,
stained with uranyl acetate and lead citrate, and ob-
served with a HC-1 80.0 KV Hitachi TEM system (Ana-
lytical & Testing Center, IHB, CAS).

RNA extraction, sequencing, assembly and functional
annotation of liver transcriptomes

Three liver samples of two groups, normal liver and fatty
liver, were listed as biological replicates (NL-1, NL-2, NL-
3 and FL-1, FL-2, FL-3). Total RNA was extracted with
RNeasy Mini Kit (Qiagen, Beijing) according to the manu-
facture’s protocols. Proper quality and quantity were
checked with Nanodrop® ND-2000 spectrophotometer
(LabTech, USA) and Technologies 2100 Bioanalyzer (Agi-
lent Tech, USA) by measuring the 260/280 nm absorbance
ratio. Fifty pg total RNA of each samples were used for
c¢DNA library establishing and high-throughput sequen-
cing via BGISEQ-500 platform in BGI Genomics Co., Ltd.,
Shenzhen, China. Clean reads were mapped to the gibel
carp’ genome and genes using HISAT (v2.1.0) [82] and
Bowtie2(v2.2.5) [83] (unpublished data). The expression
levels of transcripts were calculated with RSEM [84]. Pear-
son’s correlation coefficient (r) and PCA were measured
by using cor & princomp in R for the strength of the asso-
ciation between the two groups. DEG analysis was con-
ducted by DEseq2 [85, 86] with q-value (adjusted p-
value) < 0.05. GO and KEGG pathway enrichment analysis
were conducted with phyper in R. p-value was corrected
with false discovery rate (FDR) cut-off of 0.01 and q-value
<0.05 was used as the threshold to judge the significance
of GO or KEGG enrichment. The raw sequences were de-
posited into the NCBI Sequence Read Archive (SRA) data-
base (Accessions PRINA675741).

Latent pathways network construction and the significant
pathways identification

Latent pathway identification analysis, LPIA, developed by
Pham et al, is a method to identify the interactions of
pathways associated with DEGs and biological processes
[34, 64]. After preparing the three distinct but interrelated
sources of biological pathways (such as “KEGG”, P), bio-
logical functions (such as “GO”, G) and gene transcrip-
tional response in different conditions (such as “DEGs”,
DE) (Table S4), 1) First, we constructed a P-G bipartite
graph if P and G shares a non-empty intersection of DE,
we calculated the weighted edge, denoted Wgp, which
stands for the intersection of P and G as follow

Wep = (|GnP|)/(|GUP|) x median{DE,; xeGnP}

2) And then, converted the P-G bipartite graph to P-P
pathway network if two pathways, P; and P; shares non-
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empty intersection of G, the weight between P; and P;,
denoted A,  is

G
Aij = E WG/J’;’ X Wka],
k

3) Finally, measured pathway importance via eigen-
vector centrality to determine the significance of a node
in the above network after proper iterative operation.
The weight scores > 0.1 were used to draw P-P pathway
network with cytoscape 3.7.2 [87]. The whole process
was repeated using the bootstrap method [88] and the
adjusted p-values were calculated to account for multiple
testing with methods described by Dudoit and van der
Laan [89].

Quantitative reverse transcription PCR (qPCR)

The first-strand cDNA was synthesized from total RNA
following the protocol of Thermo Scientific™ RevertAid
First Strand cDNA Synthesis Kit (Thermo Fisher Scien-
tific, USA) in a 20 pl reaction volume. The expression
level was analyzed on a CFX96™ Real-Time PCR System
(Bio-Rad, USA) using an iTaqTM Universal SYBR°Green
Supermix (Bio-Rad, USA). Gene-specific primers (Table
S8) were designed with Primer premier 5.0 [90]. The re-
action system, protocol, and endogenous control selec-
tion were conducted as previously described [91-93]. All
liver samples were analyzed with three biological repli-
cates and the relative expression levels of target genes
were normalized to B-actin and calculated by the 2447
method. p-value <0.05 was considered statistically
significant.
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liver. Lists of DEGs include Gene ID, Length, FPKM, Log, fold change, Q-
value, P- value, and Annotation.

Additional file 3: Table S2 GO terms with all up/downregulated DEGs
enrichment analysis. GO terms with all upregulated DEGs (GO terms with
all up-DEGs), GO enrichment analysis with all upregulated DEGs (enriched
GO-up), GO terms with all downregulated DEGs (GO terms with all
down-DEGs) and GO enrichment analysis with all downregulated DEGs
(enriched GO-down). NL: normal liver, FL: fatty liver.

Additional file 4: Table S3 KEGG pathway enrichment analysis.
Pathway ID, Pathway Name, KEGG function classification, number of
Candidate and total DEGs/genes, Rich Ratio, P-value, Q-value are shown.
NL: normal liver, FL: fatty liver.

Additional file 5: Figure S2 The left three latent pathways. a Porphyrin
and chlorophyll metabolism pathway (23 DEGs, ko00860, https.//www.
genome jp/dbget-bin/www_bget?map00860). b HIF-1 signaling pathway
(49 DEGs, ko04066, https:.//www.kegg.jp/kegg-bin/show_
pathway?map05211). ¢ Mineral absorption pathway (17 DEGs, ko04978,
https.//www.genome jp/dbget-bin/www_bget?map04978) in compara-
tive transcriptomic analysis. Up and downregulated DEGs are shown in
red and green, respectively.

Additional file 6: Table S4 Input and output files in LPIA. Biological
pathways (FL_NL_P), biological functions (FL_NL_G) and gene
transcriptional response in different conditions (FL_NL_DE) are used in
LPIA and the output file (Output_LPIA_FL_NL). NL: normal liver, FL: fatty
liver.

Additional file 7: Table S5 Pathway-pathway network. The pathways
include 43 enriched pathways in KEGG enrichment analysis and four sig-
nificant pathways in LPIA method.

Additional file 8: Table S6 Growth performance of gibel carp in the
Luo-Fu Lotus Farm. Lists of parameters include: initial body weight (IBW),
final body weight (FBW) and specific growth rate (SGR).

Additional file 9: Table S7 Aquaculture conditions in the Luo-Fu Lotus
Farm. Lists of conditions include Water temperature (WT), dissolved oxy-
gen (DO), total nitrogen (TN), ammonia (NH4-N), nitrate (NO5-N), nitrite
(NO,-N), and total phosphorus (TP).

Additional file 10: Checklist S1 Completed ARRIVE guidelines
checklist. The checklist includes the ARRIVE Essential 10 and the
Recommended Set.

Additional file 11: Table S8 Primers used in this study.
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