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Abstract

Background: Ginseng is an important medicinal herb in Asia and Northern America. The basic leucine zipper (bZIP)
transcription factor genes play important roles in many biological processes and plant responses to abiotic and
biotic stresses, such as drought stress. Nevertheless, the genes remain unknown in ginseng.

Results: Here, we report 91 bZIP genes identified from ginseng, designated PgbZIP genes. These PgbZIP genes were
alternatively spliced into 273 transcripts. Phylogenetic analysis grouped the PgbZIP genes into ten groups, including
A B, C, D EF G, H, Iand S. Gene Ontology (GO) categorized the PgbZIP genes into five functional subcategories,
suggesting that they have diversified in functionality, even though their putative proteins share a number of
conserved motifs. These 273 PgbZIP transcripts expressed differentially across 14 tissues, the roots of different ages
and the roots of different genotypes. However, the transcripts of the genes expressed coordinately and were more
likely to form a co-expression network. Furthermore, we studied the responses of the PgbZIP genes to drought
stress in ginseng using a random selection of five PgbZIP genes, including PgbZIP25, PgbZIP38, PgbZIP39, PgbZIP53
and PgbZIP54. The results showed that all five PgbZIP genes responded to drought stress in ginseng, indicating that
the PgbZIP genes play important roles in ginseng responses to drought stress.

Conclusions: These results provide knowledge and gene resources for deeper functional analysis of the PgbZIP
genes and molecular tools for enhanced drought tolerance breeding in ginseng.
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Background

Ginseng (Panax ginseng C.A. Meyer) is an important
medicinal herb in Asia and Northern America. In China,
ginseng has a long cultivation history and is mainly cul-
tivated in Jilin Province where it is known as Jilin gin-
seng. Ginsenosides, present in most tissues of ginseng,
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are recognized as the most valuable active components
of ginseng [1, 2]. Ginseng has a lot of benefits for hu-
man, such as relieving pain, improving brain function,
and increasing anti-tumor activity [3-5]. However, gin-
seng is frequently suffering from different biotic and abi-
otic stresses, including, but not limited to, diseases,
insect pests, drought, cold, heat, and daylight intensity,
greatly threatening its production. Therefore, it is neces-
sary to comprehensively investigate the genes involved
in plant defense to the stresses in ginseng.
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Transcription factors (TFs) have been shown to play a
vital role in plant responses to various biotic or abiotic
stresses. The basic leucine zipper (bZIP) transcription
factor containing a conserved bZIP domain that is com-
posed of 60—80 amino acids is known as one of the lar-
gest TF families [6, 7]. The conserved bZIP domain is
composed of two important functional regions: the basic
region and the leucine zipper region, linked by one hinge
[8, 9]. The basic region usually contains an invariant N-
x7-R/K motif (approximately 16 amino acids) and is re-
sponsible for both nuclear localization and DNA bind-
ing. The leucine zipper region mediates the homo- and/
or hetero-dimerization as it contains a less conserved
dimerization motif [10-13].

The bZIP genes have been documented to play a vital
role in a number of biological processes, including plant
tissue and organ differentiation and vascular develop-
ment [14, 15], embryogenesis [16], and seed maturation
[17]. Studies have also shown that the bZIP genes code
key components in plant regulation of biotic and abiotic
stresses, e.g., pathogens [18, 19], osmosis [20, 21], salin-
ity [22, 23], cold [13, 24], and drought [25, 26]. It has
been reported that AtbZIP28 was activated by thermal
stress, and then regulated the expressions of heat-
responsive genes to protect plants from heat stress [27].
In rice, OsbZIP23 and OsbZIP72 were reported to attenu-
ate drought stress by activating ABA signaling [28, 29].
Knockouting SIbZIP1 and SIAREBI that belong to Group
A of the SIbZIP gene family increased salt stress tolerance,
while the over-expressions of SIbZIP1 and SIAREBI de-
creased salt stress tolerance in tomato [30, 31].

The bZIP gene family has been analyzed in several
plant species and shown to vary in size. For example, 75
bZIP genes were identified in Arabidopsis [10], 69 in to-
mato [32], and 89 in rice [7]. However, no research on
the bZIP gene family has been reported yet in ginseng.
The present study first identified the 91 bZIP genes from
ginseng, which were designated PghZIP genes. We then
examined their conserved protein motifs, phylogeny, pu-
tative functionality, and expression characteristics and
co-expression networks in different tissues, different
year-old roots, and in the roots of different genotypes.
Because drought stress restricts plant growth and devel-
opment [33], influencing ginseng production, PgbZIP
genes were further studied in response to drought stress
in ginseng.

Results

Identification of PgbZIP genes

A total of 1,957 transcript sequences containing the
bZIP domain were identified from Database A consisting
of 248,993 transcripts. As the conserved domains of 1,684
of the 1,957 transcripts were incomplete or out of ORFs
(open-reading frames), the remaining 273 transcripts that
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contain complete bZIP domains in their ORFs were iden-
tified as the PghZIP gene transcripts for Jilin ginseng.
These 273 transcripts had a sequence length of 210 to 3,
651 bp, with an average length of 1,449 bp (Additional file
1: Table S1). Analysis showed that these 273 transcripts
were alternatively spliced from 91 PgbZIP genes [34]. Of
these 273 PgbZIP transcripts, 190 contained full-length
ORFs that were derived from 62 PghbZIP genes. The full-
length proteins encoded by the 190 PgbZIP transcripts
contained amino acids varying from 46 (PghZIP84) to
785 (PgbZIP63-1), with an average of 294 amino acids
(Additional file 2: Table S2). In comparison, 45 (49 %)
of the 91 Jilin ginseng PghZIP genes identified in this
study were orthologous to 111 (76%) of the 146
Korean ginseng PgbZIP genes. The remaining 46
(51%) of the Jilin ginseng PgbZIP genes were newly
discovered or Jilin ginseng-specific (Additional file 3:
Table S3; Additional file 4: Fig. S1).

Phylogeny and conserved motifs of the PgbZIP gene
family

The longest transcript for each of the 62 genes contain-
ing a full-length ORF was used to construct the NJ
(neighbor-joining) phylogenetic tree of the PgbZIP gene
family. Fifty-six bZIP genes that were identified from
Arabidopsis (20 AtbZIP genes), rice (19 OsbZIP genes)
and tomato (17 SIbZIP genes) (Additional file 5: Table
S4) were used as outgroups. The 62 PgbZIP genes were
clustered into ten clades, defined ten groups in this
study, with the AtbZIP, OsbZIP and SIbZIP genes from
Arabidopsis, rice and tomato (Fig. 1a). This result sug-
gested that the PgbZIP gene family is an ancient gene
family that originated before splitting between the
monocot (rice) and dicot (Arabidopsis and tomato)
plants. The PgbZIP gene family has the same number of
groups as the AtbZIP, OsbZIP or SIbZIP gene family [8],
but consists of more groups than the bZIP gene family
of castor bean [35], cucumber [36] or sorghum [37].
Group A of the PghZIP gene family has the largest num-
ber of PghZIP genes, with 11 PgbZIP genes and Group
H has only one PgbZIP gene (PghbZIP13). Similarly, we
also constructed the MP (maximum parsimony) tree for
the PgbZIP gene family (Additional file 6: Fig. S2). The
MP tree was essentially the same as the NJ tree, with a
difference from the NJ tree in grouping of only
PgbZIP08, PgbZIP09 and PgbZIP84, which was likely due
to their low bootstrap confidences for both the NJ and
MP trees.

Twenty conserved motifs were identified from the pu-
tative proteins encoded by the 62 PgbZIP genes that
were spliced into transcripts with full-length ORFs
(Additional file 2: Table S2). The distribution of these 20
conserved motifs in the 62 PghZIP genes is shown in
Fig. 1b. Motif 1, annotated as the bZIP domain, is
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presented in all 62 PgbZIP genes of the gene family. The
putative proteins of most PghZIP genes in a group of the
gene family usually have a similar set of motifs (Fig. 1b).
For instance, the putative proteins of most PghZIP genes
of Group A contains Motifs 3, 12, 15, 16 and 17; those
of Group D harbor Motifs 2, 4, 6, 7, 8, 13 and 20; and
those of Group G share Motif 11. Moreover, some
groups of the PgbZIP gene family also share the same
motif. For instance, Groups G and S both possess Motif
10, and Groups F and G are common in Motif 14. These
results suggested the similarities of the PgbZIP genes in
functionality.

Functional differentiation of the PgbZIP gene family

We examined the functional differentiation of the
PgbZIP gene family by categorizing the 273 PgbZIP gene
transcripts using Gene Ontology (GO). Two hundred
fifty-one (91.9%) of the 273 PgbZIP gene transcripts
were annotated and categorized into all three primary
categories, Biological Process (BP), Molecular Function
(MF) and Cellular Component (CC) (Fig. 2a; Additional
file 7: Table S5). BP contained 235 PgbZIP transcripts,
MP contained 249 PgbZIP transcripts and CC had two
PgbZIP transcripts (Fig. 2a). At Level 2, these 251
PgbZIP gene transcripts were categorized into five

subcategories, including two BP subcategories (transcrip-
tion DNA-templated and regulation of gene expression),
two MF subcategories (nucleic acid binding transcription
factor activity and DNA binding), and one CC subcat-
egory (cytosol) (Fig. 2b). Of these 5 subcategories, all ex-
cept cytosol were enriched in number of PgbZIP
transcripts (P < 0.01).

The PgbZIP gene transcripts expressed in 14 tissues
(Fig. 3a) of a four-year-old plant, the four-year-old roots
of 42 genotypes (Fig. 3b), and the roots of four differ-
ently aged plants (Fig. 3c) were also categorized, respect-
ively. These PgbZIP transcripts were also categorized
into the above mentioned five subcategories, but the
numbers of the PghZIP gene transcripts categorized into
the five subcategories varied substantially across tissues,
genotypes and developmental stages. These results to-
gether demonstrated the functional differentiation of the
PgbZIP gene family and also confirmed their functional
consistency across tissues, genotypes and developmental
stages.

Expression characteristics of the PgbZIP gene transcripts

To characterize the expressions of the PgbZIP genes, the
273 PgbZIP transcripts were investigated in expression
in different tissues, different year-old plant roots, and
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Fig. 2 Functional categorization and GO term enrichment of the PgbZIP gene transcripts. a Venn diagram of numbers of the PgbZIP transcripts
categorized into the biological process (BP) (235 transcripts), molecular function (MF) (249 transcripts) and cellular component (CC) (2 transcripts)
categories. b Subcategories (Level 2) into which the PgbZIP transcripts are categorized and their enrichments. The GO terms of the transcripts
expressed in 14 tissues of the four-year-old plant used for identification of the PgbZIP genes as the background control for the enrichment
analysis. “**", significant at P < 0.01; NS, not significant at P <0.05

the four-year-old roots of different genotypes (Add-
itional file 8: Table S6). The PgbZIP transcripts were
used for this experiment because different transcripts
spliced from one gene may have different biological
functions [38]. The expressions of the PgbZIP transcripts
varied dramatically, ranging from 0.0 TPM to 307.7
TPM, to 178.5 TPM, and to 169.9 TPM among different
tissues, different year-old plant roots, and different geno-
types, respectively.

For different tissues of a four-year-old plant, 248
(91 %) of the 273 PgbZIP transcripts expressed in at least
one tissue (relative to the reference transcriptome), but
most (77 %) expressed in two or more tissues. Sixty-
eight (25 %) PgbZIP transcripts expressed in all 14 tis-
sues and 37 PgbZIP transcripts (14 %) showed tissue-
specific expressions (Fig. 4a). For different developmen-
tal stages, 167 (61 %) of the 273 PgbZIP transcripts
expressed at least in one of 5-, 12-, 18- and 25-year-old

plant roots, 93 (34 %) expressed at all four developmen-
tal stages, 35 (13%) were developmental stage
expression-specific, and 39 (14 %) expressed at two or
three of the developmental stages (Fig. 4b). For the four-
year-old roots of different genotypes, 208 (76 %) of the
273 PgbZIP transcripts expressed in at least one geno-
type, 55 (20 %) expressed in all 42 genotypes, 12 (4 %)
were genotype expression-specific, and 141 (52 %)
expressed in 2—41 genotypes (Fig. 4c). For individual tis-
sues, root developmental stages or genotypes, from 40 -
60 % of the 273 PgbZIP transcripts expressed (Additional
file 9: Fig. S3).

Furthermore, gene expression heatmaps were con-
structed for the 273 PghZIP transcripts that expressed in
different tissues (Fig. 5a), different year-old plant roots
(Fig. 5b) and the four-year-old roots of different geno-
types (Fig. 5¢) to estimate their co-regulations and ex-
pression patterns. The results showed that a number of
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Fig. 3 Variation of the functional categories of the PgbZIP transcripts. a Number variation of the PgbZIP transcripts categorized into a subcategory
among 14 tissues of a 4-year-old plant. b Number variation of the PgbZIP transcripts categorized into a subcategory among the 4-year-old roots
of 42 genotypes. ¢ Number variation of the PgbZIP transcripts categorized into a subcategory among the roots of differently aged plants

the PgbZIP transcripts had identical expression patterns
across the 14 tissues, four different developmental stages
or 42 genotypes, suggesting that they were co-regulated.

The co-expression network of the PgbZIP genes

To assess the potential functional relationships among
different members of the PgbZIP gene family, the co-
expression network of its 91 PgbZIP genes was con-
structed based on the expressions of their 273 tran-
scripts in the four-year-old plant roots of 42 genotypes
at a P<0.05 (Fig. 6). Two hundred seventy-three func-
tionally unknown Jilin ginseng gene transcripts were
randomly selected from Database A as the negative con-
trols. Consequently, 208 of the 273 PgbZIP transcripts
formed a co-expression network that was composed of
208 nodes, 1,994 edges (Fig. 6a), and 18 clusters (Fig. 6b).
In comparison, the co-expression network of the PghZIP
transcripts was much more robust than that constructed
from the 273 randomly-selected unknown ginseng tran-
scripts at all significance levels from P < 5.0E-02 through
P<1.0E-08 (Fig. 6¢,d). Statistical analysis confirmed the

tendency that PgbZIP transcripts was more likely to
form a co-expression network than the randomly-
selected unknown ginseng transcripts (Fig. 6e,f). These
results concluded that the members of the PgbZIP gene
family were more likely to form a co-expression net-
work, suggesting that they likely function correlatively.

Response of the PgbZIP gene family to drought stress

To test whether the PghZIP gene family functions in plant
response to drought stresses, five PgbZIP genes, PghZIP25,
PgbZIP38, PgbZIP39, PgbZIP53 and PgbZIP54, were ran-
domly selected from the PghZIP gene family and exam-
ined in plant response to drought stress. Ginseng
seedlings were treated with 20 % (w/v) PEG-6000 that is
widely used to drought-stress plants for 3, 6, 12, 24 and
48 h. The RWCs (relative water contents) of the seedlings
treated with and without PEG-6000 were determined and
compared. The RWCs of the seedlings treated with PEG-
6000 for 24 h were significantly reduced, relative to the
control seedlings not treated with PEG-6000. No signifi-
cant difference in RWC was observed for the seedlings
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treated with PEG-6000 for other time points (Additional
file 10: Fig. S4). Nevertheless, the expressions of all five
PgbZIP genes studied were up-regulated in the seedlings
treated with PEG-6000. Specifically, the expressions of
PgbZIP25, PghZIP38, PgbZIP39, PghZIP53 and PgbZIP54
in the seedlings treated with PEG-6000 for 3 h were up-
regulated by 4.1-, 12.6-, 8.6-, 4.7- and 18.9-fold, respect-
ively, over those in the untreated seedlings (P <0.01).
However, as the treatment time increased the expressions
of these five genes varied differently. For instance, the ex-
pression of PgbZIP25 reached the peak after the seedlings
stressed with PEG-6000 for 6 h, while no significant differ-
ent expression of the gene was observed in the treated
seedlings from that in the control seedlings after stressed
for 12 h, 24 and 48 h. PghbZIP38 was continuously up-
regulated in the seedlings treated by PEG-6000 for 3 h
through 24 h, but returned to the expression level as in
the control seedlings at 48 h. The expression of PghZIP53
in the seedlings stressed with PEG-6000 for 6 h through
48 h showed no significant difference from that in the
control seedlings. PghZIP39 and PgbZIP54 showed irregu-
lar expression variation in the seedlings stressed at differ-
ent time points (Fig. 7).

Discussion

We have identified 91 PgbZIP genes that expressed in a
four-year-old Jilin ginseng plant. The size of the PghZIP
gene family is comparable to those identified in rice (89
bZIP genes) [7], Brachypodium distachyon (96) [9], bar-
ley (89) [12], and sorghum (92) [37], but larger than
those identified in Arabidopsis (75) [10], castor bean
(49) [35], cucumber (64) [36] and grapevine (55) [39],
and smaller than those identified in maize (125) [8] and
soybean (160) [13]. This result suggests that the PghZIP
gene family is an intermediate-sized transcription factor
gene family. It seems independent of its genome size
and perennial growth nature.

Phylogenetic analysis in the present study shows that
the PgbZIP gene family is made up of 10 groups, which
is the same as the bZIP gene families identified in Arabi-
dopsis, rice, tomato and maize. This result suggests that
the PgbZIP gene family has a similar evolutionary trajec-
tory to those of Arabidopsis, rice, tomato and maize.
Notably, all ten groups of the PghZIP gene family are
grouped with the bZIP genes of Arabidopsis, tomato and
rice, implying that the PghZIP gene family has existed
before splitting between monocots (rice) and dicots
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genotype

(ginseng, Arabidopsis, tomato). The clustering of the
PgbZIP gene family and its significant sharing of con-
served motifs with those of Arabidopsis, rice and tomato
indicate that they have a common ancestor.

It has been reported that the bZIP genes are involved
in a variety of biological processes, including drought/os-
motic stress response [9, 36, 37], growth and develop-
ment and cell elongation [40, 41], organ and tissue
differentiation [42], and seed storage protein gene regu-
lation [17]. This study categorizes the PghbZIP genes into
five subcategories that belong to all three primary cat-
egories. This result suggests that the functionality of the
PgbZIP gene family has been substantially differentiated.
However, the functional differentiation of the gene fam-
ily was far smaller than those of the PgRLK gene family
(23 subcategories) [43] and the PgNBS gene family (36
subcategories) [44] identified in Jilin ginseng. Our result
indicates that the PgbZIP gene family mainly functions
in DNA-templated transcription, regulation of gene ex-
pression, and nucleic acid binding transcription factor
activity.

The PgbZIP gene family actively expresses in all tis-
sues, at all developmental stages and in all genotypes ex-
amined in this study, but only approximately 50 % of the

genes in the family expressed in a tissue, at a develop-
mental stage and in a genotype. Although the expression
activities of the genes in the PghZIP gene family vary
dramatically across tissues, at different developmental
stages and in different genotypes, most of them
expressed in multiple tissues and only a small portion
are tissue-, developmental stage- or genotype-specific.
Expression heatmap analysis reveals that co-regulation
of the PgbZIP gene expressions exists across tissues, de-
velopmental stages and genotypes, but the co-regulation
is observed only for a limited number of the PgbZIP
genes. The tendency of co-expression network formation
for the majority of the PgbZIP genes indicates the func-
tional correlation of the PgbZIP genes and also their
functional differentiation.

Previous studies showed that the bZIP genes isolated
from mung bean, adzuki bean, Arabidopsis, wheat, rice,
and Tamarix hispida were involved in plant response to
drought and salt stresses [45—49]. This study shows that
all five PgbZIP genes, PghZIP39, PgbZIP25, PgbZIP38,
PgbZIP53 and PgbZIP54, randomly selected from the A,
S, G, S and I groups of the PghZIP gene family, respect-
ively, responded to the drought stress stimulated by
PEG-6000. This result confirms that the PgbZIP gene
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conservation, functional differentiation, expression,
and network interaction. The PgbZIP gene family is
an ancient gene family and has substantially differen-
tiated in functionality. The expressions of the PgbZIP

family also plays a role in plant response to drought
stress. Nevertheless, additional research will be needed
to further investigate the tolerance of the PghZIP genes
to drought stress and their underlying molecular

mechanisms. genes varied spatially, temporally and across geno-
types, but they were more likely to form a co-
Conclusions expression network, suggesting their functional correl-

ation. It is observed that the PgbZIP gene family is

Ninety-one PgbZIP genes were identified from Jilin
involved in plant response to drought stress in

ginseng and systematically analyzed in phylogeny,
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ginseng. Together, the results of this study conclude
that the PgbZIP gene family consists of at least 91
gene members, its functionality has diverged but its
members remain functionally correlated at a substan-
tial degree, and it likely plays a significant role in
plant response to drought stress.

Methods

Databases

The Jilin Ginseng Transcriptome Databases developed
from 14 tissues of a four-year-old plant (Database A),
the roots of four different year-old plants (Database B)
[50], and the four-year-old roots of 42 genotypes col-
lected from Jilin province, China, defined from S1 to S42
(Database C) (Additional file 11: Table S7) [44, 51] were
used for this study. All the samples for the databases
were collected at the fruiting stage of the plants.

Identification of the bZIP gene family in ginseng

Three steps were conducted to identify the bZIP genes
from Jilin ginseng. First, the local Hidden Markov Model
(HMM) search was carried out with the bZIP domain
HMM profiles, including PF07716, PF00170, PF03131,
and PF012498 (http://pfam.sanger.ac.uk/), using the
HMMER3.0 software (HMMER: http://hmmer.wustl.
edu/). Then, BLAST search was performed at a threshold
of 1.0E-06 to identify putative bZIP genes from Database
A. Third, all putative bZIP genes were subjected to filtra-
tion by the Online Conserved Domain Search. The result-
ing bZIP genes were identified as PgbZIP genes that were
defined from PgbZIPO1 through PgbZIP91 and whose
transcripts were indicated with suffix, such as “_1, _2, and
so on” (Additional file 1: Table S1).

Comparison of the PgbZIP genes between Jilin ginseng
and Korean ginseng

To have an overview of the Jilin ginseng PgbZIP genes
with those identified from the genome database of Ko-
rean ginseng, we compared these two sets of PgbZIP
genes. The sequences of the Korean ginseng PgbZIP
genes were downloaded from the Korean Ginseng Gen-
ome Database (http://ginsengdb.snu.ac.kr/index.php) [52]
and aligned with the Jilin ginseng PghZIP genes identified
from the Jilin Ginseng Transcriptome Database (see
above). The sequences with an identity of >95% and an
alignment length of > 240 bp (the bZIP domain maximum
length) were identified as the orthologous genes of the
Jilin and Korean ginsengs in this study [53].

Phylogenetic analysis of the PgbZIP gene family in Jilin
ginseng

The Jilin ginseng PgbZIP genes were translated into pu-
tative proteins and those having complete ORFs were se-
lected as representatives for phylogenetic analysis of the
PgbZIP gene family, with one longest bZIP protein se-
quence per gene. The full-length protein sequences of
the bZIP genes of Arabidopsis thaliana (Arabidopsis),
Solanum lycopersicum (tomato) and Oryza sativa (rice)
were downloaded from the Plant TF Database
(PlantTFDB, v3.0) [54], the Sol Genomics Network
(SGN; http://solgenomics.net/) and the Rice Genome
Annotation Project RGAP (http://rice.plantbiology.msu.
edu/) [32], respectively, and used as outgroups. Then,
the PghbZIP-coding proteins of ginseng, along with those
of Arabidopsis, rice and tomato, were subjected to mul-
tiple sequence alignment. Finally, the phylogenetic tree
of the PghZIP gene family was constructed using MEGA
version 7.0 (http://www.megasoftware.net), with the
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Neighbor-Joining (NJ) and Maximum Parsimony (MP)
algorithm, respectively and 1,000 replications.

Conserved motifs of the PgbZIP genes

The ORFs of the full-length PgbZIP transcripts were first
identified using the online ORF Finder at NCBI (http://
www.ncbinlm.nih.gov/gorf/gorf.html). Then, the conserved
motifs of the PgbZIP proteins were searched using the
Motif Elicitation Tool (version 4.9.1, http://meme.sdsc.edu/
meme/cgi-bin/meme.cgi) [55] with a maximum number of
20. The minimum and maximum lengths of the conserved
motifs were 10 and 50 amino acids, respectively, and other
parameters were used as default [56].

Functional categorization of the PgbZIP transcripts

The 273 PgbZIP transcripts were submitted to Blast2GO
(Version 4.1.5) to perform GO analysis and categorization
according to their GO terms. The number of transcripts
categorized into each functional subcategory was subjected
to enrichment analysis [57] using the GO functional
categorization of 1,000 unknown ginseng gene transcripts
randomly selected from Database A [50] as controls. The
difference between the observed number of PgbZIP tran-
scripts and the expected number of randomly-selected un-
known ginseng transcripts categorized into each functional
subcategory (Level 2) were examined by Chi-square test.

Expressions and network analysis of the PgbZIP
transcripts

The expressions of the 273 PgbZIP transcripts were ex-
tracted from Databases A [50], B [50] and C [44], respect-
ively. The R programming language was used to construct
the expression heatmaps of the 273 PgbZIP transcripts
and the BioLayout Express®” software (Version 3.2) was
used to construct their co-expression networks [58].

Plant growth and drought stress

The seeds of Jilin ginseng, Damaya, were grown in the
pots containing nutritional soil for 4 weeks. Then, the
four-week-old seedlings were treated with 20% PEG-
6000 (polyethylene glycol 6000) to simulate drought
stress. PEG-6000 has been widely used to mimic drought
stress for study of plant response to drought stress [59—
61]. After treated with PEG-6000 for 3 h, 6 h, 12 h 24
and 48 h, the seedlings were harvested and weighed im-
mediately (fresh weight). The seedlings were then placed
in a vial containing distilled water at 4°C for 24 h, and
the saturated weight of the seedlings was measured.
Third, these seedlings were dried at 70°C for 72 h, and
their dry weights were measured. Finally, the relative
water contents (RWCs) of the control and drought-
stressed seedlings were measured using the following
formula: [(fresh weight - dry weight) / (saturated weight
- dry weight)] x 100 [59].
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RNA isolation and analysis by quantitative real-time PCR
After treated with PEG-6000 for O h, 3 h, 6 h, 12 h 24 and
48 h, the total RNAs of seedlings were isolated by TRIzol
reagent (Biotake, Beijing, China) and the first-strand
cDNAs were synthesized using the PrimeScript™ RT re-
agent Kit with gDNA Eraser (TaKaRa, Tokyo, Japan).
Ubiquinol-cytochrome C reductase (QCR) gene of ginseng
was selected as the reference gene [62]. Five PghbZIP genes,
PgbZIP25, PghZIP38, PghZIP39, PghZIP53 and PgbZIP54,
were randomly selected from the 91 PghZIP genes and the
primers specific for these genes were designed and synthe-
sized (Additional file 12: Table S8). qRT-PCR was con-
ducted using an Applied Biosystems 7500 Real Time PCR
System (Thermo Fisher Scientific,Waltham, USA) and
SYBR Premix Ex Taq™ II (TaKaRa, Tokyo, Japan). The
PCR conditions were 30 s at 95°C, and followed by 40 cy-
cles of 5 s at 95°C, 34 s at 60°C, and one cycle of 15 s at
95C, 60 s at 60°C, and finally, 15 s at 95°C. Three bio-
logical replicates were conducted and the gene relative ex-
pression was calculated using the 27241 formula.
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