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Abstract

Background: Study design is a critical aspect of any experiment, and sample size calculations for statistical power
that are consistent with that study design are central to robust and reproducible results. However, the existing
power calculators for tests of differential expression in single-cell RNA-seq data focus on the total number of cells
and not the number of independent experimental units, the true unit of interest for power. Thus, current methods
grossly overestimate the power.

Results: Hierarchicell is the first single-cell power calculator to explicitly simulate and account for the hierarchical
correlation structure (i.e., within sample correlation) that exists in single-cell RNA-seq data. Hierarchicell, an R-package
available on GitHub, estimates the within sample correlation structure from real data to simulate hierarchical single-cell
RNA-seq data and estimate power for tests of differential expression. This multi-stage approach models gene dropout
rates, intra-individual dispersion, inter-individual variation, variable or fixed number of cells per individual, and the
correlation among cells within an individual. Without modeling the within sample correlation structure and without
properly accounting for the correlation in downstream analysis, we demonstrate that estimates of power are falsely
inflated. Hierarchicell can be used to estimate power for binary and continuous phenotypes based on user-specified
number of independent experimental units (e.g., individuals) and cells within the experimental unit.

Conclusions: Hierarchicell is a user-friendly R-package that provides accurate estimates of power for testing hypotheses
of differential expression in single-cell RNA-seq data. This R-package represents an important addition to single-cell
RNA analytic tools and will help researchers design experiments with appropriate and accurate power, increasing
discovery and improving robustness and reproducibility.
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Background
Robust and reproducible science depends on the quality
of the experimental design. High quality experimental
design revolves around focused research questions or
hypotheses, appropriate and valid measures of the
central variables related to these hypotheses, statistically
sound analysis plans, and properly computed power

analysis [1]. While power analyses for genetic association
studies and bulk RNA-seq approaches are well-established
[2–6], such analyses remain a challenge in single-cell
RNA-seq studies due to intra-sample correlation inherent
in these data [7]. Such within sample correlations exist
because cells from the same individual share a common
genetic and environmental background that often leads to
greater similarity in gene expression among cells in the
same sample. Therefore, gene expression measures among
cells from the same sample have a hierarchical correlation
structure where cells nested within an individual are not
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independent units. At present, the correlative (hierarch-
ical) nature of these data is often neglected, in both power
analyses and tests of hypotheses (e.g., differential expres-
sion) [7]. This was recently highlighted in a valuable paper
by Andrews et al. which states that “current single-cell
differential expression tests treat each individual cell as a
biological replicate and cannot account for shared genetic
backgrounds or disease state”. [8] Ignoring the hierarchal
nature of single-cell RNA-seq data leads to studies that
are under powered and inappropriately analyzed [7], lead-
ing to incorrect inference, poor reproducibility, and finan-
cial investments in those errors. A contributor to these
flawed practices is the void of single-cell specific methods
and literature that properly account for this hierarchical
structure. However, just as Andrews et al. pointed out, we
– too - expect that, “as scRNA-seq is applied to larger
cohorts and comparison studies, [there will be] further
developments that lead to more accurate statistical models
for more complex experimental designs.” An excellent
starting place for more accurate statistical models are
accurate power calculations for improved study design.
Besides the classic, closed form, normal theory power

calculations (e.g., ANOVA) that make too many overly
simplistic assumptions (e.g., normality, independence),
the power calculators for testing single-cell RNA differ-
ential expression all simulate cells independently, with-
out the within-subject correlation structure [9–11].
Previously, we documented that in tests of differential
expression in single-cell RNA-seq data one needs to ac-
count for the within experimental unit (e.g., individual)
and showed that mixed-effects models with subject/indi-
vidual as a random effect is a practical and statistically
sound approach for these hypotheses [7]. Here, we
present an R-package, Hierarchicell, with two purposes:
1) it is a simulator of hierarchical single-cell RNA-seq
data, and 2) it computes power estimates using a mixed-
effects models for testing hypotheses of differential gene
expression in single-cell RNA-seq data. Hierarchicell
simulates single-cell RNA-seq data with a hierarchical
structure that closely resembles that of real data and can
be used by researchers to make informed choices on ex-
perimental design while balancing the trade-off between
cost and power. Our R-package is user friendly and flex-
ible to a variety of scenarios. It incorporates estimates
from real data [12] or allows users to input data (e.g., ei-
ther Fluidigm C1 or 10x Chromium technology, user’s
own pilot data) to obtain highly translatable and accur-
ate estimates of power tailored to their technology.
Within a well-characterized set of parameters that are
modeled from either a user-defined or the default single-
cell RNA-seq data, the tool provides users with estimates
of power relative to a given fold-change, significance
threshold, number of independent samples, and number
of cells per independent sample. In addition, the calculator

allows for the simulation of either continuous or binary
phenotypes of interest. For binary case-control analyses,
the user specifies the fold-change they desire to detect.
For continuous phenotypes, the user specifies the mean
and standard deviation of the phenotype and the degree of
correlation with expression the user desires to detect with
significance. Currently, most single-cell power calculators
only provide estimates for the required number of cells
rather than the required number of independent ex-
perimental units (e.g. individuals) or are not designed
for computing power to detect differences in expression
[13–15]. Other power calculations for single-cell RNA-
seq are based on bulk RNA-seq methods to estimate
the required number of samples [2, 3]. Estimating
power for a single-cell RNA-seq study using bulk RNA-
seq power calculators is a reasonable solution, but will
underestimate the study’s power by not incorporating
the additional power gained by sequencing numerous
cells per individual. This tool provides a valuable re-
source in an area of critical need for researchers look-
ing to optimize their study’s power and experimental
design relative to the hierarchical nature that exists in
all single-cell data.

Implementation
Overview of the Hierarchicell simulation engine
A step-by-step overview of the simulation procedure is
provided with R-code examples and detailed explana-
tions in Hierarchicell’s accompanying vignette. We
encourage users to review this vignette (available on
GitHub and in the Supplementary Materials) before
beginning to work with Hierarchicell. The single-cell
data in that example are used to estimate default simula-
tion parameters for our simulation engine. These data
were downloaded from the public accession number E-
MTAB-5061 [12]. These data were sequenced using the
Smart-Seq2 protocol and they include sequence data
from 3514 cells from 10 different individuals [12]. Genes
were previously normalized to account for the differ-
ences in library size [12]. After filtering down to high
quality alpha cells, our dataset contained gene expres-
sion values for 22,983 genes and 886 cells (across 10
individuals). This dataset is included as part of the R-
package for a number of reasons. Primarily, these data
demonstrate the general intra- and inter-individual cor-
relation patterns seen across a variety of single-cell data
of different cell types generated by different platforms
[7]. In addition, these data are not too large, allowing for
the rapid estimation of simulation parameters while also
minimizing the size of the R-package.
The simulation procedure was designed to simulate

independent genes in a way that approximates the
hierarchical structure of real data by empirically estimating
the range of parameters (i.e., grand mean of the transcript-
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per-million (TPM) values, within sample variance, between
sample variance, relationship between the grand mean and
dispersion, dropout) that define the observed distribution
of TPM values for a gene. To estimate these parameters,
genes were pruned to a set of uncorrelated genes that
captured the most representative patterns of detectable
TPM values, without the resulting parameter estimates
being primarily driven by dropout. Specifically, genes were
sequentially sampled one at a time and any other gene
having transcript abundances correlated (Spearman’s
correlation coefficient > 0.25) with the gene were removed.
To estimate the grand means independently from the
hierarchical correlation structure, the grand means
were estimated by sampling one cell from each individ-
ual and computing the mean TPM value 1000 times.
The mean of each of those means was used to approxi-
mate the grand mean. To approximate the variance of
the within-sample means (inter-individual variance),
the means of all non-zero TPM values were computed
across all cells within each individual and the variance
between those values was subsequently computed. To
estimate the within-sample dispersion values, the non-
zero TPM values were first used to compute a within-
sample variance and within-sample mean. Consistent
with the classical definition of the Negative Binomial
distribution’s dispersion parameter, the within-sample
dispersion parameter was then computed as:

αij ¼
μij

2

σ2ij
−μij ð1Þ

where αij represents the dispersion parameter, μij
represents the within-sample mean, and σ2ij represents

the within-sample variance for gene i and individual j.
The grand means and variances were computed empiric-
ally from the TPM values previously reported in six
different cell types across three different single-cell stud-
ies [12, 16, 17]. Once consistent patterns were identified
across cell types, alpha cells from the pancreas dataset,
were used as the model data for our simulation. A
gamma distribution was fit to the global mean of the
TPM values of each gene using maximum-likelihood
estimation. For each independently simulated gene i, a
random value was sampled from this gamma distribu-
tion to obtain a grand mean, μi. The variance of the
within-sample means (inter-individual variance) was
modeled as a linear function of the grand means, f1(μi)
and the within-sample dispersion (intra-individual
variance) was estimated as a logarithmic function of the
within-sample means, f2(μi), and the probability of drop-
out was estimated independently as a bounded gamma
distribution (Fig. 1). Using a normal distribution with an
expected value of zero and a variance computed by the
first linear relationship, f1(μi), a difference in means was

drawn for each of the individuals j in the simulation.
This difference was summed with the grand mean to ob-
tain an individual mean, μij. Three different methods
were used to simulate the number of cells per individual.
To simulate scenarios where each of the individuals had
the exact same number of cells, the number of cells de-
sired for each individual was fixed at a constant value. In
order to simulate scenarios where the number of cells
per individual demonstrated slight imbalance, a Poisson
distribution with a λ equal to the expected number of
cells desired for each individual was then used to obtain
the count of cells for each individual. To simulate
scenarios where the number of cells per individual
demonstrated greater imbalance, the number of cells per
individual were modeled as a Negative Binomial random
variable with a mean equal to the expected number of
cells and a dispersion parameter of one. For each gene i
and cell k assigned to an individual j, a read count value,
Yijk, was drawn from a Negative Binomial distribution
with an expected value equal to the individual’s assigned
read count value, μij, and a dispersion parameter, αij,
computed by the logarithmic function of the grand mean
f2(μi).

Overview of Hierarchicell power calculations
To compute power, transcripts-per-million (TPM) values
were simulated for each gene with the user-specified fold-
change or ρ parameter (Fig. 1). Fold-change should be
specified where users are interested in computing power
for two distinct groups. The ρ parameter, which represents
the degree of correlation between gene expression and a
simulated continuous phenotype, should be specified
where users are interested in computing power for associ-
ation analysis with a continuous trait. Here, fold-change is
a constant that was multiplied by the global mean gene
expression values to spike the expression of those genes in
the desired treatment group. The direction of the fold-
change was simulated with a Bernoulli distribution with a
probability of 0.5 to allow the direction of effect to vary
equally between groups.
We applied a two-part hurdle model with a random

effect for individual as directed in MAST’s reference
manual (7,18). Specifically, a log(x + 1) transformation of
the data was applied and the hurdle model computed to
find genes exhibiting differences in expression. Using
their same notation, the addition of random effects for
differences among persons is as follows:

logit Pr Zig ¼ 1jXi
� �� � ¼ Xiβg þWiγ j

Pr Y ig ¼ y
� ��Zig ¼ 1Þ ¼ N Xiβg þWiγ j; σ

2
g

� �
ð2Þ

where Yig is the expression level for gene g and cell i,
Zig is an indicator for whether gene g is expressed in cell
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i, Xi contains the predictor variables for each cell i, and
Wi is the design matrix for the random effects of each
cell i belonging to each individual j (i.e., the random
complement to the fixed Xi). βg represents the vector of
fixed-effects regression coefficients and γj represents the
vector of random effects (i.e., the random complement
to the fixed βg). γj is distributed normally with a mean of
zero and variance σ2g . To obtain a single result for each

gene, likelihood ratio or Wald test results from each of
the two components are summed and the corresponding
degrees of freedom for each component are added.
These tests have asymptotic χ2 null distributions; these
statistics can be summed and remain asymptotically χ2

because Zg and Yg are defined conditionally independent
for each gene. When summed together, these tests
provide a single test for the two-part hurdle model. Our
package also offers the ability to compute type 1 error
rates (and thereby power) for a variety of different

single-cell analysis approaches. New methods that prop-
erly handle within sample correlation will be integrated
as they become available.

Software implementation
All simulations and data were compiled in RStudio using
R-3.6.2 and is freely available on GitHub. The supple-
menting dataset that is included to run the R-package
without user input data was significantly downsized by
removing all of the genes correlated with a Spearman’s
correlation coefficient > 0.25. This filtering is one of the
first steps in our simulation procedure and doing so
greatly reduced the size of the source package to 475 KB
as well as the data structures held in memory during
use. Currently, the simulation typically completes in less
than 5 seconds, depending on user specifications. The
simulation-based power calculations, however, can take
much longer depending on the model that is used. For

Fig. 1 Overview of the hierarchicell simulation engine. The simulation procedure begins by estimating parameters from input data (blue) and then
combines that information with parameters specified by the user (yellow) to simulate an expression value, Yijk, for each gene i, individual j, and cell k
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the recommended two-part hurdle mixed model (MAST
with a random effect for individual), this can range any-
where from 1 to 20min per simulation-based estimate
of power for a given fold-change on a 64-bit Operating
system with 8 CPUs and 16 GB of RAM. We note that
these run times are heavily dependent on the number of
genes, the sample size, the number of cells per individual
specified, and the number of CPUs available.

Results and discussion
Previously, we demonstrated that our simulation recapit-
ulates the most important aspects of single-cell gene
expression data, particularly the hierarchical structure of
single-cell RNA-seq data which is rarely accounted for
in differential expression analysis [7]. We also applied
our simulation engine to demonstrate that mixed models
are a statistically sound method that accounts for the
within sample correlation and has appropriate type 1
error control without sacrificing power [7]. In addition,
we provided power estimates for binary outcomes across
a range of experimental conditions to assist researchers
in designing appropriately powered studies [7].
We previously reported power calculations for tests of

differential expression in single-cell RNA-seq studies for
binary phenotypes (i.e., case/control treatment groups)
[7]. Hierarchicell now also allows users to estimate
power for detecting associations between continuous

traits and single-cell gene expression (Fig. 2). The simu-
lated expression data can be computed over a range of
correlations with the magnitude of expression in each
individual’s cells, while accounting for the hierarchical
structure of these data.
As expected, increasing the number of independent

experimental units (e.g., individuals) in a study is the
best way to increase power to detect true differences
between traits measured at the individual and not indi-
vidual cell level (Fig. 3a). Power calculations for binary
phenotypes consisting of 10 individuals per treatment
group reveal that there are only marginal gains in power
when more than 100 cells per individual are sampled for
a particular analysis unit (Fig. 3b). We also note that
methods that do not account for within person correl-
ation grossly overestimate power. For example, when es-
timating power with an approach that estimates the
power for cells as independent units (assuming a type 1
error rate of α = 0.05, a fold change of 1.3, 10 individuals
per treatment and 100 cells per individual), the power is
overestimated as 0.93 instead of 0.71 when appropriately
accounting for the within person correlation. Power
calculations for continuous phenotypes, with the same
sample sizes and constant within-person correlations
among cells, demonstrate even smaller gains in power
when more than 100 cells per individual are sampled for
a particular analysis unit (Fig. 3c). The gains in power

Fig. 2 tSNE plots of gene expression data simulated to correlate with a continuous variable. The continuous phenotype is simulated with normal with
a mean of 22 and standard deviation of 5 and correlates at various levels with gene expression. In the top left panel, the correlation between gene
expression and the simulated phenotype is 0.99. In the top right it is 0.67, on the bottom left it is 0.33, and on the bottom right it is 0.01
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from sampling more cells per individual will decrease as
the numbers of independent experimental units increase
(Fig. 3d). This is true for both types of analyses. As the
degree of correlation among cells within a person de-
creases and approaches zero, rarely observed, the value
tradeoff between independent experimental units and
individual cells will vary. Further, we note that if the

cell-type of interest has much more or much less zero-
inflation (i.e., less information), then the gains in power
from sampling more cells may be greater or smaller,
respectively. This is why estimating the data structure of
the cell types of interest from preliminary data is a
critically important feature of our Hierarchicell package.
To consistently identify fold-change differences of at

Fig. 3 Power calculations using MAST with a random effect for individual. Power curves for various, but likely, single-cell scenarios using MAST
with a random effect for individual. Power is computed at α = 0.05. Panel a demonstrates differences in power when sample sizes range between
5 individuals per group to 100 when the number of cells per individual is held constant at 250. Panel b demonstrates the differences in power
when increasing the number of cells per individual (100, 250, 500, 1000) for 10 individuals per group. Panels c and d demonstrate the very minor
differences in power by increasing the number of cells per individual (100, 250, 500, 1000) when testing for association with a continuous trait for
20 individuals and 100 individuals, respectively
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least 1.2 as statistically significant (power > 0.80), we
approximate that researchers will need a minimum of 40
samples per group and 100 cells per sample in a classical
case/control design. To consistently identify genes corre-
lated with a correlation coefficient of 0.4 with a pheno-
type (power > 0.80), we approximate that researchers will
need a minimum of 100 samples and 100 cells per
sample.
As experiments get larger, computational time will

increase. Future work will parallelize the code. To more
rapidly close in on plausible sample size options, a re-
searcher can apply the aggregate (“pseudo-bulk) methods
power estimates and as one approaches feasible design
shift to refining the estimates using the two-part hurdle
mixed model employed here. However, it is important to
do this refining step given the differences between these
two approaches and the types of scenarios where aggrega-
tion methods will be underpowered [7, 18].
Future iterations of this package will incorporate any

novel single-cell RNA-seq differential expression methods
that properly account for the within sample correlation. In
addition, we will parallelize the code and improve the
speed of software by building components of the software
in other languages (such as C++ via rcpp), and/or storing
results of a large number of scenarios for quick and easy
access to the necessary information. Future developments
would be to incorporate the relationship between power
and the variance explained by an effect, not simply fold-
change between treatments. In real data, the variances
explained by an effect fluctuate greatly among genes and
cell types. While the simulated expression data herein
have variances that are modeled after real data and are
allowed to fluctuate by genes, simulating a direct relation-
ship between the variance and an effect will be a meaning-
ful addition to this work.

Conclusions
To date, none of the primary power calculation methods
are directly applicable for differential expression analysis
with single-cell RNA-seq data. Here, we present an R-
package, Hierarchicell, with two purposes: 1) simulation
of hierarchical single-cell RNA-seq data, and 2) compu-
tation of power estimates using a mixed-effects models
for testing hypotheses of differential gene expression in
single-cell RNA-seq data. Hierarchicell allows for a range
of inputs and parameter settings and even the evaluation
of various single-cell specific methods, but encourages
using linear mixed models with individual as a random
effect for both binary and continuous outcomes, as im-
plemented in MAST [7, 19]. We recommend these
mixed effects models because they retain appropriate
type 1 error rates while maintaining power. Proper cal-
culation of statistical power coupled with proper analysis
methods that account for the correlation among cells

from the same individual will increase robustness and
reproducibility of single-cell studies, thereby reducing
the cost while accelerating the rate of scientific
discovery.

Availability and requirements

� Project name: hierarchicell
� Project home page: https://github.com/kdzimm/

hierarchicell
� Operating system(s): Linux, Mac, and PC
� Programming language: R
� Other requirements: No
� License: CC0
� Any restrictions to use by non-academics: No
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RNA-Seq: Sequencing technique which uses next-generation sequencing to
reveal the presence and quantity of RNA; MAST: Model-based Analysis of
Single-cell Transcriptomics
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