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Abstract

Background: The white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree
hosts. Two Ganoderma species, a North American taxon, G. zonatum and an Asian taxon, G. boninense, have
primarily been found associated with live palm hosts. During the host plant colonization process, a massive
transcriptional reorganization helps the fungus evade the host immune response and utilize plant cell wall
polysaccharides.

Results: A publicly available transcriptome of G. boninense - oil palm interaction was surveyed to profile transcripts
that were differentially expressed in planta. Ten percent of the G. boninense transcript loci had altered expression as
it colonized oil palm plants one-month post inoculation. Carbohydrate active enzymes (CAZymes), particularly those
with a role in lignin degradation, and auxiliary enzymes that facilitate lignin modification, like cytochrome P450s
and haloacid dehalogenases, were up-regulated in planta. Several lineage specific proteins and secreted proteins
that lack known functional domains were also up-regulated in planta, but their role in the interaction could not be
established. A slowdown in G. boninense respiration during the interaction can be inferred from the down-
regulation of proteins involved in electron transport chain and mitochondrial biogenesis. Additionally, pathogenicity
related genes and chitin degradation machinery were down-regulated during the interaction indicating G.
boninense may be evading detection by the host immune system.

Conclusions: This analysis offers an overview of the dynamic processes at play in G. boninense - oil palm interaction
and provides a framework to investigate biology of Ganoderma fungi across plantations and landscape.
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Background

The Ganoderma genus in the order Polyporales contains
laccate (shiny) shelf fungi found in temperate and
tropical forests and urban landscapes. Ganoderma is a
diverse genus of wood decay fungi, with both opportun-
ist species that grow on decaying or dead wood, and
pathogenic species that attack and kill trees. Wood-
decay fungi exist across a degradation continuum
depending on the plant cell wall components they de-
compose [1]. Brown-rot fungi breakdown cellulose but
cannot metabolize lignin, whereas, white-rot fungi, like,
Ganoderma, carry the necessary enzymes needed to
mineralize lignin, in addition to enzymes that degrade
cellulose and hemicellulose [2].

As with other macrofungi, species of Ganoderma were
traditionally described based on their macromorphology,
host and geography [3-5]. In North America, 13 species
of Ganoderma were resolved molecularly [6], with add-
itional species recognized in Europe and Asia [7]. Multi-
locus phylogeny clustered Ganoderma taxa into three
clades that were not constrained by geographical origin
[6, 7]. Clade C contains two species, G. zonatum, native
to North America and its sister species from Asia, G.
boninense. Both species are found in sub-tropical and
tropical regions and have been collected from the mono-
cot plant host, palms, family Arecaceae.

Palms are ‘the’ iconic plant species of the tropics.
There are ~ 2600 species of palms that dot the landscape
in tropical and sub-tropical ecosystems. Palms are an
important part of the social and economic spheres, both
globally and locally. Even though palms are well-known
for three edible products i.e. coconuts, dates and oil,
they are a source for other commodities like palm syrup,
nuts, jams/jellies, wine, dyes, carnauba wax, rattan cane
and wood. In 2018, palm oil accounted for 40.2% of the
world’s vegetable oil production, with 85% of the total
palm oil being produced in Malaysia and Indonesia [8].
In 2016, an industry based on one commodity, palm oil,
generated 2.9 million jobs world-wide and contributed
$39 billion to the global GDP [9].

G. boninense, a soil-borne fungus that colonizes its
host through the roots [10], poses a serious threat to oil
palm plantations in southeast Asia [11]. Similarly, G.
zonatum has been described as a pathogen on palms in
the southeastern US [12]. Both Ganoderma species
associate with palms and may share mechanisms that fa-
cilitate palm tissue colonization. Genomic and transcrip-
tomic analyses and comparisons can help us understand
these mechanisms and develop better control methods.
To understand the gene expression changes that occur
in the white-rot fungus G. boninense as it interacts with
its oil palm host, Elaeis guineensis, a publicly available
RNAseq dataset was obtained from GenBank and ana-
lyzed. The objective was to identify the genes that are
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differentially expressed during the interaction and allow
G. boninense to colonize and cause disease in its palm
host. Insights into the mechanics of Ganoderma-palm
interaction gained from G. boninense pathosystem will
inform and address questions related to the biology and
disease ecology of G. zonatum.

Results
The Ganoderma boninense genome [13] and G. boni-
nense - Elaeis guineensis interaction transcriptome [14],
were obtained from NCBI and analyzed. An average of
156 and 131 million RNAseq reads were generated from
three biological replicates for the two growth conditions:
(1) in vitro, i.e., G. boninense grown on artificial media,
and (2) in planta, ie., G. boninense interacting with
roots of oil palm seedlings, respectively. The reads from
the in vitro (82%) and in planta (57%) growth conditions
that mapped to the G. boninense genome (Table 1) were
assembled to generate a dataset of 15,536 loci. A total of
1560 differentially expressed genes (DEGs; absolute
value [log,FC > 2]; pagj <0.05) were identified with 669
and 891 transcripts that were up- and down-regulated,
respectively, in planta when compared to the artificial
media (Additional file 1: Table S1). Principal component
analysis using the transformed normalized counts
showed that the first component explained 89% of the
variation and clearly separates the transcriptome samples
derived from in vitro and in planta growth conditions
(Fig. 1). The three replicates within the in planta group
had low variation, with some separation of the G. boni-
nense transcriptome obtained from samples grown
in vitro along the second principal component (Fig. 1).
The assembled loci and derived proteins were anno-
tated by comparing the sequences with different data-
bases (Fig. 2). A search against the Pfam and NCBI
Conserved Domain Database (CDD) databases using the
Reverse Position-Specific BLAST (RPS-BLAST) [15],
also known as CD-search (Conserved Domain Search),
identified protein domains in 59.4% (9228) of the assem-
bled transcript loci (Fig. 2a). Although Pfam models

Table 1 Mapping statistics of the reads aligned to the
Ganoderma boninense genome

Reads (Total)

Reads (Mapped) Percent mapped

In vitro (Rep1) 136,217,626 113,700,928 83.5
In vitro (Rep2) 167,719,900 141,320,277 843
In vitro (Rep3) 165,359,157 133,937,580 810
In vitro (Avg) 156,432,228 129,652,928 829
In planta (Rep1) 163,887,796 88,314,747 539
In planta (Rep2) 83,977,832 44,634,655 532
In planta (Rep3) 146,185,776 95,274,605 65.2
In planta (Avg) 131,350,468 76,074,669 57.4
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Fig. 1 Principal component analysis of six Ganoderma boninense samples used for RNAseq. Principal component analysis (PCA) was conducted
using transformed normalized read counts for 15,536 transcript loci. The three replicates for each group, fungal growth in vitro and in planta, are
color coded red and green, respectively
J

contribute to the NCBI-CDD, the use of Pfam database
provided annotation for an additional ~ 1.5% of the total
as well as differentially expressed transcripts (Fig. 2a, b).
Secreted proteins (402, 4.5%) and CAZymes (253, 2.8%)
were identified from predicted protein coding regions
(8899) extracted from the RNAseq transcript loci with
domain annotations being available for 58.8% of the se-
creted proteins and 90.1% CAZymes (Fig. 2a). Approxi-
mately 72% (1119) of the transcript loci that comprise
the in planta DEGs dataset had an annotation and
55.2% of the secreted DEGs and 90.8% of the CAZyme
DEGs contained annotated protein domains (Fig. 2b).

CAZymes and other genes involved in lignocellulosic
degradation

Various classes of carbohydrate active enzymes
(CAZymes) were differentially regulated during the G.
boninense - oil palm interaction compared to in vitro
growth on artificial medium (Fig. 3). The auxiliary activ-
ities (AA) family of CAZymes that are present in white-
rot fungi showed increased expression as the fungus G.

boninense was colonizing the root tissue of its oil palm
host. CAZymes belonging to six families of AA enzymes
that specialize in utilizing lignocellulosic substrates and
associated byproducts were up-regulated: five multicop-
per oxidases (AA1l_1), four glucose-methanol-choline
(GMCQC) oxidoreductases (AA3), one each of peroxidase
(AA2), copper radical oxidase (AA5), and benzoquinone
reductase (AA6). Additionally, an enzyme with copper-
dependent lytic polysaccharide monooxygenase (LPMO)
activity that belongs to the AA9 (formerly GH61) family
also showed higher expression in G. boninense during its
interaction with the plant host.

CAZymes may contain additional non-catalytic mod-
ules, carbohydrate binding modules (CBMs), that aid in
binding to carbohydrates. At least two enzymes that
contain the fungal specific cellulose binding CBM1 do-
main and one enzyme with galactose binding CBM51
domain were up-regulated as G. boninense was utilizing
carbon from its oil palm host.

Another family of CAZymes called glycoside hydrolases
(GH) target the cellulosic, hemicellulosic, and pectic
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Fig. 2 Number of transcripts and differentially expressed genes that were annotated. Venn diagram shows the overlap between database sources
for annotated a transcript loci and b differentially expressed genes. CDD - Conserved Domain Database (NCBI), Pfam - Protein family database,
Secreted - proteins with secretion signal, CAZyme - Carbohydrate Active enZymes
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compounds in plant cell walls. In the interaction between
G. boninense and its host, enzymes involved in hemicellu-
lose breakdown were up-regulated, including two xyloglu-
can hydrolases (GH16 or endo-1,3(4)-B-glucanase EC
3.2.1.6) that target cereal D-glucans, one a-glucosidase
(GH31), two B-galactosidases (GH35, GH35-CBM51), one
GH]1, six GH3 including two GH3s that are secreted and
two a-glucuronidases (GH115, secreted GH115-CE15)
that remove glucuronic acid residues from xylans were
up-regulated. CAZymes in the GH family that target pec-
tins (including two GH28, one GH43, one GH51, one
CE12), and two P-glucuronidases (GH79) were also up-
regulated. Additionally, four a-mannosidases (one each
belonging to GH families GH38, GH47, GH92, and
GH125) showed elevated expression in G. boninense dur-
ing its interaction with oil palm root tissue.

Two pectate lyases (PL3), one secreted PL8 protein
and one alginate lyase domain containing protein from
the CAZyme polysaccharide lyase (PL) family of en-
zymes were also up-regulated during the interaction.

Oxalic acid biosynthesis and degradation

In the G. boninense transcriptome, two copies of oxalate
decarboxylases (ODCs) were significantly up-regulated
in planta. In fact, these two ODCs were among the top
20 most up-regulated DEGs. A third copy of ODC was
up-regulated while G. boninense was growing on the
artificial medium. Two putative copies of oxaloacetate
acetylhydrolase, a gene responsible for oxalate biosyn-
thesis, were identified in the G. boninense genome but
were not differentially expressed during the interaction.
Four copies of formate dehydrogenases (FDHs) that de-
grade formate were differentially expressed. One FDH

copy was up-regulated as G. boninense was interacting
with the oil palm host, whereas three copies were up-
regulated during growth on the artificial medium.

Microbe-associated molecular patterns (MAMPs)

Chitin, a major component of fungal cell walls, also acts
as a potent microbe-associated molecular pattern
(MAMP) that can be recognized by the plant immune
system. A chitin synthase (CHS), chitinase and endochi-
tinase were up-regulated during the G. boninense - oil
palm interaction. Fungal genes involved in chitin break-
down, including five chitinases, two beta-glucanases and
one beta-acetyl hexosaminidase [16], were down-
regulated during the interaction. Another modular chiti-
nase that contained a PX domain was also up-regulated
during the interaction. A PX domain carrying chitinase
protein described earlier in Phanerochaete chrysospor-
ium was shown to be expressed but chitinolytically in-
active [17]. Furthermore, four G. boninense proteins
with a CBM50 domain, also known as chitin binding
LysM domain, were down-regulated during this
interaction.

Additionally, the expression of pathogenicity related
genes known from other pathosystems was analyzed in
this interaction. A secreted protein belonging to a class
of lectins called the ricin B-like (R-type, p-trefoil) lectin,
another putative MAMP, was down-regulated in this
interaction. Thirteen genes belonging to four gene
families, including four hydrophobins, three cerato-
platanins, five thaumatin-like proteins and three ferric
reductases were down-regulated. Similarly, three GPI-
anchored domain proteins, that are localized to the cell
wall and involved in signaling pathways in cell wall
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also up-regulated in G. boninense in planta. Moreover,
two copies of Hce2 homologs from G. boninense were
determined to be up-regulated in planta (log,FC =7.76,
Pag; = 2.61E-35; log,FC = 6.03, p,g = 1.03E-19).

Secreted and lineage-specific proteins

A total of 89 (22.1%) of the predicted secreted proteins
have an altered expression pattern when G. boninense
interacts with palm tissue (Fig. 4), including 38 proteins
up-regulated in planta. Six secreted proteins were iden-
tified as lineage-specific based on lack of similarity to
proteins in the NCBI nr database and no known Pfam
domains. Three of the secreted lineage-specific proteins
were in the top-20 most up-regulated genes during the
interaction. One of the most highly up-regulated genes
(logo,FC =12.03, p,gj=1.37E-71) is a secreted protein
that carries the CFEM domain, which is unique to fungi
[22]. Among the up-regulated secreted proteins four
were identified as hypothetical proteins and eight pro-
teins had domains characteristic of CAZymes.

Peptidases, transporters and other genes

Peptidases are involved in various activities ranging from
housekeeping to plant-pathogen interaction. Four S10
(carboxypeptidase Y) including one secreted S10, and
three other serine peptidases, S8 (subtilisin), S24 (LexA
repressor), and S53 (sedolisin), were up-regulated in
planta. Eleven aspartyl peptidases (APs) including two
secreted APs, and five metalloproteases including two
M48 (STE24), one each of M1 (membrane alanyl amino-
peptidase), M20 (glutamate carboxypeptidase), and M24
(methionyl aminopeptidase 1), were up-regulated in G.
boninense during the interaction. Two protease families,
S8 and M1, are two of the most common peptidase fam-
ilies found in fungi [23]. Additionally, one amino acid
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that target plant cell wall components were down-
regulated during growth on artificial medium.

Discussion
Our analyses of G. boninense transcriptome as it colo-
nizes its oil palm host revealed that genes in multiple
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biochemical pathways were differentially expressed early
during the interaction, primarily those involved in break-
down and assimilation of metabolites and complex
polysaccharides of plant origin, fungal biomass accumu-
lation, generation of microbe-associated molecular
patterns (MAMPs) and extracellular lineage-specific pro-
teins, and cellular respiration.

Several transcripts with a role in pathogenesis such as,
cerato-platanins, thaumatin-like proteins, ricin B-like
lectin, hydrophobins, and ferric reductases were down-
regulated in this interaction. Contrary to what was ob-
served in G. boninense - oil palm interaction, proteins
from three gene families, hydrophobins, cerato-platanins
and fungal pathogenesis-related CAP protein, were up-
regulated during the basidiomycete pathogen Moni-
liophthora roreri interaction with its host, cacao [27].
Host plants can sense cerato-platanin that is either
extracellular or present in the fungal cell wall and mount
a defense response [28]. Down-regulation of these
MAMPs, that have the potential to trigger a host im-
mune response, lends support to the hypothesis that
while maintaining stealth growth, G. boninense can stay
undetected and evade recognition by the host.

Besides their role in pathogenicity, these proteins play
roles in diverse molecular processes. In fact, three classes
of secreted proteins, i.e., cerato-platanin, thaumatin and
ricin B-like lectin, were reported to be developmentally
regulated in basidiomycetes during fruiting body forma-
tion [29]. Proteins with cerato-platanin domain were in-
volved in host-pathogen interactions, but these are not
necessarily virulence factors [28]. The carbohydrate
binding ricin B-like lectins isolated from mushrooms
have been studied as nematotoxins or entomotoxins [30]
but their role in plant pathogen interaction has not yet
been elucidated.

Similarly, other pathogenicity related proteins, such as,
CEEM, Hce2, cytochrome P450s and carboxylesterases,
that were up-regulated at the sampled infection time-
point also play a role in other diverse processes in fungi.
Homologs of C. fulvum Ecp2 (Hce2) are putative effec-
tors found in multiple fungal species that have possible
roles in stress response and adaptation to new ecological
niches [31]. Besides its role in lignocellulose degradation,
the cytochrome P450 gene family has also been catalo-
gued with pathogenicity related function in Armillaria
mellea [21]. CFEM domain proteins are involved in a
number of different activities, from host-pathogen inter-
action in Magnaporthe oryzae [32, 33] and Candida
albicans [34] to cell wall biogenesis in Saccharomyces
cerevisiae [35, 36].

During normal growth, chitin biosynthesis genes like
chitin synthases (CHS) and endochitinases [37] are
needed for hyphal development and maintenance of cell
wall integrity in fungi [38]. The observed up-regulation

Page 7 of 12

of CHS and endochitinases suggests that the fungus is
growing and increasing in biomass during the inter-
action. On the other hand, products of chitin break-
down, chitin oligosaccharides, can be recognized by the
plant LysM motif containing receptor proteins and elicit
immune response [39]. Fungal LysM proteins sequester
chitin oligosaccharides thereby preventing detection by
the host immune system, as demonstrated for LysM ef-
fector Ecp6 from the tomato pathogen, Fulvia fulva [40].
The LysM domains in fungi may also interact with chitin
from other fungal mycoparasites [41]. Besides chitin,
LysM domains may also bind another related molecule,
peptidoglycan, that is extensively present in bacterial cell
walls [42]. Therefore, the four down-regulated LysM
proteins might function in ecological niches where G.
boninense has to contend with other fungal or bacterial
competitors, like those encountered in the soil.

The RNAseq data acquired in this single time-point
pilot study provides a snapshot of the differentially
expressed transcripts during G. boninense-oil palm inter-
action. In artificial inoculation studies, Ganoderma colo-
nized rubberwood blocks are introduced in the palm
rhizosphere to initiate root infection. The length of time
it takes for G. boninense to colonize and kill the host de-
pends on a number of factors, including, the amount of
inoculum, proximity of inoculum to the roots, the soil
temperature and plant age [10]. Even though younger
palms can survive for 6-24 months after infection, foliar
symptoms are visible at 2 months post inoculation [10].
This suggests that the process of host colonization initi-
ated by G. boninense would be fairly advanced at 4 weeks
after inoculation, the time point when samples were col-
lected in the study analyzed here.

A wide range of conditions have been used to under-
stand the transcriptomic response of Ganoderma species
to different treatments but only one dataset [14] i.e. the
one analyzed in this study, had replicated measures of the
transcriptional changes that occur during G. boninense-
palm interaction. Early time points of 3-, 7- and 11-days
post inoculation were used to understand the host re-
sponse in G. boninense-oil palm interaction (NCBI Bio-
Project PRJEB27915; [43]). However, wood decay fungi act
slowly, and it is likely that early sampling of the inter-
action might not reveal much about the transcriptional
changes occurring during host colonization. RNAseq data-
sets that comprise of a single time-point at 4 weeks are
more likely to reveal components of the host colonization
process than multiple early time-points. For white-rot
fungi like Moniliophthora perniciosa, responsible for
witches’ broom on cacao, a longer time frame of 30 days
was used for RNAseq to document the transcriptional re-
sponses during host colonization [44]. Two additional
datasets, one from roots (NCBI BioProject PRJEB7252
[45];) and the other from leaves (NCBI BioProject
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PRJEB17971 [46];) also document the G. boninense-palm
interaction, but all replicates per treatment were pooled
before sequencing. Thus, the dataset analyzed here ap-
pears optimal for capturing the genes and processes im-
portant for G. boninense colonization of its palm host.

The presence of simple sugars can suppress the ex-
pression of fungal genes involved in breakdown and up-
take of complex sugars in a process known as carbon
catabolite repression (CCR). Addition of glucose de-
creased the secretion of lignocellulolytic enzymes in Pleur-
otus ostreatus [25]. The existence of CCR was also
demonstrated in a white-rot fungus, Dichomitus squalens
[26], a species closely related to Ganoderma. Analysis of
the transcriptome and proteome data showed that pres-
ence of glucose repressed the expression of ~7% genes,
primarily CAZymes and carbon catabolic genes, in D.
squalens [26]. In the current DEGs dataset, 28 (80%) of
the in planta expressed glycosyl hydrolases, that target
cellulose and hemicellulose components of plant cell wall,
were down-regulated when G. boninense was grown on
artificial media, a relatively simple carbon source as com-
pared to palm roots. Understanding the CCR mechanism
in white-rot fungi would facilitate the development of
modified strains with improved CAZyme transcription
profile needed for biofuel production.

White-rot fungi preferentially remove lignin [47] leav-
ing cellulose as the primary constituent of cells in
delignified plant cell walls [48]. Removal of lignin pro-
vides easy access to cellulose and hemicellulose that are
processed into oligo- and monosaccharides [49]. Thus,
breakdown of plant cell wall requires concerted effort
from different enzyme families specializing in targeting
specific components [49]. A number of G. boninense
carbohydrate active enzymes (CAZymes) were up-
regulated during colonization of palm lignocellulosic
substrate. Certain CAZymes, like, GH3, GH28, LPMO
(AA9, formerly GH61), PODs (class II peroxidases) and
MCOs (multi copper oxidases) that have expanded in
white-rot fungi [50] were up-regulated in planta in this
interaction. The CAZymes up-regulated early in the in-
fection process in another white-rot fungus, Heterobasi-
dion irregulare, such as, pectin degrading enzymes
(polysaccharide lyases and GH28) cell wall targeting en-
zymes (GH1, GH61) and enzymes with CBM1 modules
[51], were also found to be up-regulated in G. boninense.
In fungi, especially phytopathogens, the CAZyme pro-
files may be tailored to the cell wall composition of their
respective monocot or dicot hosts [52]. The enzyme pro-
file of G. boninense during growth on different carbon
sources would help determine if it has the capacity to
colonize substrates beyond those typically associated
with monocots.

Auxiliary enzymes are essential for facilitating the cell
wall degradation process even though these cannot

Page 8 of 12

breakdown lignocellulosic compounds. One large gene
family with auxiliary function in lignin modification is
the Cytochrome P450s that detoxify the aromatic bypro-
ducts resulting from lignin breakdown [53]. Another
auxiliary biochemical process facilitating lignin degrad-
ation is the halogenation and dehalogenation of aromatic
rings. Chloroperoxidases were shown to chlorinate
(halogenate) and cleave lignin components [54]. The ha-
logenated aromatic rings may then become substrates
for haloacid dehalogenase (HAD) enzymes that split
carbon-halogen bonds and play an auxiliary role in lig-
nin depolymerization. The in planta concerted expres-
sion of CAZymes, auxiliary enzymes like Cytochrome
P450s and HADs, other genes involved in oxalic acid
degradation and transporter proteins involved in shut-
tling toxic by-products and maintaining cellular homeo-
stasis, suggests that G. boninense was actively involved in
cellular decay when the plant tissue was sampled one-
month post inoculation.

Oxalic acid plays a role in pathogenesis in necro-
trophic fungi [55] as well as promoting degradation of
wood lignin in white-rot fungi [56]. But as oxalic acid is
toxic, specific genes like oxalate decarboxylases (ODCs)
belonging to the bicupin family and oxalate oxidases are
needed for its degradation [56]. Another class of genes,
formate dehydrogenases (FDHs), that breakdown the
formate generated by the ODC genes [56] were also up-
regulated. The up-regulation of oxalate breakdown genes
coupled with lack of oxalate biosynthesis gene expres-
sion in G. boninense suggests that it could also be a re-
sponse to counteract oxalate production by the host.

This study provides a glimpse into the transcriptional
changes that occur in G. boninense as it interacts with oil
palm roots. Another Ganoderma species described on
palms that is relevant in North American landscapes, G.
zonatum, groups with its sister species, G. boninense, in
clade C [6]. It remains to be seen whether convergent or
divergent evolution played a role in the origin of host pref-
erence for palms in these two lineages of Ganoderma.

Conclusions

This analysis identified Ganoderma boninense genes that
facilitate the colonization of roots of its oil palm host,
Elaeis guineensis. The expression of a number of
CAZymes involved in plant cell wall degradation and
other auxiliary enzymes, such cytochrome P450s and
HAD proteins, that function to breakdown byproducts of
degradation were up-regulated during the interaction. Sev-
eral G. boninense pathogenicity-related genes and those
responsible for oxidative phosphorylation and mitochon-
drial biogenesis were identified as down-regulated in
planta. In conclusion, this examination of G. boninense-
oil palm interaction offers a prelude to understanding how
white-rot fungi in the genus Ganoderma colonize palms.
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Methods

Data retrieval

Genome sequence for Ganoderma boninense isolate G3,
collected from North Sumatra province in Indonesia,
was downloaded from NCBI (BioProject PRINA421251;
[13]). The interaction of G. boninense isolate PER71 with
oil palm, Elaeis guineensis, was sampled at a single time
point, one-month post inoculation [14]. Briefly, the
experiment was comprised of two growth conditions: 1)
in vitro - G. boninense culture grown on artificial media
with three replicates (SRA samples, SRR8432491-
SRR8432493), and 2) in planta - E. guineensis roots in-
oculated with G. boninense colonized rubberwood blocks
in three replicates (SRA samples, SRR8432494-
SRR8432496). RNA was isolated from fungal cultures
and roots of five-month infected oil palm seedlings and
sequenced on the Illumina HiSeq 1000 platform. The
data for these six samples was downloaded from NCBI
(BioProject PRINA514399; [14]).

RNAseq analysis

A data analysis pipeline was built to identify and
characterize the RNAseq dataset (Fig. 5). The reads for
the six samples downloaded from NCBI were mapped to
the unmasked G. boninense genome using the splice-
aware aligner HISAT?2 ver.2.1.0 [57]. The resulting map-
ping files (SAM format) for each sample were converted
to compressed BAM format and sorted using SAMtools
ver.1.9 [58] before doing transcript assembly with String-
Tie ver.2.0.6 [59] (Additional file 2: Dataset S1) and esti-
mating raw counts for transcript abundance. The raw
counts matrix was formatted using ‘prepDE.py’, a python
script provided with StringTie, and used as input for dif-
ferential gene expression analysis with R v.3.6.3 package
DESeq?2 [60]. For each transcript locus, normalized read
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counts along with fold change and false discovery rate
(FDR)-adjusted p-values (p,q) were obtained from
DESeq2. Three criteria were used to define a set of dif-
ferentially expressed genes (DEGs), i) absolute value
[log,EC (fold change) > 2], ii) p-value adjusted for mul-
tiple testing, paq;<0.05, and iii) non-zero normalized
count values across all treatments. Heatmaps for DEGs
were generated using R v.3.6.3 package pheatmap
v.1.0.12 [61].

Annotation

The StringTie assembled transcript sequences (Add-
itional file 3: Dataset S2) were annotated using the Re-
verse Position-Specific BLAST (RPS-BLAST) tool [15]
from NCBI. RPS-BLAST utilizes a database of pre-
computed Position-Specific Score Matrix (PSSM) to
identify protein domains in either nucleotide or protein
query sequences. A standalone version of RPS-BLAST,
also known as CD-Search (Conserved Domain Search),
along with ‘rpsbproc’ a command line utility to process
RPS-BLAST results, were downloaded from NCBI FTP
ftp://ftp.ncbinlm.nih.gov/pub/mmdb/cdd/. Two pre-
formatted protein domain databases, NCBI Conserved
Domain Database (CDD [62];) and Pfam [63], containing
PSSMs were accessed from the above FTP service and
used to search the StringTie derived transcript dataset.
Protein domain name and descriptions were transferred
to the transcripts based on the CD-Search results. Add-
itionally, ENTAP (Eukaryotic Non-Model Transcriptome
Annotation Pipeline [64];) was used to annotate the
complete set of assembled transcripts. The ENTAP pipe-
line utilized DIAMOND [65] for protein alignment and
three databases, NCBI nr (v4), Uniprot (release-2020_01)
and fungal sequences from NCBI RefSeq (RefSeq-

Growth — in vitro, in planta

Reads

(3 replicates each)

Mapping HISAT2

Genome G. boninense G3 genome

Assembly StringTie

In planta expressed G.

Transcripts ; :
P boninense loci (15,536)

Expression DESeq2

Differentially expressed
669 (up); 891 (down)

DEGs

Annotation

Secreted (SignalP,

TMHMM, TargetP)
TransDecoder

CDD-search
(CDD; Pfam)

Fig. 5 Identification and annotation of transcripts and differentially expressed genes (DEGs). A schematic for the pipeline used to generate transcript
loci and identify differentially expressed genes (DEGs). The assembled transcripts were annotated both at the nucleotide and protein level
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release200.txt) were used to annotate proteins. The CD-
Search and ENTAP output for the DEGs was compared
manually. A discrepancy in the output from the two
pipelines, if any, was resolved by comparing to NCBI
BLAST search results. The results for a small percentage
(~2%) of DEGs were also manually curated using NCBI
BLAST.

The assembled transcripts were translated to proteins
using TransDecoder-ver.5.5.0 [66]. Two flags, a mini-
mum protein length of 50 amino acids (-m 50) and
‘--single_best_only’ were used. The resulting protein
dataset was parsed to retain proteins that started with a
Methionine at the N-terminus (Additional file 4: Dataset
S3). A simple custom pipeline was used to predict se-
creted proteins from the parsed protein dataset. Briefly,
proteins with a signal peptide (signalP-5.0b; [67]) that
lacked a transmembrane helix (tmhmm-2.0c; [68]) and
targeted to secretory pathway (targetP-2.0; [69]) were
considered as secreted proteins. Carbohydrate active en-
zymes (CAZymes) were predicted by using a k-mer
based tool called eCAMI (simultaneous enzyme Classifi-
cation And Motif Identification; [70]) that compared the
parsed protein dataset against the CAZy database [71].
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