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Abstract

Background: High-throughput transcriptomic datasets are often examined to discover new actors and regulators of
a biological response. To this end, graphical interfaces have been developed and allow a broad range of users to
conduct standard analyses from RNA-seq data, even with little programming experience. Although existing solutions
usually provide adequate procedures for normalization, exploration or differential expression, more advanced
features, such as gene clustering or regulatory network inference, often miss or do not reflect current state of the art
methodologies.

Results: We developed here a user interface called DIANE (Dashboard for the Inference and Analysis of Networks
from Expression data) designed to harness the potential of multi-factorial expression datasets from any organisms
through a precise set of methods. DIANE interactive workflow provides normalization, dimensionality reduction,
differential expression and ontology enrichment. Gene clustering can be performed and explored via configurable
Mixture Models, and Random Forests are used to infer gene regulatory networks. DIANE also includes a novel
procedure to assess the statistical significance of regulator-target influence measures based on permutations for
Random Forest importance metrics. All along the pipeline, session reports and results can be downloaded to ensure
clear and reproducible analyses.

Conclusions: We demonstrate the value and the benefits of DIANE using a recently published data set describing
the transcriptional response of Arabidopsis thaliana under the combination of temperature, drought and salinity
perturbations. We show that DIANE can intuitively carry out informative exploration and statistical procedures with
RNA-Seq data, perform model based gene expression profiles clustering and go further into gene network
reconstruction, providing relevant candidate genes or signalling pathways to explore. DIANE is available as a web
service (https://diane.bpmp.inrae.fr), or can be installed and locally launched as a complete R package.
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Background
Analyzing gene expression to uncover regulatory
mechanisms
A multitude of regulatory pathways have evolved in liv-
ing organisms in order to properly orchestrate develop-
ment, or to adapt to environmental constraints. Much
of these regulatory pathways involve a reprogramming
of genome expression, which is essential to acquire a
cell identity corresponding to given internal and external
environments. To characterize these regulatory pathways,
and translate these changes in gene expression at the
genome-wide level, global transcriptome study under var-
ious species, tissues, cells and biological conditions has
become a fundamental and routinely performed experi-
ment for biologists. To do so, sequencing of RNA (RNA-
Seq) is now the most popular and exploited technique in
next-generation sequencing (NGS) methods, and under-
went a great expansion in the field functional genomics.
RNA-seq will generate fragments, or short reads, that
match to genes and quantitatively translate their level
of expression. Standard analysis pipelines and consen-
sus methodological frameworks have been established for
RNA-Seq. Following quality control of data, reads map-
ping to a reference genome, and quantification on fea-
tures of interest are performed, several major steps are
commonly found in RNA-Seq data analysis. They usually
consist in proper sample-wise normalization, identifica-
tion of differential gene expression, ontology enrichment
among sets of genes, clustering, co-expression studies or
regulatory pathways reconstruction.
However, these analysis procedures often require

important prior knowledge and skills in statistics and
computer programming. In addition, tools dedicated to
analysis, exploration, visualization and valorization of
RNA-Seq data are very often dispersed. Most of RNA-
Seq data are therefore not properly analyzed and exploited
at their highest potential, due to this lack of dedi-
cated tools that could be handled and used by (almost)
anyone.

Current tools for facilitating the exploitation of RNA-seq
data
Over the last few years, several tools have emerged to
ease the processing of RNA-Seq data analysis, by bring-
ing graphical interfaces to users with little programming
experience. Among those tools are DEBrowser [1], DEApp
[2], iGEAk [3], DEIVA [4], Shiny-Seq [5], IRIS-DEA [6],
iDEP [7], or TCC-GUI [8]. All of them propose normaliza-
tion and low count genes removal, exploratory transcrip-
tome visualizations such as Principal Component Analysis
(PCA), and per-sample count distributions plots. They
also provide functions for interactive Differential Expres-
sion Analysis (DEA) and corresponding visualizations
such as the MA-plot. Gene Ontology (GO) enrichment

analysis can be performed in those applications, apart
from IRIS-DEA, DEApp, and TCC-GUI.
However, when it comes to further advanced analy-

ses such as gene expression profiles clustering or net-
work reconstruction, solutions in those tools are either
absent, or sub-optimal in terms of statistical framework or
adequacy with certain biological questions. For instance,
most of those applications perform clustering using sim-
ilarity based methods such as k-means and hierarchical
clustering, requiring both the choice of metric and crite-
rion to be user-optimized, as well as the selection of the
number of clusters. Probabilistic models such as Mixture
Models are a great alternative [9–11], especially thanks
to their rigorous framework to determine the number of
clusters, but they are not represented in currently avail-
able tools.
Regarding Gene Regulatory Networks (GRN) inference,

only three of the applications cited above propose a solu-
tion. Two of them, iDEP and Shiny-Seq rely on the popu-
lar WGCNA framework (WeiGhted Correlation Network
Analysis) [12], which falls into the category of correlation
networks. This inference method have the disadvantage
of being very vulnerable to false positives as it easily cap-
tures indirect or spurious interactions. When the number
of samples in the experiment is low or moderate, high
correlations are often accidentally found [13]. Besides,
linear correlations like Pearson coefficient can miss com-
plex non-linear effects. Lastly, WGCNA addresses the
question of co-expression networks, more than GRN.
To infer GRN, which should link Transcription Factors
(TF) to target genes, iGEAK retrieves information from
external interaction databases and binding motives. This
allows to exploit valuable information, but makes this
step extremely dependent on already publicly available
datasets. An exhaustive comparison with respect to the
features and methods handled by the described interfaces
for RNA-Seq analysis is given in Fig. 1.
Other frameworks focus on gene network reconstruc-

tion and visualization only. For instance, the web server
GeNeCK [14] makes the combination of several proba-
bilistic inference strategies easily available, but there is no
possibility to select a subset of genes to be considered
as regulators during inference. The online tool ShinyBN
[15] performs Bayesian network inference and visualiza-
tion. This Bayesian approach is however prohibitive when
large scale datasets are involved. Lastly, neither ShinyBN
nor GeNecK allow for upstream analyses and exploration
of RNA-Seq expression data.
Consequently, efficient statistical and machine learning

approaches for GRN inference (like for instance GENIE3
[16], TIGRESS [17], or PLNModels [18], see [19] for a
review) are not available, to our knowledge, as a graphical
user interfaces allowing necessary upstrem operations like
normalization or DEA.
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DEBrowser iDEP Genavi iGEAK TCC-GUI ShinySeq IRIS-EDA DEApp DIANE
Normalisation-filtering

PCA-MDS

Distributions plot

Differential expression analysis

MA-volcano plots

GO enrichment analysis

Expression based gene clustering

Clusters advanced exploration

Network inference WGCNA binding databases WGCNA + binding

Network analysis and statistics

Module detection and analysis

Reports generation

WEB Deployment

Local use Not free

Sample homogeneity and exploration
Comparing transcriptomes Feature implemented

Clustering genes Feature implemented but room for improvment (insufficient tuning possibilities, sub-obtimal methodology)

Pathways reconstruction Feature is absent

Ease of use / reproducibility

Non parametric approaches: k-means, hierarchcal clustering on heatmaps. None or limited parametrization for models/number of clusters.

Fig. 1 Comparison of tools for facilitating the valorization of expression datasets. Eight interactive tools for analysis of count data from RNA-Seq are
presented here and compared in terms of features and methodological choices. The features included are the ones we believe are the expectation
from most users willing to exploit RNA-Seq experiments and understand regulatory mechanisms, and that we included to DIANE. Although not
reported here for clarity reasons, many compared tools had their own features and specificities of interest. For instance, IRIS-DEA handles single cell
RNA-Seq and facilitates GEO submission of the data, iDEP enables to build protein-protein interaction network and has an impressive organisms
database, while Shiny-Seq can summarise results directly into power point presentations

Besides, all of the cited applications are available as
online tools or as local packages with source code,
although the useful possibility to provide both solutions
simultaneously, in order to satisfy advanced users as much
as occasional ones, is not always available. It is also worth
noting that availability of organisms in current services
varies a lot. Some of them like iGEAK are restricted to
human or mouse only.

Proposed approach
In this article, we propose a new R-Shiny tool called
DIANE (Dashboard for the Inference and Analysis of
Networks from Expression data), both as an online appli-
cation and as a fully encoded R package. DIANE per-
forms gold-standard interactive operations on RNA-Seq
datasets, possibly multi-factorial, for any organism (nor-
malization, DEA, visualization, GO enrichment, data
exploration, etc.), while pushing further the clustering and
network inference possibilities for the community. Clus-
tering exploits Mixture Models including RNA-seq data
prior transformations [11] and GRN inference uses Ran-
dom Forests [16, 20], a non-parametric machine learning
method based on a collection of regression trees. In addi-
tion, a dedicated statistical approach, based on both the
biological networks sparsity and the estimation of empir-
ical p-values, is proposed for the selection of the edges.
Step-by-step reporting is included all along the analyses,
allowing reproducible and traceable experiments.
In order to illustrate the different features of DIANE, we

have used a recently published RNA-seq data set, describ-
ing the combinatorial effects of salt (S), osmotic (M), and

heat (H) stresses in the model plant Arabidopsis thaliana
[21]. RNA-seq were performed under single (H, S, M),
double (SM, SH, MH), and triple (SMH) combinations
of salt, osmotic, and heat stresses. In the course of our
paper, we will demonstrate that DIANE can be a simple
and straightforward tool to override common tools for
transcriptome analyses, and can easily and robustly lead
to GRN inference and to the identification of candidate
genes.

Implementation and results
DIANE is an R Shiny [22, 23] application available as an
online web service, as well as a package for local use. To
perform relevant bioinformatic and bio-statistical work,
different existing CRAN and Bioconductor packages as
well as novel functions are brought together. Its devel-
opment was carried out via the golem [24] framework,
allowing a modular and robust package-driven design for
complex production-grade Shiny applications. Each main
feature or analysis step is programmed as a shiny mod-
ule, making use of the appropriate server-side functions.
In the case of local use, those functions are exported by
the package so they can be called from any R script to be
part of an automated pipeline or more user-specific anal-
yses. We also provide a Dockerfile [25] and instructions
so that interested users can deploy DIANE to their own
team servers. Figure 2 presents the application work-
flow and main possibilities. The analysis steps in DIANE
are shown in a sequential order, from data import, pre-
preprocessing and exploration, to more advanced studies
such as co-expression or GRN inference.
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Fig. 2 DIANE’s workflow. The main steps of the pipeline available in the application -data import, normalization, exploration, differential expression
analyses, clustering, network inference- alongside with some chosen visual outputs

Data upload
Expression file and design
To benefit from the vast majority of DIANE’s features,
the only required input is an expression matrix, giving
the raw expression levels of genes for each biological
replicate across experimental samples. It is assumed that
this expression matrix file originates from a standard
bioinformatics pipeline applied to the raw RNA-Seq fastq
files. This typically consists in quality control followed by
reads mapping to the reference genome, and quantifica-
tion of the aligned reads on loci of interest.

Organism and gene annotation
Several model organisms are included in DIANE to allow
for a fast and effortless annotation and pathway analy-
sis. For now, automatically recognized model organisms
are Arabidopsis thaliana, Homo sapiens, Mus muscu-
lus, Drosophilia melanogaster, Ceanorhabditis elegans,

and Escherichia coli. DIANE takes advantage of the uni-
fied annotation data for those organisms offered by the
corresponding Bioconductor organisms database pack-
ages [26–31]. Other plant species are annotated such
as white lupin, and users can easily upload their cus-
tom files to describe any other organism whenever it is
needed or possible along the pipeline. Organism specific
information needed can be common gene names and
descriptions, gene - GO terms associations, or known
transcriptional regulators.

Normalization and low count genes removal
DIANE proposes several strategies of normalization to
account for uneven sequencing depth between samples.
One step normalization can be performed using either
the Trimmed Mean of M values method (TMM) [32] or
the median of ratios strategy from DESeq2 [33]. The TCC
package [34] also allows to perform a prior DEA to remove



Cassan et al. BMC Genomics          (2021) 22:387 Page 5 of 15

potential differentially expressed genes (DEG), and then
compute less biased normalization factors using one of the
previous methods. DIANE also includes a user-defined
threshold for low-abundance genes, which may reduce
the sensitivity of DEG detection in subsequent analyses
[35]. The effect of normalization and filtering threshold on
the count distributions can be interactively observed and
adjusted.

Exploratory analysis of RNA-seq data
PCA -MDS
Dimensionality reduction techniques are frequently
employed on normalized expression data to explore
how experimental factors drive gene expression, and to
estimate replicate homogeneity. In particular, the Multi-
Dimensional Scaling (MDS) plot takes samples in a high

dimensional space, and represents them as close in a two-
dimensional projection plane [36] depending on their
similarity. Principal Component Analysis (PCA) is also a
powerful examination of expression data. Through linear
algebra, new variables are built as a linear combination
of the initial samples, that condense and summarize gene
expression variation. By studying the contribution of the
samples to each of these new variables, the experimenter
can assess the impact of the experimental conditions on
gene expression. DIANE offers those two features on
expression data, where each gene is divided by its mean
expression to remove the bias of baseline expression
intensity.
As presented in Fig. 3a, we applied PCA to the nor-

malized transcriptomes after low gene counts removal.
No normalization was applied in DIANE as raw data
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Fig. 3 Normalization and exploration of RNA-seq dataset with DIANE. a PCA analysis for the normalized expression table. The experimental
conditions have for coordinates their contributions (correlations) to the first four principal components. The scree-plot shows, for each principal
component, the part of global variability explained. b Example of normalized gene expression levels across all seven perturbations and control. c
MA-plot for the DEG in response to a single heat stress. The x-axis is the average expression, and the y-axis is the LFC in expression between heat
stress and control. DEG with FDR < 0.05 and an absolute LFC > 2 appear in green. d Log normalized expression heatmap for the DEG under heat
across all perturbations and control
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was presented as Tags Per Millions. We found consis-
tent conclusions regarding how heat, salinity and osmotic
stresses affect gene expression. The first principal com-
ponent, clearly linked to high temperature, discriminates
the experimental conditions based on heat stress while
explaining 57% of the total gene expression variability.
The second principal component, to which mannitol-
perturbed conditions strongly contributes, accounts for
12% of gene expression variability. The effect of salinity is
more subtle and can be discerned in the third principal
component.

Normalized gene expression profiles
The "expression levels" tab of the application is a simple
exploratory visualization, that allows the user to observe
the normalized expression levels of a several genes of
interest, among the experimental conditions of its choice.
Each replicate is marked as different shapes. Besides
rapidly showing the behavior a desired gene, it can provide
valuable insights about a replicate being notably different
from the others.
Using this feature of DIANE, we represented in Fig. 3b

four genes showing different behaviors in response to the
combination of stresses, and illustrating the variation that
can be found among biological replicates.

Differential expression analysis
DEA in DIANE is carried out through the EdgeR frame-
work [37], which relies on Negative Binomial Modelling.
After gene dispersions are estimated, Generalized Linear
Models are fitted to explain the log average gene expres-
sions as a linear combination of experimental conditions.
The user can then set the desired contrasts to perform
statistical tests comparing experimental conditions. The
adjusted p-value (FDR) threshold and the minimal abso-
lute Log Fold Change (LFC) can both be adjusted on the
fly. A data table of DEG and their description is generated,
along with descriptive graphics such as MA-plot, volcano
plot, and interactive heat-map. The result DEG are stored
to be used as input genes for downstream studies, such as
GO enrichment analysis, clustering or GRN inference.
Figure 3c and d represent DEG under heat perturba-

tion. Selection criteria were adjusted p-values greater than
0.05, and an absolute log-fold-change over 2. The 561
up-regulated genes and 175 down-regulated genes are
indicated in green in the MA-plot, and correspond to the
rows of the heatmap. The high values of LFC for those
genes, along with their expression pattern in the heatmap
across all conditions confirm the strong impact of heat
stress on the plants transcriptome.
In the case where several DEA were performed, it might

be useful to compare the resulting lists of DEG. DIANE
can perform gene lists intersection, and provide visualiza-
tions through Venn diagrams, as well as the possibility to

download the list of the intersection. This feature is avail-
able for all genes, or specifically for up or down regulated
genes.

GO enrichment analysis
Among a list of DEG, it is of great interest to look
for enriched biological processes, molecular functions,
of cellular components. This functionality is brought
to DIANE by the clusterProfiler R package [38], that
employs Fischer-exact tests on hypergeometric distribu-
tion to determine which GO terms are significantly more
represented. Results can be obtained as a downloadable
data table, a dotplot of enriched GO terms with associ-
ated gene counts and p-values, or as en enrichment map
linking co-occurring GO terms.

Gene clustering
Method
In order to identify co-expressed genes among a list of
DEGs, DIANE enables gene expression profiles clustering
using the statistical framework for inferring mixture mod-
els through an Expectation-Maximisation (EM) algorithm
introduced by [9, 10].We chose to use the approach imple-
mented in the Bioconductor Coseq package [11]. Coseq
makes it possible to apply transformation to expression
values prior to fitting either Gaussian or Poisson multi-
variate distributions to gene clusters. A penalized model
selection criterion is then used to determine the best num-
ber of clusters in the data. With DIANE, users simply have
to select which DEG should be clustered among previ-
ously realized DEA, the experimental conditions to use for
clustering, as well as the range of number of clusters to
test.

Exploring the clusters
Once clustering was performed, a new tab enables a
detailed exploration of the created clusters. It includes
interactive profiles visualization, downloadable gene data
table, GO enrichment analysis. In addition, if the exper-
imental design file was uploaded, Poisson generalized
linear models are fitted to the chosen cluster in order to
characterize the effect of each factor on gene expression.
To validate and extend the work done around our

demonstration dataset, we performed clustering analy-
sis similarly to what was done in the original paper [21].
We considered all genes from the seven DEA computed
between control and perturbation treatments, with a 0.05
FDR threshold and an absolute LFC above 2.
Figure 4 presents the clusters of interest as given by the

Poisson Mixtures estimation. They provide a gene parti-
tioning representative of all behaviors in the dataset. In
particular, we found that the 3 biggest clusters (2, 3, 6)
were composed of heat responsive genes. Among those
clusters, statistically enriched GO terms are in majority
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Fig. 4 Clustering of combinatorial RNA-seq data with DIANE. Clusters of interest generated by Coseq in DIANE. Gene expression profiles are defined
as the normalized expression divided by the mean normalized expression across all conditions. Graphical results of ontology enrichment analysis
are presented for clusters 3 and 5. Highlighted ontologies are relevant categories in line with previously published findings [21]. Ontology
enrichment plots show detected GO terms (under 0.05 in Fischer’s exact tests), color-coded by their adjusted p-value, and shifted in the x-axis
depending on the number of genes matching this ontology

linked to heat and protein conformation. Indeed, proteins
misfolding and degradation are direct consequences of
high temperatures, thus requiring rapid expression repro-
gramming to ensure viable protein folding in topology
control [39]. Two enriched ontologies involved in rhyth-
mic and circadian processes also support evidence for
disrupted biological clock. Second, the cluster 5 brings
together genes up-regulated in all stress treatments, with
the highest induction being observed in the combination
of the three perturbations. Those genes, also noted in [21]
to exhibit a synergistic response to mannitol and salt, con-
tain three ontologies related to osmotic stress and water
deprivation. Lastly, cluster 4 corroborates the existence
of genes characterized by opposite reactions to osmotic

stress and heat. They are specifically induced in all manni-
tol perturbations, except under high temperature, where
they are strongly repressed.

Gene regulatory network inference
GRN inference is a major contribution of DIANE com-
pared to similar existing applications, the latter offering
either no possibility for such task, or either limited ones,
as described in the “Background” section.

Estimating regulatory weights
GRN inference aims to abstract transcriptional depen-
dencies between genes based on the observation of their
resulting expression patterns. Each gene is represented by
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a node in the network. The aim is to recover a weight
associated with each edge (i.e. pair of nodes). This is
a complex retro-engineering process, challenged by the
Curse of dimensionality. Many methods are available,
and can be divided into two main categories : statistical
and data-driven approaches [13]. Statistical strategies rely
on assumptions regarding the data distribution, whose
parameters are estimated by maximum-likelihood tech-
niques, often in the case of Bayesian [40] or Lasso infer-
ence [17, 41]. However, the underlying modelling assump-
tions may be inaccurate or difficult to verify in practice.
In the second category, the objective is to quantify inter-
action strengths between pairs of nodes directly from the
data. This is typically achieved by using similarity mea-
sures such as correlation [12], information theory metrics
[42, 43], or feature importances extracted from regres-
sion contexts [16]. This second category is less restrictive
in terms of hypothesis. However, once the inference is
performed, the problem of defining a threshold above
which an interaction will be part of the network is far
from easy.
There is a large variety of tools available for the task of

network inference. Many of them have been benchmarked
against one another at the occasion of the DREAM chal-
lenges [44, 45]. Those challenges aim at comparing state
of the art network inference methods on both simu-
lated and validated biological data. They provide per-
formance metrics for 27 methods based on regression
techniques, mutual information metrics, correlation or
Bayesian framework among other methods. The per-
formance metrics gathered by DREAM5 [45] (i.e Area
Under Precision and Recall curves or overall scores), as
well as more recent efforts to compare new methods on
those gold standards (i.e F-meausres, ROC curves) are
useful resources to help making a choice. For example,
existing methods to learn GRN structures are WGCNA
[12], ARACNE, CLR, TIGRESS, GENIE3 (see [45] for
an exhaustive and referenced list of methods), or also
SORDER [46] or CMI2NI [47].
In DIANE, the package chosen for GRN reconstruction

is GENIE3 [16], a machine learning procedure that was
among the best performers of the DREAM challenges.
GENIE3 uses Random Forests [20] which is a machine
learning method based on the inference of a collection
of regression trees. It has the advantage of being a non-
parametric procedure, requiring very few modelling or
biological priors, while being able to capture interactions
and high order combinatorics between regulators. After
having defined a set of regulators among the genes under
study, the regression framework allows to infer oriented
edges from regulators to targets. With GENIE3, for each
target gene, a Random Forest determines the predictive
power of each regulator on the target gene expression. The
regulatory interactions can then be thresholded accord-

ing to their importance, so that the strongest links are
kept to build a sparse final network. However, choosing
such a threshold is not trivial, left as an open question by
GENIE3’s authors and ever since.

Selectingmeaningful regulatory weights
Proposed approach To avoid the unsatisfying hard-
thresholding solution, some researchers make use of TF
binding experiments, TF-perturbation assays, or literature
data to select a threshold influence measure maximiz-
ing prediction precision [48–50]. Network backboning
[51, 52] and BRANE Cut [53] are mathematical frame-
works that try to extract an informative structure from
weighted fully connected networks, but they rely onmath-
ematical modelling and assumptions that we suppose
might be too strong or not valid in the precise case of gene
regulatory network topology. Feeling the lack of an appro-
priate model-agnostic strategy with no need for external
data, we conceived a method that provides a statistical
testing framework for weighted regulator-gene pairs. The
main steps of the method, as schematized in Fig. 5, are:
Inference of the importance values for all regulator-

target gene pairs using Random Forests according to
GENIE3’s strategy [16] on a chosen list of DEG as input.
Transcriptional regulators with a very high value of non
linear correlation (typically 0.9 or 0.95) can lead to spu-
rious or missed connections in the final network, and
cause robustness issues during the regression procedure.
DIANE allows to group them together and to consider
them as unique genes.
Selection of the strongest inferred regulatory influ-

ences. As biological networks are known for their pro-
nounced sparsity [54–56], testing all possible regulator-
target pairs would be of very little interest, as well as a
waste of computation time. We therefore create a first
graph, topologically consistent with biological network
density standards, which will be further refined by statis-
tical tests.
Empirical p-values are computed for the selected

regulatory weights. To assess weather the importance
value of a pair is significant or not, the rfPermute package
[57] fits Random Forests and repeatedly shuffles the target
gene expression profile so that the null distribution of each
regulator influence is estimated. Hence, the empirical
p-value of a regulator-gene pair is given by the extreme-
ness of its importance as compared to the estimated null
distribution. For a faster and more exploratory-oriented
network inference, it is possible to skip edges testing (this
step and the following).
FDR correction for multiple testing [58] is applied to

the p-values, and only the edges above an FDR threshold
are kept to form the final network. After edges statistical
testing, graphics that show the p-values distribution and
the final number of edges depending on the FDR choice
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Fig. 5 Statistical testing procedure for edges selection among weighted regulatory links. A first network is built from the influence measures
resulting from network inference, by choosing an appropriate network connectivity density. The statistical significance of all its edges is then
assessed by empirical tests based on permutation for Random Forest importance metrics

are displayed, providing the user with additional decision
guidance.
See Additional file 1 for more details on the statistical

procedure and implementation. Thanks to this procedure,
the main user-defined parameters are the network den-
sity prior to statistical tests, and the FDR cut-off. Together,
they bring much more biological meaning and decision
help than an arbitrary importance threshold.

Benchmark of the proposed approach We benchmark
this novel procedure designed to keep the most signif-
icant interactions from a complete GRN. As GENIE3’s
performance was already assessed in several comparative
studies, we focus here only on the edges testing strategy,
that we compare to a more naive approach, hard thresh-
olding. To do so, we applied our edges selection strat-
egy to GENIE3 edges ranking on two different datasets,
for which robust regulator-gene validation information is
available.
The first expression dataset is the RNA-Seq experiment

on Arabidopsis thaliana we present in this article. We
inferred a GRN of heat responsive genes in all experimen-
tal conditions (1497 genes from C versus H DEA, LFC
≥ 1.5, FDR ≤ 0.05, containing 118 regulators). To vali-
date the inferred connections, we made use of connecTF
[59], a recent database containing regulatory interactions
in Arabidopsis thaliana obtained from in vitro and in vivo
binding experiments, as well as in planta regulation exper-
iments. We specifically chose to use the interactions in

connecTF obtained from CHIP-Seq and TARGET exper-
iments that represent the most robust data in order to
validate connections.
The second dataset is an experiment on Escherichia

coli, generated by the authors of the "Large-Scale Map-
ping and Validation of Escherichia coli Transcriptional
Regulation from a Compendium of Expression Profiles"
[60]. We restricted ourselves to a subset of this com-
pendium of experimental conditions corresponding to a
single combinatorial experiment. In the latter, bacteria
were exposed to a control treatment or to norfloaxacin
for different amounts of time, for a total of 24 experimen-
tal conditions. The 4345 genes of the organism provided
in the dataset, containing 154 transcription factors, are
used for GRN inference followed by edges testing. In order
to validate the connections of the networks generated in
DIANE, we used RegulonDB [61], a database of regu-
latory interactions built from classic molecular biology
experiments andmore recently high throughput genomics
such as CHIP-Seq and gSELEX.
For each organism, we compared the validity of network

predictions between two strategies. The first one corre-
sponds to a network obtained by applying a hard threshold
to GENIE3’s weighted regulatory associations, to achieve a
desired network connectivity density. The second strategy
corresponds to that same network, but after removing the
edges deemed spurious by our empirical testing procedure
for edges selection. By doing so, we aim at determining
weather refining edges with our testing procedure leads to
networks of higher quality.
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The performance metric we chose to assess our
method’s performance is the precision. It is computed as
the fraction of edges in the final network that are present
in the set of validated interactions, among those for which
the regulator possesses validation information in the gold
standard (for example, not all regulators were studied in
CHIP-Seq nor TARGET experiments, thus are not present
in the validated pairs from connecTF).
To provide some parameter exploration, we compare

the two strategies for two different initial connectivity
densities, and three FDR thresholds to remove spuri-
ous interactions. For all the following benchmarks, we
used Random Forests made of 1000 trees, and grouped
regulators correlated over 90%, as discussed in the previ-
ous paragraph "Proposed approach". In order to evaluate
robustness while giving an overview of the variability
inherent to RandomForest inference and statistical testing
by permutations, we launched the two strategies 20 times

for each set of parameters and performed non parametric
tests for group mean comparisons.
The results are gathered in Fig. 6a and b. They

demonstrate that a significant increase of precision can
be achieved on both datasets when choosing stringent
adjusted p-values for edges removal, independently of
prior density. This finding supports that p-values obtained
from permutations on Random Forest importancemetrics
can allowmore confidence in the inferred edges than hard
thresholding GENIE3’s fully connected network. Figure 6a
and b also illustrate the order of magnitude of the number
of connections removed by the testing strategy.
After using our empirical testing procedure for edges

removal, we stored the number of remaining edges. We
then applied hard-thresholding to GENIE3’s ranking in
order to create networks containing those same num-
ber edges. We observed that the precision of such net-
works was not as high as with our empirical testing

A B

Fig. 6 Benchmark of the proposed testing method on the E. coli and A. thaliana datasets. Boxplots compare the distributions of precision between
hard-thresholding (green) and hard-thresholding followed by the removal of non significant edges as predicted by the testing procedure (purple).
The 20 replicates for each configuration provide an estimation of the precision dispersion caused by randomness in GENIE3 and testing by
permutations. For each organism, we investigate two appropriate connectivity densities, and three adjusted p-value thresholds (FDR). On the right
of the boxplots, the number of edges kept in the final network are displayed. P-values significance of non parametric mean comparisons between
the strategies are encoded as follows : 0 ≤***< 0.001 ≤**< 0.01 ≤*< 0.05 ≤ . < 0.1. The results demonstrate that the proposed testing strategy
offers a robust gain in precision when using a stringent adjusted p-value threshold for edges removal. a Results for the GRN inferred on E. coli genes,
validated on the regulonDB database. b Results for the GRN inferred on A. thaliana heat-responsive genes, validated on the connecTF database.
Additional metrics about the number of genes, interactions to test, and computation time on DIANE’s interface are shown
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procedure. This reveals that our adjusted p-values bring
more information than GENIE3’s ranking only, even with
a hard-thresholding resulting in the same number of final
interactions.
Figure 6b shows computation times required to perform

statistical testing on A. thaliana dataset, as permitted
by DIANE’s online interface. DIANE’s online version is
hosted on a Debian 9.13 server with a 256Go RAM, and
2 Intel(R) Xeon(R) Gold 6130 2.10GHz CPUs. The paral-
lel computing for online use allows up to 16 CPU cores
(computation time reported in Fig. 6b uses 16 cores).
Altogether, this benchmarking analysis demonstrates an

added-value in terms of network precision when edges
selection is performed on the basis of p-values rather than
by hard thresholding, for a limited time of computation.

Interactive network analysis and community discovery
The last tab of the application is dedicated to network
manipulation and exploration. An interactive view of the
network is proposed, showing connections between regu-
latory genes and their predicted targets. By clicking one of
the genes, its inward and outward interactions are shown,
as well as its annotation and expression profile across
samples.
Network-related statistics are automatically generated,

delivering topological insights on genes behaviors and
network structure. For instance, in and out degree distri-
bution are displayed, and genes can be ranked based on
their number of connections. This ranking might then be
used for further identification of hub genes and candi-
date key regulators in the response of interest. In addition,
DIANE extracts gene modules, making use of the Louvain
algorithm [62]. The experimenter is then free to visualize
the results in the network as color-coded communities,
while exploring module-specific expression profiles and
GO enrichment analyses. At last, it is possible to down-
load edges and node information as csv dataframes, to
be further investigated or opened in popular network
visualization tools such as Cytoscape.
We used the GRN features of DIANE in order to infer a

GRN of the response to heat under osmotic stress, envi-
ronmental conditions that plants are supposed to face
more frequently under climate change circumstances. The
input list of genes is obtained in DIANE, by calculating
DEG between simple osmotic stress and the double heat-
osmotic perturbation (M versus HM, FDR < 0.01, LFC
> 2). 640 DEG are detected, among which 363 are up-
regulated, 277 are down-regulated, and 45 are transcrip-
tional regulators. Regulators with Spearman correlations
over 90% in all available experimental conditions were
grouped before network inference, so that a total of 27 reg-
ulators are used as predictive variables during inference.
For GRN reconstruction, we used Random Forests com-
posed of 4000 trees. A prior network density of 0.03 was

defined to select the strongest edges for permutation test-
ing, and edges under a 0.01 FDR were kept in the final
network. This network, presented in Fig. 7a, is composed
of 289 nodes and 438 edges.
The M versus MH GRN provided by DIANE revealed

two interesting groups of regulators, acting as central
nodes in their topological modules, and being connected
to a large number of target genes.
The most connected regulator of the network is com-

posed by the WRKY47-WRKY8 grouping. Along with
other top-ranked WRKY transcription factors (WRKY30,
WRKY6, WRKY55), they belong to the topological
community of genes that exhibit antagonistic behavior
between heat and osmotic stress. The expression values
of WRKY8 and WRKY47 in the experiment are pre-
sented in Fig. 7b. As already pointed out by our clus-
tering analysis in Fig. 4, those genes undergo a strong
induction after mannitol treatment while being repressed
by all high temperature conditions. This behavior can
also be observed in the intra-module expression pro-
files in Fig. 7c. Such a module is of high biological
interest, as these opposite interactions between drought
and high temperature might explain the increased dam-
ages observed in the combination of those perturbations
[21], and help to understand how heat can suppress the
adaptive response of plants to water deficit. Given that
WRKY47 and WRKY8 act as a hub in the inferred net-
work, they would be a relevant choice of candidates for
experimental pathway validation. Interestingly, WRKY47
has already been identified in rice as a positive regula-
tor of the response to drought [63], strongly reinforcing
the validity of the candidate genes from GRN inference in
DIANE.
The second most connected node is formed by the

regulators TRFL3-AT5G57150-PRR3-BBX8-PIL2-BT1-
DREB2B-FRG5-ASY1-ARR15. Those genes, sharing
highly correlated profiles across the 24 experimental
samples, respond to heat in a clear manner, as well as the
other genes inside their community as shown in Fig. 7c. It
is worthy to note that PIL2 is a member of a transcription
factor family known to be involved in the response to
temperature [64] and that DREB2B is a regulator already
characterized to act at the interaction between drought
and heat stress [65]. The other mentioned regulators
offer thus promising leads to be further explored. Three
members of the Heat Stress Transcription Factor family
(HSFA2 grouped with HSFB2B, and HSFA3) are also
found within the genes of the module.
Inside each module, both correlated and anti-correlated

expression patterns coexist, which can indicate negative
regulation between their gene members. Such opposite
variations are captured by the Random Forest algorithm,
and allow to go beyond co-expression analysis provided by
a clustering approach alone.
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Fig. 7 Network inference and exploration with DIANE. a GRN on M versus MH DEG using DIANE’s method for GNR inference, and the corresponding
degree-based ranking of the nodes. The 11 most connected nodes are presented by order of importance. The regulators mentioned in the network
analysis are pointed out by an arrow, the color of the arrow depending on the topological cluster. b Expression profiles for WRKY47 and WRKY8,
representing the most connected node of the network. c Topological modules containing the two most connected groups of regulators are
highlighted, juxtaposed to their genes expression profiles

Research reproducibility
For each step of the pipeline, automatically generated
reports can be downloaded, rendered on the fly in RMark-
down. They store the users settings, chosen strategies,
and display previews of the results. In that way, analy-
sis can be re-run, shared across users, and their settings
can be backed-up. The chosen format for those reports
is HTML, as it keeps a possibility to interact with data
tables, or even manipulate network objects outside of the
application. Additional file 2 is an example of report as
generated for the network inference described in previous
section. Besides, a seed can be set as a global setting of the
application, to ensure reproducible runs of the pipeline
steps making use of randomness.
Accessibility
DIANE is a tool designed to be as accessible as possi-

ble. However, it can be challenging for users with little
programming and command line experience to process
raw RNA-Seq data into the expression matrix needed in
DIANE. Services such as quality control, read mapping
and quantification require to handle large files transfers
and intensive computations, which are much less easily
set up on online applications. However, local programs
such as the Tuxedo suite [66], RMTA [67] or GenePattern
[68] represent well documented and adequate solutions to
most users in order to produce the expression matrices
required in DIANE.

Conclusions
To summarise this work, we presented an online graphi-
cal user interface to easily conduct in-depth analyses on
gene expression data from multi-factorial experiments,
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including gene expression profile clustering and GRN
inference. It can be downloaded and installed seamlessly
as any R package to run the pipeline locally or from
R scripts. Given that all other graphical interface tools
found in the literature are (i) more oriented toward co-
expression rather than regulation and (ii) do not provide
recent advanced methodological frameworks for pathway
reconstruction, our application positions itself as a tool of
first choice to explore regulatory mechanisms.
The demonstration of DIANE on its companion dataset

allowed to better understand the effect of combined
heat, osmotic and salinity perturbations on Arabidopsis
thaliana, consistently with the original analysis [21]. Sim-
ilar patterns in gene behaviors were highlighted, such as
the predominant influence of heat, and its aggravating
effect when combined to dehydration. Moreover, DIANE
provided new leads through its network inference features
: key genes involved in the response to high temperature
under drought were pointed out to be promising can-
didate regulators for improving crops resistance to arid
conditions and climate change.
In terms of computational cost, the final step of DIANE’s

pipeline, i.e. the statistical testing of TF-target edges,
could be improved. The R implementations of Random
forests and permutations in rfPermute are currently being
used, but a C++ version could be envisioned to shorten the
method’s execution time. Besides, the inference method
itself could be subject to improvement in the future.
First, combining the results of several inference methods
has proven to be as a robust and powerful approach on
validated datasets [45, 52]. Second, our strategy is par-
ticularly well-suited for multi-factorial and perturbation
designs, but is not optimal for time series RNA-Seq. Other
inference methods specific to time series RNA-Seq data
[69] could be available in DIANE, to bring closer to causal-
ity in the inferred transcriptionnal interactions. Lastly,
it would be valuable to add further functional features
in DIANE, notably in order to integrate external infor-
mation, such as interaction databases, or data from TF
binding or chromatin accessibility experiments.
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