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Abstract

Background: Population genetic studies based on genotyped single nucleotide polymorphisms (SNPs) are
influenced by a non-random selection of the SNPs included in the used genotyping arrays. The resulting bias in the
estimation of allele frequency spectra and population genetics parameters like heterozygosity and genetic distances
relative to whole genome sequencing (WGS) data is known as SNP ascertainment bias. Full correction for this bias
requires detailed knowledge of the array design process, which is often not available in practice. This study
suggests an alternative approach to mitigate ascertainment bias of a large set of genotyped individuals by using
information of a small set of sequenced individuals via imputation without the need for prior knowledge on the
array design.

Results: The strategy was first tested by simulating additional ascertainment bias with a set of 1566 chickens from
74 populations that were genotyped for the positions of the Affymetrix Axiom™ 580 k Genome-Wide Chicken Array.
Imputation accuracy was shown to be consistently higher for populations used for SNP discovery during the
simulated array design process. Reference sets of at least one individual per population in the study set led to a
strong correction of ascertainment bias for estimates of expected and observed heterozygosity, Wright’s Fixation
Index and Nei’s Standard Genetic Distance. In contrast, unbalanced reference sets (overrepresentation of
populations compared to the study set) introduced a new bias towards the reference populations. Finally, the array
genotypes were imputed to WGS by utilization of reference sets of 74 individuals (one per population) to 98
individuals (additional commercial chickens) and compared with a mixture of individually and pooled sequenced
populations. The imputation reduced the slope between heterozygosity estimates of array data and WGS data from
1.94 to 1.26 when using the smaller balanced reference panel and to 1.44 when using the larger but unbalanced
reference panel. This generally supported the results from simulation but was less favorable, advocating for a larger
reference panel when imputing to WGS.

Conclusions: The results highlight the potential of using imputation for mitigation of SNP ascertainment bias but
also underline the need for unbiased reference sets.
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Background
To perform cost- and computationally efficient, many of
the population genetic studies of the last 10 years for
humans [1, 2], as well as for model- [3, 4] and agricul-
tural species [5–8] were based on single nucleotide poly-
morphisms (SNP), which were genotyped by
commercially available SNP arrays. Those arrays are
based on a non-random selection (ascertainment) of
SNPs, and come with a bias relative to whole genome
re-sequencing (WGS) data, widely known as SNP Ascer-
tainment Bias [9–11].
To design an array, SNPs initially need to be discov-

ered in a finite set of sequenced individuals, the discov-
ery panel. The chance to discover globally common
SNPs is higher in this finite set of individuals than the
chance to discover globally rare SNPs. This results in al-
lele frequency spectra of arrays showing a shift towards
common SNPs as compared to allele frequency spectra
of WGS, which typically contain a high share of rare
SNPs [12]. Additionally, the discovery panel is typically
not a random sample from the global population of a
species, but over-represents individuals from more in-
tensively researched populations, e.g. humans of Yoru-
ban, Japanese, Chinese and European descent [13],
commercially bred taurine cattle breeds [14] or commer-
cial layer and broiler chicken lines [15]. SNPs that are
common in those discovery populations are not neces-
sarily globally common. As a consequence, allele fre-
quency spectra of discovery populations are
systematically skewed towards higher minor allele fre-
quencies (MAF) than those of non-discovery populations
[12, 16]. In extreme cases, e.g. when used for samples of
other species, this can result in a lack of variable and
thus informative SNPs on the array and therefore a shift
of the frequency spectrum towards rare variants [16].
The shift in the allele frequency spectra has an effect

on population genetic estimators that depend on the al-
lele frequency estimates. Exemplarily, the shift in allele
frequencies towards common variants leads to an sys-
tematic overestimation of the heterozygosity of popula-
tions [16, 17]. The relative effect is stronger for
populations that were part of the discovery set compared
to populations that were not part of the discovery set
[16]. Since commercially used breeds tend to be overrep-
resented in discovery sets [14, 15], their diversity thus
tends to be overestimated compared to non-commercial
breeds not included in the discovery set [16]. Systematic
differences in allele frequency spectra further increase
estimates of genetic distances between populations
which were part of the discovery set and those which
were not [10].
The complex interaction between the size of the dis-

covery panel and its restriction to a subset of popula-
tions makes it difficult to predict or outright correct for

the effect of SNP ascertainment bias. Further, attempts
to implement bias-reduced estimators require strong as-
sumptions on the design process of the used SNP array
[12], which is often not public knowledge or too compli-
cated to be remodeled [18, 19]. Malomane et al. [17]
therefore screened different raw data filtering strategies
on mitigation of ascertainment bias in SNP data and
identified linkage pruning to result in slightly decreasing
ascertainment bias. Due to strongly decreasing sequen-
cing costs and the complexity of the ascertainment bias
correction strategies, more and more studies started
using WGS data for population genetic analysis during
the last years [20–24]. However, costs for broad WGS
based studies are still rather high, resulting in large-scale
collaborations such as the 1000 Genomes Project [25],
the 1000 Bull Genomes Project [26], or the 1001 Arabi-
dopsis Genomes Project [27].
A commonly used method to in silico increase the

resolution of SNP data sets is imputation [28]. Over the
years a variety of imputation approaches [29–35] have
been proposed that utilize linkage, pedigree, and haplo-
type information. To increase the marker density, an
additional reference panel of individuals that were geno-
typed/sequenced by the intended resolution is required
to additionally infer information from SNPs missing on
the respective lower density study set.
Imputation-based studies mostly either used a refer-

ence panel of the same population as the study set itself
[36–38] or utilized large global reference panels such as
the 1000 Genomes [25, 39, 40] or 1000 Bull genomes
[26, 41] projects. Especially for admixed or small endan-
gered populations, the use of additional distantly related
populations in the reference panel was investigated. On
one hand, Brøndum et al. [42], Ye et al. [43] and Rowan
et al. [44] identified multi-breed reference panels to in-
crease imputation accuracy especially in admixed breeds
and for low frequent alleles when imputing from high-
density genotypes to sequence data. On the other hand,
Berry et al. [45] observed that smaller within breed refer-
ence panels (140–688 reference cattle individuals per
breed) performed always superior compared to the com-
bined across breed reference panel when imputing from
low density to high-density array genotypes. Korkuć
et al. [46] showed that adding 100 to 500 Holstein cattle
sequences to a reference panel of 30 German Black Pied
cattle significantly decreased the imputation accuracy in
comparison to the pure panel when imputing from array
to sequence data. Adding the same numbers of a multi-
breed reference panel only outperformed the pure panel
when at least 300 reference animals were added. Pook
et al. [47] investigated the inclusion of chicken popula-
tions to the reference set which were differently distantly
related to the study set. While error rates generally de-
creased for rare alleles, the inclusion of distantly related
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populations slightly increased error rates for previously
good imputed SNPs. Overall, the ideal setup of a refer-
ence panel seems to be highly dependent on the applica-
tion with positive effects for some, but also potential
harm in other cases.
In this context, the current study aims at assessing the

influence of a study design on SNP ascertainment bias,
which uses a small number of sequenced chickens (the
reference set) to in silico correct SNP ascertainment bias
in a broad multi-population set of genotyped chickens
(the study set) by imputation to sequence level. The gen-
eral idea behind this design is to allow for a large sample
size, which reduces sampling bias while keeping sequen-
cing costs affordable as most individuals will only be ge-
notyped. We, therefore, assessed the potential effects of
this design by imputing in silico created low-density
array data to high-density array data, and by imputing
real high-density data to WGS data.

Material and methods
Data
Three different sets of genomic data were used for this
study:
Set 1: Individual sequence data of 68 chickens from 68

different populations, sequenced within the scope of the
EU project Innovative Management of Animal Genetic

Resources (IMAGE; www.imageh2020.eu) [48]. They
were complemented by 25 sequences (17 + 8) from two
commercial white layer lines, 25 sequences (19 + 6) from
two commercial brown layer lines, and 40 sequences (20
each) from two commercial broiler lines [23]. In total
158 sequences from 74 populations.
Set 2: Pooled sequence data from 37 populations (9–

11 chickens per population) [17]. All except 4 chickens
from two populations were part of set 3.
Set 3: Genotypes of 1566 chickens from 74 popula-

tions, either genotyped (sub-set of the Synbreed Chicken
Diversity Panel; SCDP) [49] with the Affymetrix Axiom™
580 k Genome-Wide Chicken Array [15], or comple-
mented from set 1.
The intersection of the used data sets is shown in

Fig. 1 and accession information of the raw data per
sample can be found in Supplementary File 1. All
three data sets came with their own characteristics.
While individual sequences are considered to be the
gold standard throughout this study, genotypes of the
Affymetrix Axiom™ 580 k Genome-Wide Chicken
Array [15] are biased towards variation which is com-
mon in the commercial chicken lines [16] and pooled
sequences only allow for an estimate of population al-
lele frequencies and show a slight bias due to sample
size and coverage (Supplementary File 2) [50, 51].

Fig. 1 UpSet plot showing the distinct intersections of chickens between the used sequencing/ genotyping technologies. The left bar plot
contains the total number of individuals that were genotyped (array), individually sequenced (indSeq), or pooled sequenced (poolSeq). The upper
bar plot contains the number of individuals within each distinct intersection, indicated by the connected points below
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Calling of WGS SNPs and generation of genotype set
Alignment of the raw sequencing reads against the latest
chicken reference genome GRCg6a [52] and SNP calling was
conducted for individual and pooled sequenced data follow-
ing GATK best practices [53, 54]. As the Affymetrix Axiom™
580 k Genome-Wide Chicken Array [15] does not contain
enough SNPs on chromosomes 30–33 for imputation (and
chromosome 29 is not annotated in the reference genome),
only up to chromosome 28 was used. This resulted in 20,
829,081 biallelic SNPs on chromosomes 1–28 which were
used in further analyses. Additionally, all individual se-
quences were genotyped for the positions of the Affymetrix
Axiom™ 580 k Genome-Wide Chicken Array [15].
To ensure compatibility between Array- and WGS data,

the genotypes of the Synbreed Chicken Diversity panel
were lifted over from galGal5 to galGal6 and corrected for
switches of reference and alternate alleles. Only SNPs with
known autosomal position, call rates > 0.95 and genotype
recall rates > 0.95 were further considered. MAF filters
were later used when subsampling the different sets and
thus not considered in this step. Further, missing geno-
types were imputed using Beagle 5.0 [35] with ne = 1000
[47] and the genetic map taken from Groenen et al. [55].
This resulted in a final set of 1566 animals from 74 popu-
lations (18–37 animals per population) and 462,549 auto-
somal SNPs, further referred to as the genotype set.
As Malomane et al. [17] described LD-based pruning as

an effective filtering strategy to minimize the impact of as-
certainment bias in SNP array data, the genotype set was
additionally LD pruned using plink 1.9 [56] with --indep
50 5 2 flag. This reduced the genotype set to 136,755 SNPs
(30%) and will be referred to as pruned genotype set.
The description of the detailed pipeline can be found

in Supplementary File 2.

Analyses based on simulation of ascertainment bias
within the genotype set
A first comparison was based solely on the 15,868 SNPs of
chromosome 10 of the genotype set which allowed for a high
number of repetitions while still being based on a sufficiently
sized chromosome. To simulate an ascertainment bias of
known strength, an even more strongly biased array was de-
signed in silico from the genotype set for each of the 74 pop-
ulations (further called discovery populations) by using only
SNPs with MAF> 0.05 within the according discovery popu-
lation. This simulates the limitation to common variants in
the discovery samples, which is the main reason for the as-
certainment bias. Then, reference samples for imputation
were chosen in five different ways with 10 different numbers
of reference samples and three repetitions per sampling:

1) allPop_74_740: Equally distributed across all
populations by sampling one to 10 chickens per
population (74–740 reference samples).

2) randSamp_5_50: 5, 10, …, 50 randomly sampled
chickens (5–50 reference samples).

3) randPop_5_50: Five chickens from each of one to
10 randomly sampled populations (5–50 reference
samples).

4) minPop_5_50: Five chickens from each of one to 10
populations which were closest related to the
discovery population, based on Nei’s Distance ([57];
5–50 reference samples).

5) maxPop_5_50: Five chickens from each of one to 10
populations which were most distantly related to
the discovery population, based on Nei’s Distance
([57]; 5–50 reference samples).

This resulted in 2200 repetitions of in silico array devel-
opment and re-imputation per sampling strategy. The ref-
erence set was formed by sub-setting the total genotype
matrix to SNPs with MAF > 0.01 within the reference
samples and the reference samples chosen via the above-
mentioned strategies. Imputation of the in silico arrays to
the reference set was performed by running Beagle 5.0
[35] with ne = 1000 [47], the genetic distances taken from
Groenen et al. [55] and the according reference set. The
schematic workflow can be found in Fig. 2.
Analyses were then based on comparisons between the

in silico ascertained and later imputed sets and the
genotype set, which was considered as the ‘true’ set for
those comparisons.

Imputation of genotype set to sequence level
After the initial tests of the imputation strategies by the
in silico designed arrays, we imputed the complete geno-
type set to sequence level, using the available individual
sequences as the reference panel. In the first run, one
reference sample per sequenced population was chosen
(74 reference samples; 74_1perLine) which is equivalent
to the first scenario allPop_74 of the in silico array im-
putation. As we had more than one sequenced individual
for the commercial lines, the number of reference sam-
ples for the commercial lines was subsequently increased
to five reference samples per line (up to 98 reference
samples; 98_5perLine). Finally, we used all available indi-
vidually sequenced animals as reference samples (158
reference samples; 158_all), which resulted in a strong
imbalance towards the two broiler lines (20 reference
samples per broiler line).
Parameter settings in Beagle were further tweaked by

increasing the window parameter to 200 cM to ensure
enough overlap between reference and study SNPs. This
was needed as we observed low assembly quality and in-
sufficient coverage of the array on the small chromo-
somes. Analyses were then based on comparisons
between the genotype set, the pruned set or the imputed
sets and the gold standard, the WGS data.
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Comparison of population genetic estimators
Ascertainment bias shows its primary effect on the allele
frequency spectrum. As populations are affected differ-
ently, we first concentrated on two heterozygosity esti-
mates: expected (HE) and observed (HO) heterozygosity,
which summarize per-population allele frequency spec-
tra. We additionally included two allele frequency
dependent distance measurements: Wright’s fixation
index (FST) [58] and Nei’s distance (D) [57].
HO, as the proportion of heterozygous genotypes in a

population, could only be calculated when the genotypic
status of a population was known (individual sequences
or genotypes). In contrast, HE could also be calculated
from pooled sequences which allow the estimation of al-
lele frequencies (p). Thereby, HO and HE (Eq. (1)) are
calculated as average over all loci (l = 1, …, L).

HE ¼

X

l

2pl 1−plð Þ

L
ð1Þ

As pooled sequence data comes with a slight but sys-
tematic underestimation of HE ([50]; Supplementary
File 2), HE for pooled sequences was multiplied with the
correction factor n

n−1, introduced by Futschik and Schlöt-

terer [50], where n is the number of haplotypes in the
pool. This partially corrected the HE estimates for the bias
introduced by pooled sequencing (Supplementary File 2).
D was calculated as given by Eq. (2), where Dxy ac-

counts for the genetic distance between populations X
and Y, while xil and yil represent the frequency of the ith

allele at the lth locus in population X and Y, respectively.
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Pairwise FST values between populations X and Y were
estimated using Eq. (3), where HTl accounts for the HE

within the total population at locus l and HSl for the
mean HE within the two subpopulations at locus l [58].

FST ¼

X

l

HTl−HSl
� �

X

l

HTl

ð3Þ

D and FST both show a downward bias that is compar-
able to HE when estimated from pooled data

Fig. 2 Schematic representation of the workflow of creating and re-imputing the in silico arrays. The starting point was a 0/1/2 coded marker
matrix with SNPs in rows and individuals in columns (different populations separated by vertical lines). In a first step, an array (light blue rows)
was constructed in silico from known data by setting all SNPs to missing which were invariable (MAF < 0.05, red rows) in the discovery
population (first three columns). In a second step, a reference set (dark blue columns) was set up from animals for which complete knowledge of
all SNPs was assumed. This Reference set was then used in a third step to impute the missing SNPs in the study set using Beagle 5.0 and
resulting in a certain amount of imputation errors (red numbers)
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(Supplementary File 2). The effect of ascertainment bias
is much larger than the effect of pooling for D. In con-
trast, FST is generally robust against the effects of ascer-
tainment bias when a sufficiently large discovery panel
was used for array development [10]. Therefore, it shows
underestimation when calculated from pooled sequence
data which is larger than the effect of ascertainment bias
(Supplementary File 2). We therefore could not dissect
the effects of the two biases in the comparisons on se-
quence level and did not include FST there.
Having no ascertainment bias would mean that esti-

mates of a respective set would lie on the line of identity
(diagonal) when regressing the set against the true values.
The magnitude of the bias can therefore be defined as the
distance of the estimates to that line. We therefore
regressed the estimates from biased data (yij) on the un-
biased ones (xij) while fitting group specific intercepts
(groupi) as well as group-specific slopes (groupi × βi) and a
random error (ϵij, ϵ � Nð0; Iσ2eÞ) as in Eq. (4).

yij ¼ groupi þ groupi � βixij þ ϵij ð4Þ

The definition of a group describes for within-
population estimators (e.g. HE) whether a population
was used for SNP discovery (discovery population), sam-
ples from that population were used as reference set
(reference population) or none of both (application
population). Note that in scenarios where reference indi-
viduals were present for every population, we only di-
vided them into discovery and application populations.
For between population estimators (FST, D), a group de-
scribes the according combination of the two involved
population groups. Differences of the estimated slopes
from one and the correlation between heterozygosity
and distance estimates from biased and true set within
groups were used as indicators for the magnitude of bias
and random estimation error.
To get a measure for a fixed estimation error, we also

calculated the mean overestimation across populations
(j = 1 ... J) as in Eq. (5).

mean overestimation ¼

X

j

biased estimate j−true estimate j
true estimate j

J
ð5Þ

Note, that we had more than one (pooled) sequenced
chicken for only 45 populations. Comparisons of popula-
tion estimates on sequence level are therefore limited to
45 populations out of the 74 populations which were
used as study and reference set for the imputation
process.

Assessment of imputation accuracy
Assessment of imputation accuracy was done by using
Pearson correlation (r) between true and imputed

genotypes [45, 59] for the in silico designed arrays. Pear-
son correlation puts a higher relative weight on imput-
ation errors in rare alleles than plain comparison of
allele- or genotype concordance rates [59]. In case of the
imputation to sequence level, we used leave-one-out val-
idation to assess per-animal imputation accuracy. How-
ever, the leave-one-out validation in our case shows a
slightly downward biased accuracy estimate for the non-
commercial samples (Figure S11, Supplementary File 2).
For validation, the only sequenced sample of those pop-
ulations was the test sample, which had to be removed
from the reference set. Therefore, no closely related
sample to the test sample remained in the reference set
and the accuracy was subsequently underestimated. We
additionally used the internal Beagle quality measure,
the dosage r-squared (DR2) [60] to evaluate per-SNP im-
putation accuracy. This, however, only shows the theor-
etical imputation accuracy and cannot capture biases
due to biased reference sets.

Results
In silico array to genotype
As expected, the in silico ascertained sets showed a
strong overestimation of the HE for nearly all popula-
tions in all cases. The overestimation was much stronger
for populations used for SNP discovery (Fig. 3a). Imput-
ation using an equal number of reference samples per
population (scenario allPop_74_740) massively decreased
this bias (Fig. 3b). The correction became stronger with
an increasing number of reference populations.
To get an impression on the strength of the correction

and the needed size of the reference panel, Fig. 4 com-
pares the correlation by population group, the slope for
the within-group regression of the true HE and HO vs.
the ascertained/ imputed cases and mean overestimation
for strategy allPop_74_740. It shows that the effects of
ascertainment bias were stronger for HE than for HO.
Imputation when using the reference set with just one
individual per population corrects the initially much
lower correlation within population group to > 0.99.
While slope and mean overestimation are also pushed
promptly towards the intended values of one and zero
respectively for the non-discovery populations, there re-
mains a small bias for the discovery populations, which
decreases with an increasing number of reference
samples.
The effects were observed in a comparable manner for

the other imputation strategies (Figure S3). Due to
smaller reference panels, the correction effect of the im-
putation was generally worse than for strategy allPop_
74_740. Interestingly, when limiting the reference sam-
ples to a small number of populations (strategies rand-
Pop_5_50, minPop_5_50, maxPop_5_50), we observed a
newly introduced bias towards the reference populations

Geibel et al. BMC Genomics          (2021) 22:340 Page 6 of 13



(Figure S3). This effect was strongest for strategy max-
Pop_5_50, where we chose the reference populations
with a maximum distance from the discovery popula-
tion. However, increasing the number of reference sam-
ples minimized the bias of reference and discovery
populations with all strategies.
The effects of ascertainment bias were less pro-

nounced in the distance measurements (D and FST;Fig-
ure S4) than in the heterozygosity estimates. The bias
was thereby only of numerical relevance, when

estimating the distances between populations which be-
long to differently strongly biased population groups and
was partly increased for some population groups by im-
putation with unbalanced reference samples (Figure S5).
Note that FST was, all in all, less affected than D.
The reduction of ascertainment bias was accompanied

by high per-animal imputation accuracies (r). Strategy
allPop_74 (one reference individual per population) re-
sulted in a median imputation accuracy of 0.94. Increas-
ing the number of reference individuals subsequently

Fig. 3 True HE vs. ascertained HE (a) and imputed HE (b) by population group. For the imputed case, the strategy of using the same number of
reference samples per population (allPop_74_740) is shown, an increase in the number of reference samples per population (1–10) is marked by
an increasing color gradient and the line of identity is marked by a solid black line

Fig. 4 Development of correlation within population group (a), slope (b) and mean overestimation (c) of the regression lines for the two
heterozygosity estimates when distributing the reference samples equally across all populations (allPop_74_740). The intended value for
unbiasedness and minimum variance is marked as dense black horizontal line. Note that the case without imputation is consistent with zero
reference samples
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increased the accuracy up to 0.99 for 10 reference indi-
viduals per population (allPop_740). The accuracy was
consistently higher for individuals which were part of
the discovery population (Fig. 5). Accuracies were lower
for the other strategies, mainly due to a maximum num-
ber of 50 reference individuals, which are fewer than the
74 of allPop_74. Detailed results for imputation accuracy
can be found in Figure S2 and Supplementary File 2.

Genotype to sequence
The effect of imputation to WGS on ascertainment bias of
HE is shown in Fig. 6. Given the situation that we cannot
completely exclude pooling bias for the pooled sequenced
samples (Supplementary File 2), only the effect on the indi-
vidually sequenced samples can be discussed with adequate
reliability. While the regression of array-based HE estimates
on sequence-based HE estimates showed a slope of 1.94 for
the individually sequenced populations, the linkage pruning
slightly reduced this slope to 1.71. The clearly best result was
achieved with imputation to WGS (slope = 1.26; 74_1per-
Line; Fig. 6a). This effect was also observed when considering
all samples. However, note that there is also a slight effect of
the remaining pooling bias, which cannot be separated from
ascertainment bias for the pooled sequenced populations.
Slightly increasing the reference panel (Fig. 6b) up to five

samples per commercial line (98_5perLine) does not show
any effect, while using all commercial samples in the refer-
ence panel (158_all) and thereby clearly biasing the reference
panel towards the broiler samples increases HE again for all
samples (slope = 1.44).
The results for Nei’s standard genetic distance (D;Fig. 6)

showed the same pattern as the results for HE. The slope for
distances between individually sequenced populations decreased
from 2.86 (array) and 1.77 (array_pruned) to 1.38 (imputed, 74_
1perLine). The unbalanced reference panel 158_all then again
increased the slope to 1.56. The correlation for all distances, be-
sides being also influenced by pooling bias and therefore being
a rough estimate, was increased from 0.93 (array) respectively
0.95 (array_pruned) to 0.98 (all reference sets).
The overall imputation accuracy was lower than the

one obtained for in silico array to array imputation. In-
creasing the number of commercial reference samples
only resulted in increased imputation accuracies for the
commercial samples. See Supplementary File 2, Table
S1, Figure S6, Figure S7 and Figure S11 for details.

Discussion
Overall performance of the correction method
Imputation of SNP data sets from lower to higher dens-
ity is a commonly used technique to either increase the

Fig. 5 Development of the per-animal imputation accuracy for the in silico array to genotype set imputation with an increasing number of
reference animals per population. Individuals are grouped on whether they belong to the population used for SNP discovery or not and
reference individuals were chosen as in scenario allPop_74_740. The lines show the trend of the median and outliers are not shown in the plot
as they do not add valuable information due to the high number of repetitions
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resolution of data sets [36, 37, 41] or make them
comparable across different platforms [61, 62]. The
according studies mostly use a relatively homoge-
neous study set and a closely related and large refer-
ence set [36, 37]. However, studies exist which
investigate the effect of increasing the reference set
to a multi-population reference set to use an in-
creased number of reference haplotypes [42–46]. To
our knowledge, we here present the first study that
investigates the use of a relatively small and diverse

reference set on a large and diverse study set to cor-
rect for a genotyping platform-specific bias, the SNP
ascertainment bias.
This approach intends that single imputation errors do

not harm, if the mean across the genome, presented by
different population genetic estimators, shows unbiased
results with minimum variance. Therefore, imputation
to WGS level using a comparably small reference panel
can be used to correct for the ascertainment bias of
commercial arrays.

Fig. 6 Effect of different correction strategies on ascertainment bias for expected heterozygosity (HE; A + B) and for Nei’s standard genetic
distance (D; C + D). A + C – uncorrected array, linkage pruned array and imputed array (reference set 74_1perLine) based vs. sequence-based HE/
D. B + D – array imputed with different reference sets vs. sequence-based HE/ D. The solid black line represents the line of identity, the solid
colored lines are regression lines within the individually sequenced populations (larger points) and the dashed lines regression lines within all
populations which include individually and pooled (small points) sequenced populations. Note that there is also an effect of pooled sequencing
which affects the ‘true’ values of the pooled sequenced populations
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Especially the in silico ascertained SNP arrays showed
that even a very small reference panel consisting of one
individual of each population showed very good results
for all investigated estimators (e.g. correlation between
biased HE and true HE of initially < 0.5 for the discovery
populations increased to > 0.99; Fig. 4; Figure S4) and
became better with an increasing number of reference
populations. The results were less beneficial for the real
WGS data, but also showed a strong decrease of the
slope towards one. From the imputed in silico arrays, we
could additionally realize a fast closing of the gap of the
stronger overestimation of heterozygosity within discov-
ery populations and the less severe overestimation in
non-discovery populations. This also seemed to be the
case when imputing to WGS level where we observed
that the slope within the commercial populations
(closely related to discovery populations of the real
array) decreased more than the slope within all popula-
tions due to imputation. However, this observation in
the WGS data has to be regarded with caution, as we
additionally identified a non-negligible bias due to
pooled sequencing which interfered with the assessment
of ascertainment bias and which was, in our study, con-
founded with the difference between commercial popu-
lations (sequenced individually) and non-commercial
populations (sequenced as pools).
The use of WGS information via imputation also con-

sistently showed better results in regard of reduction of
ascertainment bias than using linkage pruned array SNPs
which was reported to be an effective filtering strategy
for ascertainment bias mitigation by Malomane et al.
[17].
Generally, the effect of imputation on the investigated

estimators was shown to be comparable across estima-
tors, regardless of their initial reaction to ascertainment
bias. An interesting side observation was that FST did
not show any ascertainment bias on the real array data
(Figure S10) when calculated in the form of summing
the numerator across SNPs and dividing by the sum of
the denominator as calculated in this study. FST was only
affected when used to estimate differentiation between
the discovery- and non-discovery populations in the sim-
ulated array data, whose heterozygosity estimates were
affected by ascertainment bias to a different degree. This
strongly supports the findings of Albrechtsen et al. [10],
who showed FST to be relatively robust against the ef-
fects of ascertainment bias.
We also investigated the effect of differently sized and

constructed reference sets for imputation. Generally, lar-
ger reference sets increased the accuracy of imputation
and thus decreased the ascertainment bias more than
smaller reference sets. The best results were achieved
when the reference set was as evenly distributed across
the study set as possible. When reference populations

were closely related to the discovery population, reduc-
tion in imputation quality and increase in ascertainment
bias were less severe in case of unbalanced reference sets
than if distantly related reference populations were used.
This suggests that variation within study- and reference
set needs to show enough overlap to achieve sufficient
imputation accuracy and therefore reduction of ascer-
tainment bias.
Results from literature suggest that multi-breed refer-

ence panels generally increase imputation accuracy espe-
cially for rare variants and within admixed populations
[42–44]. Additionally, Rowan et al. [44] argue that they
do not seem to introduce variation at a relevant scale for
markers for which the breeds are actually fixed. How-
ever, some studies also showed that strongly unbalanced
reference sets can reduce imputation accuracy [45, 46].
In this study, including additional reference samples in a
biased way when going from reference set 74_1perLine
to 158_all increased the effects of ascertainment bias on
HE and D. Additionally, only the commercial popula-
tions, for which we increased the number of reference
samples, showed a gain in per-animal imputation accur-
acy (Figure S11). However, theoretical imputation accur-
acies rather increased than decreased (Figure S6; Table
S1) for previously poorly imputed SNPs. The increase in
accuracies for poorly imputed SNPs supports the find-
ings of Brøndum [42], Rowan et al. [44] and Ye et al.
[43] that multi-breed reference panels rather help in get-
ting better imputation results. However, the missing gain
in per-animal accuracy for non-commercial populations
together with the observed bias in the leave-one-out val-
idation for our sparse reference set highlights the still
existing need for closely related individuals as shown by
Berry et al. [45], Korkuć et al. [46] and Pook et al. [47].
The worsening effect on bias correction, however, high-
lights the main reason for ascertainment bias. One can
only identify variation which is present in the investi-
gated samples. When developing an array, one observes
the variation in the discovery set, while in our case we
observed variation in the reference set used for imput-
ation. An overrepresentation of certain populations in
the reference set biases estimators towards variation
present in those populations. Besides the aforemen-
tioned effects in the imputations to WGS, we also ob-
served this by an increasing bias for the unbalanced
reference sets in the in silico array imputations (Figure
S3, Figure S5). Therefore, it is crucial to use a reference
set for imputation which covers the intended range of
variation.
Besides the previously described effects of imputation

on ascertainment bias, we also identified an effect of
array design on imputation accuracy. Discovery popula-
tions show higher imputation accuracies than non-
discovery populations (Figure 5). As markers on arrays
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are more representative for discovery populations than
non-discovery populations, relatively more of the genetic
variability in discovery populations is explained by the
array and imputation is more accurate on average.

Conclusion
The problem to which we provide at least a partial solu-
tion is that relevant population genetic parameters are
systematically biased through the design process of SNP
arrays. Imputation was able to mitigate this SNP ascer-
tainment bias in our samples for all studied estimators
(HE, HO, FST, D), measured as correlation, average rela-
tive difference and slope of the regression line when
comparing the biased estimators to the according gold
standard. The effect was already present when using a
very small reference set of only one sequenced individual
per population. Imputation also performed better than
simple filtering strategies based on the array data alone.
However, when using imputation for ascertainment bias
reduction care has to be taken in designing an evenly
spaced reference panel to not introduce a new bias to-
wards variation present in the reference panel while
missing variants of other populations. We also suggest
using a larger reference panel than the one which was
available for this study to achieve better results. Add-
itionally, we observed an effect of array design on imput-
ation accuracy as discovery populations showed a higher
imputation accuracy than non-discovery populations.
This should be taken into account when designing stud-
ies based on imputed SNPs by choosing an appropriate
genotyping array for the intended study populations.
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