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Population transcriptomic sequencing
reveals allopatric divergence and local
adaptation in Pseudotaxus chienii
(Taxaceae)
Li Liu1, Zhen Wang1, Yingjuan Su1,2* and Ting Wang3*

Abstract

Background: Elucidating the effects of geography and selection on genetic variation is critical for understanding
the relative importance of adaptation in driving differentiation and identifying the environmental factors underlying
its occurrence. Adaptive genetic variation is common in tree species, especially widely distributed long-lived
species. Pseudotaxus chienii can occupy diverse habitats with environmental heterogeneity and thus provides an
ideal material for investigating the process of population adaptive evolution. Here, we characterize genetic and
expression variation patterns and investigate adaptive genetic variation in P. chienii populations.

Results: We generated population transcriptome data and identified 13,545 single nucleotide polymorphisms
(SNPs) in 5037 unigenes across 108 individuals from 10 populations. We observed lower nucleotide diversity (π =
0.000701) among the 10 populations than observed in other gymnosperms. Significant negative correlations
between expression diversity and nucleotide diversity in eight populations suggest that when the species adapts to
the surrounding environment, gene expression and nucleotide diversity have a reciprocal relationship. Genetic
structure analyses indicated that each distribution region contains a distinct genetic group, with high genetic
differentiation among them due to geographical isolation and local adaptation. We used FST outlier, redundancy
analysis, and latent factor mixed model methods to detect molecular signatures of local adaptation. We identified
244 associations between 164 outlier SNPs and 17 environmental variables. The mean temperature of the coldest
quarter, soil Fe and Cu contents, precipitation of the driest month, and altitude were identified as the most
important determinants of adaptive genetic variation. Most candidate unigenes with outlier signatures were related
to abiotic and biotic stress responses, and the monoterpenoid biosynthesis and ubiquitin-mediated proteolysis
KEGG pathways were significantly enriched in certain populations and deserve further attention in other long-lived
trees.
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Conclusions: Despite the strong population structure in P. chienii, genomic data revealed signatures of divergent
selection associated with environmental variables. Our research provides SNPs, candidate unigenes, and biological
pathways related to environmental variables to facilitate elucidation of the genetic variation in P. chienii in relation
to environmental adaptation. Our study provides a promising tool for population genomic analyses and insights
into the molecular basis of local adaptation.

Keywords: Pseudotaxus chienii, Population transcriptome, SNP, Population structure, Genotype-environment
association, Local adaptation

Background
Dissecting the distribution of genetic variation across
landscapes helps us to understand the ecological and
evolutionary processes under climate change. The influ-
ence of natural selection on genetic variation and ex-
pression variation in natural populations has received
increasing attention in studies on adaptive evolution and
molecular ecology [1]. As species are forced to cope with
environmental changes, it becomes increasingly import-
ant to understand how populations quickly adapt to di-
verse environments [2, 3]. Long-lived trees with a wide
range of natural habitats often show clear adaptation to
local environments [4]. Evidence for local adaptation can
be detected if there is significant association with the en-
vironmental variables at some loci [5]. Individuals grow-
ing in different geographical areas will be subject to
different selection pressures and therefore adapt to
different local environmental conditions [4]. Genetic di-
vergence may be caused by selection imposed by envir-
onmental pressures or the influence of genetic drift and
limited gene flow when populations are partially isolated
[6]. High levels of gene flow and continuous migration
have homogenization effects, but natural selection is in-
ferred to drive genetic divergence [7]. Describing spatial
isolation and natural selection is essential for disentan-
gling the processes that initiate genetic divergence, in-
cluding the relative role of adaptation in driving
differentiation and the number and identity of its poten-
tially associated genetic targets.
With the development of sequencing technology, next-

generation sequencing (NGS) has made it possible to ob-
tain genome-wide scale sequence information across
populations, greatly promoting the investigation of adap-
tive evolution and molecular ecology in nonmodel spe-
cies [8]. Previous studies using anonymous markers (i.e.,
simple sequence repeat (SSR) and amplified fragment
length polymorphism (AFLP)) were unable to assess the
degree of linkage and the independence of loci, making
them less reliable than other studies [9]. RNA sequen-
cing (RNA-Seq) based on NGS can provide a more ac-
curate estimate of the number of independent loci
involved in adaptation and be used to detect potential
candidate genes. RNA-Seq can be used to perform gene
expression studies in species without genomic sequence

information; thus, it is a very promising application in
research on adaptation. Expression variation may occur
before genetic variation and may be heritable [10, 11];
therefore, expression differences may reflect the early
process of adaptive divergence at the population level
[12]. In addition to identifying gene expression varia-
tions, RNA-Seq data can also allow the development of
single-nucleotide polymorphisms (SNPs) on a large scale
[13], which can capture potential sequence variations.
These sequence variations and expression variations may
be involved in the adaptation of a species to its natural
habitat.
Transcriptome sequencing is a powerful tool that rep-

resents a cost-effective approach for examining genetic
and expression patterns and investigating adaptive diver-
gence at the levels of sequences, genes or biological
metabolic pathways among natural populations in non-
model organisms [14]. For example, Yan et al. (2017)
[15] sequenced the transcriptomes of 78 Miscanthus
lutarioriparius individuals from 10 populations and
found genes related to photosynthetic processes and re-
sponses to environmental stimuli such as temperature
and reactive oxygen species. Sun et al. (2020) [16] com-
pared the transcriptomes of Pinus yunnanensis from
high- and low-elevation sites and identified 103,608
high-quality SNPs and 321 outlier SNPs based on RNA-
Seq to investigate adaptive genetic variation. The 321
outlier SNPs from 131 genes displayed significant diver-
gence in terms of allelic frequency between high- and
low-elevation populations and indicated that the flavon-
oid biosynthesis pathway may play a crucial role in the
adaptation of P. yunnanensis to high-elevation environ-
ments. These studies provide insights into the patterns
of genetic variation and gene expression in natural pop-
ulations and aid in the exploration of loci involved in
adaptation to diverse habitats.
The white-berry yew, Pseudotaxus chienii (W. C.

Cheng) W. C. Cheng, is a threatened tertiary relict
monotypic gymnosperm in the genus Pseudotaxus (Tax-
aceae) [17]. This species is a dioecious evergreen shrub
or tree that grows in the subtropical mountains of China
[17]. The distribution of P. chienii covers a relatively
large geographical area with abundant environmental
variation, in which includes mountain forests of
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northwestern Hunan, central Guangxi, southwestern
Jiangxi, and southern Zhejiang [17]. Significant environ-
mental heterogeneity has been found among most popu-
lations of P. chienii [18]. The wide range of natural
habitats of P. chienii demonstrates its adaptability to
various soils and growth conditions. Populations of P.
chienii primarily grow in shallow and acidic soil, in rock
crevices or on cliffs [19, 20]. P. chienii can adapt well to
diverse habitats with environmental heterogeneity [20,
21] and thus provides an ideal material for investigating
the process of population adaptive evolution. Morpho-
logical surveys of P. chienii in different geographical
areas with different climatic conditions demonstrated
that the width of the leaves gradually increases geo-
graphically from east to west [22], providing evidence
for local adaptation of the plant phenotype. In plants, a
large part of the phenotypic variation can be attributed
to divergent selection imposed by environmental vari-
ables [23, 24]. Nevertheless, the main environmental var-
iables that drive selection between natural populations
are still unknown in most plants. The currently available
data cannot provide a comprehensive understanding of
the genetic status and adaptive divergence of P. chienii
populations, and population genomic data from natural
populations of this species are needed to solve these
problems.
Adaptive genetic variation is common in tree species,

especially widely distributed long-lived species [25]. Can-
didate loci/genes related to adaptive changes in different
environments are increasingly included in investigations
of adaptive divergence in trees [26]. In this study, we ap-
plied population transcriptome data to detect the genetic
basis of local adaptation in P. chienii and determine
which environmental variables are essential in driving
population genetic differentiation. We detected 13,545
SNPs in 5037 unigenes across 10 populations using
RNA-Seq. Population genetics and gene expression vari-
ation were explored. We integrated environmental and
geographic information and used genetic loci to evaluate
the impacts of environmental factors and geographic fac-
tors on genetic variation. The outlier SNPs associated
with environmental variables and the candidate unigenes
that contribute to local adaptation in P. chienii were also
identified. The results of our study are expected to im-
prove insights into evolutionary processes and local
adaptation in P. chienii.

Results
De novo assembly and SNP calling
For 108 individuals, we obtained a total of 6336.45 Mbp
raw reads with an average of 58.67 Mbp (Additional file
1). After the filtering process, 6258.14 Mbp clean reads
representing 938.69 G bases were retained, with an aver-
age Q20 of 98.09%. Based on clean reads, 600,273

unigenes with a total of 426.75 Mbp nucleotide bases
were assembled de novo. The mean N50 length and the
mean length were 891 bp and 711 bp, respectively (Add-
itional file 2). Of these unigenes, 230,731 (38.44%) were
301–500 bp, 172,167 (28.68%) were 501–1000 bp, 77,275
(12.87%) were 1–2 kb and 28,612 (4.77%) were more
than 2 kb (Additional file 3). The final 600,273 unigenes
from the 108 individuals were used as the reference se-
quences for P. chienii.
The clean reads of each individual were mapped to the

reference sequences, and the mapping rates ranged from
66.48% in LMD_10 to 74.15% in DXG_7 (Additional file
4), indicating ideal mapping. We successfully identified
1,430,611 and 828,372 raw SNPs using GATK and SAM-
tools, respectively. After filtering steps, 84,974 and 57,
196 SNPs were retained using GATK and SAMtools, re-
spectively. To obtain high-quality SNPs, only SNPs iden-
tified by both SAMtools and GATK were retained.
Overall, 13,545 SNPs from 5037 unigenes were identified
across the 108 individuals from 10 populations.

Genetic variation and population genetic structure
At the species level, the nucleotide diversity (π) of P.
chienii was 0.000701. At the population level, LMD had
the lowest π (0.000512), whereas LHS had the highest π
(0.000723). The observed heterozygosity (HO) and ex-
pected heterozygosity (HE) of the 10 populations ranged
from 0.383 (ZZB) to 0.493 (ZJJ) and from 0.356 (YSGY)
to 0.422 (ZJJ), respectively (Table 1). Wright’s inbreeding
coefficient (FIS) values were positive in all 10 popula-
tions. Regarding population differentiation, the FST value
was highest between ZJJ and BJS (0.380), while MS and
LMD had the lowest FST value (0.078) (Additional file
5). Moreover, the pairwise FST values of ZZB vs. BJS and
LMD vs. SMJ were negative, implying that gene flow be-
tween these populations was common. We further tested
the pairwise FST values among the four groups (see
Methods section). The pairwise FST values among the
four groups ranged from 0.216 (ZJ vs. JX) to 0.361 (HN
vs. JX), suggesting that HN and JX had the greatest gen-
etic distance (Additional file 6).
Principal component analysis (PCA) unambiguously

revealed four distinct genetic clusters. The first two prin-
cipal components (PCs), which explained 12.97 and
11.57% of the total genetic variance, respectively, differ-
entiated the four geographically distinct P. chienii
groups: Zhejiang (ZJ: SQS, DXG, LMD, MS, and SMJ
populations), Jiangxi (JX: BJS and ZZB populations),
Guangxi (GX: LHS and YSGY populations), and Hunan
(HN: ZJJ population) (Fig. 1b). These four groups corre-
sponded almost entirely to separate geographic regions.
To further explore the population genetic structure of P.
chienii, genetic clustering of the 108 individuals was per-
formed using ADMIXTURE, which also indicated that
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four genetic clusters (K = 4) was optimal with the lowest
cross-validation error. With K = 4, individuals of the JX
(BJS and ZZB populations), ZJ (LMD, MS, SMJ, and
SQS populations), and GX (YSGY and LHS populations)
groups clustered into three clusters, and the DXG popu-
lation of the ZJ group was assigned to an independent
cluster. The HN (ZJJ population) group contained a mix-
ture of genetic components of the ZJ, JX and GX clus-
ters (Fig. 2). Although K = 4 was the optimal K value,
several other K values also showed biologically relevant
patterns. When K = 3, DXG was clustered into the ZJ
cluster, which was consistent with the geographical dis-
tribution of P. chienii and the PCA results.
A phylogeny based on 13,545 genome-wide SNPs

showed three lineages, corresponding to ZJ, GX +HN,
and JX (Fig. 1c). The JX lineage was at the most basal
position, followed by GX +HN and then ZJ. Although
the ADMIXTURE analyses showed that the HN group
contained a mixture of genetic components of ZJ, JX
and GX, phylogenetic analysis further confirmed that
HN was closer to GX than JX or ZJ.
Analysis of molecular variance (AMOVA) of 13,545

SNPs revealed that 74.59% of the overall variation (df =
206; p < 0.0001) was distributed within populations and
25.41% among populations (df = 9; p < 0.0001) (Table 2).
AMOVA found significant genetic differentiation among
populations (FST = 0.254; p < 0.0001). The Mantel test
detected a statistically significant correlation between
pairwise FST and geographic distance among the 10 pop-
ulations (r = 0.688, p = 0.001), indicating a significant
pattern of isolation by distance (IBD). We also identified
a significant pattern of isolation by environment (IBE)
(r = 0.602, p = 0.001), and the level of correlation was
similar to that of IBD.

Population gene expression variation
The population gene expression level (Ep) and expres-
sion diversity (Ed) were analyzed based on 108 P. chienii
individuals from 10 populations. The distribution of Ep
for 16,225 unigenes was right-skewed and peaked at ex-
pression level intervals of 0–10 (Additional file 7a). The
quantiles of log2Ep in each population were similar
(Fig. 3a). The average Ep values of the 10 populations
ranged from 2.244 (SMJ) to 2.634 (ZJJ). Ed also showed a
right-skewed distribution with a peak at 0.2–1.3 (Add-
itional file 7b). The quantiles of Ed shifted down in LMD
and SMJ (Fig. 3b). The average Ed values of the 10 popu-
lations ranged from 0.663 (MS) to 0.800 (LMD).
We further analyzed the relationship between Ed and

π in each population. At the unigene level, the relation-
ship between Ed and π in each population except BJS
and MS showed a significant negative correlation (r = −
0.075 – − 0.032; p = 6.80 × 10− 7 – 0.031; Additional file 8).
However, at the population level, there was no signifi-
cant difference between the average Ep and π among the
10 populations (r = 0.39; p = 0.26; Additional file 9).
Expression similarity (Ep similarity) was also not signifi-
cantly correlated with genetic distance (r = − 0.07; p =
0.38; Additional file 10).

Directional migration rates
The bidirectional relative migration rates (mR) among
the 10 populations/four groups were similar across three
measures (Jost’s D, GST, and Nm) of genetic differenti-
ation; therefore, we describe the result based only on the
Nm (Fig. 4). Among the 10 populations, high relative mi-
gration rates were observed in both directions between
BJS and ZZB (mR > 0.90) and from LMD to SMJ (mR =
0.77). The relative migration rates between LHS and

Table 1 Location information and genomic polymorphisms for 10 Pseudotaxus chienii populations

Population Number of
individuals

Location Longitude
(E)

Latitude
(N)

Altitude
(m)

π HO HE FIS

BJS 12 Bijia Mountain, Jiangxi province 114°09′40″ 26°30′31″ 1293 0.000679 0.387 0.358 0.186

ZZB 12 Zizhuba, Jiangxi province 114°06′37″ 26°29′25″ 1297 0.000693 0.383 0.363 0.187

SQS 8 Sanqing Mountain, Jiangxi
province

118°04′07″ 28°54′03″ 1343 0.000722 0.413 0.382 0.117

DXG 12 Daxiagu, Zhejiang province 119°10′14″ 27°52′51″ 1487 0.000702 0.387 0.364 0.159

LMD 11 Longmending, Zhejiang province 118°57′06″ 28°43′42″ 1049 0.000512 0.397 0.373 0.425

MS 12 Maoshan, Zhejiang province 118°58′23″ 28°06′07″ 1158 0.000721 0.407 0.372 0.111

SMJ 12 Shuimenjian, Zhejiang province 118°53′60″ 28°43′37″ 914 0.000598 0.388 0.365 0.320

LHS 12 Lianhua Mountain, Guangxi 110°06′53″ 24°09′23″ 1080 0.000723 0.431 0.365 0.112

YSGY 12 Yinshan Park, Guangxi 110°14′36″ 24°09′60″ 1182 0.000679 0.412 0.356 0.153

ZJJ 5 Zhangjiajie, Hunan province 110°28′53″ 29°23′06″ 1002 0.000721 0.493 0.422 0.261

Species
level

108 0.000701 0.333 0.387 0.234

The parameters calculated the nucleotide diversity (π), observed heterozygosity (HO), expected heterozygosity (HE) and Wright’s inbreeding coefficient (FIS)
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Fig. 1 Geographical distributions and population structure of Pseudotaxus chienii. Colors denote the four main groups. a Sampling locations.
Populations refer to those in Table 1. Colors denote the four main groups recovered from principal component analysis (PCA) and phylogenetic
analysis. The map was downloaded from the National Geomatics Center of China (http://www.ngcc.cn/) and constructed using the ArcGIS ver.
10.4.1 (http://www.esri.com/software/arcgis/arcgis-for-desktop). b PCA of the 108 individuals based on the first two principal components. c A
maximum likelihood (ML) tree based on SNPs from the transcriptome data

Fig. 2 Admixture proportions indicating population genetic structure for each individual of Pseudotaxus chienii. The scenarios of K = 3 and K = 4
are shown. The cross-validation analysis showed that K = 4 was the optimal K value
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YSGY (mR = 0.17 for LHS to YSGY; mR = 0.11 for YSGY
to LHS) were lower than the migration rates between
most populations in the ZJ group (SQS, DXG, LMD,
MS, and SMJ) (Fig. 4a). Among the four groups, the
highest relative migration rates (mR = 1 for JX to ZJ)
were observed. High relative migration rates were also
observed from GX to ZJ (mR = 0.78), from HN to ZJ
(mR = 0.69), and from ZJ to JX (mR = 0.62) (Fig. 4b).
Additionally, the relative migration rates between HN
and ZJ were higher than those between HN and GX,
despite the closer geographic proximity of HN and GX.

Ecological niche differences among populations of P.
chienii
Ecological niche modelings were constructed for the
four groups of P. chienii to predict their current, past
and future potential distributions. All Maxent models
for the four P. chienii groups had high predictive per-
formance, with area under the receiver operating charac-
teristic curve (AUC) values of 0.955 for the GX group,

0.955 for the HN group, 0.982 for the JX group, and
0.998 for the ZJ group. The mean temperature of the
coldest quarter (64.87%), precipitation seasonality (CV)
(73.24%), precipitation of the driest month (46.56%), and
precipitation of the driest month (28.45%) made the lar-
gest independent contributions to GX, HN, JX, and ZJ,
respectively (Additional file 11). The observed measures
of Schoener’s D and standardized Hellinger distance (I)
produced by Maxent runs were lower than the critical
values of null distributions for GX vs. ZJ and HN vs. ZJ,
indicating high niche differentiation between ZJ and
both GX and HN (Fig. 5). However, the observed mea-
sures of D and I fell into the range of null distributions
for the remaining four combinations; thus, few niche dif-
ferences existed in these four combinations.
Under the current climate, the predicted distribution

of P. chienii is basically consistent with the actual distri-
bution of each group, although there are a few predicted
areas where the species is not found, such as Taiwan.
Under the interglacial (LIG) climate, JX, GX, and HN

Table 2 Analysis of molecular variance (AMOVA) of SNP data for Pseudotaxus chienii

Source of variance Degrees of freedom (df) Sum of squares Variance components Variance percentage (%)

Among populations 9 51,175.342 232.76646 Va 25.41

Within populations 206 140,720.070 683.10714 Vb 74.59

Total 215 191,895.412 915.87359

Fixation index FST = 0.254; p < 0.0001

Fig. 3 The quantiles of gene expression in 10 populations of Pseudotaxus chienii. a Population expression (Ep). b Expression diversity (Ed)
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Fig. 4 The bidirectional relative migration rates in Pseudotaxus chienii calculated using a putatively neutral dataset (12,566 SNPs). a Among 10
populations. b Among the four groups

Fig. 5 The niche differences between pairs of the four groups obtained using the niche overlap tool. The bars indicate the null distributions of
Schoener’s D and the standardized Hellinger distance (I). Arrows indicate values of D and I in maxent runs. a GX vs. ZJ. b HN vs. ZJ
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showed considerable contraction in suitable habitats,
while clear range expansions were observed for the ZJ
group. For the last glacial maximum (LGM) model, clear
expansions in suitable habitats were predicted for all
groups. The future distribution models showed a loss of
suitable habitats for ZJ and JX relative to the current
distribution, while the predicted current and future
distributions were nearly identical for GX and HN
(Additional file 12).

Identification of outlier SNPs and unigene annotation
We identified 979 outlier SNPs using BayeScan software
with a 0.001 q-value threshold (Fig. 6), including 972
SNPs with diversifying selection and seven SNPs with
purifying/balancing selection. The 972 outlier SNPs
could be under divergent selection, revealing evidence of
adaptive differentiation among the 10 populations. The
FST estimated in BayeScan ranged from 0.047 to 0.753,
with an average value of 0.224. Approximately 80% of
the SNPs (10,980 of 13,545; 81.06%) showed FST < 0.25,
while the FST values for outlier SNPs were high, with an
average value of 0.503, suggesting that the 10 popula-
tions were indeed differentiated at outlier SNPs. These
979 outlier SNPs resided in 642 unigenes, of which 431
and 402 were annotated in the Pfam and SwissProt pro-
tein databases, respectively. Gene ontology (GO) terms
were used to functionally classify the 642 unigenes,
which were classified into three main categories: 337

unigenes in “biological process”, 381 unigenes in “mo-
lecular function”, and 216 unigenes in “cellular compo-
nent” (Additional file 13). The top 15 GO terms of the
three main categories identified for these unigenes are
shown in Additional file 14. The GO enrichment ana-
lysis of 642 unigenes showed that “translation regulator
activity” (GO:0045182) and “protein binding” (GO:
0005515) were significantly enriched (q-values < 0.05)
(Additional file 15).
Based on niche overlap analysis, the ecological differ-

entiations of GX vs. ZJ and HN vs. ZJ were valid. There-
fore, we further used selective sweep analysis to identify
the unigenes underlying divergent adaptation in the ZJ,
GX, and HN groups. Based on the top 5% of FST values
and π ratio cutoffs (FST > 0.64 and 0.65 and log2(π ra-
tio) > 1.85 and 1.70 for GX vs. ZJ and HN vs. ZJ, respect-
ively; Fig. 7a, b), we identified 54 and 43 candidate
unigenes involved in habitat adaptation in the ZJ group.
These two unigene datasets contained 10 duplicated uni-
genes. Among the 87 candidate unigenes for habitat
adaptation in the ZJ group, 56, 57 and 57 unigenes were
annotated in the SwissProt, Pfam, and GO databases, re-
spectively (Additional file 16). Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis of
these 87 candidate unigenes revealed one significantly
overrepresented KEGG pathway with a q-value < 0.05:
“monoterpenoid biosynthesis” (ko00902) (Additional file
17). Based on the top 5% of FST values and π ratio

Fig. 6 The scatter plot from Bayesian outlier analysis of SNPs, where SNPs with a q-value lower than 0.001 were considered outlier SNPs. The
vertical black line indicates the cut-off with a q-value = 0.001; the red circles represent the outlier SNPs with positive α values; the blue circles
represent the outlier SNPs with negative α values
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cutoffs (FST > 0.65 and log2(π ratio) > 2.38 for ZJ vs.
HN; Fig. 7c), we identified three candidate unigenes
involved in habitat adaptation in the HN group. The
three candidate unigenes encode some proteins, in-
cluding an AT-rich interactive domain-containing
protein 2, an anaphase-promoting complex subunit
13, and the ETS transcription factor family, which is
important for habitat adaptation in the HN group
(Additional file 18). One significantly overrepresented

KEGG pathway, “ubiquitin-mediated proteolysis”
(ko04120), was identified (q-values < 0.05) (Add-
itional file 19). Based on the top 5% of FST values
and π ratio cutoffs (FST > 0.64 and log2(π ratio) > 2.61
for ZJ vs. GX; Fig. 7d), we identified 17 candidate
unigenes involved in habitat adaptation in the GX
group. Among the 17 candidate unigenes, 10, 9 and 9
unigenes were annotated in the SwissProt, Pfam, and
GO databases, respectively (Additional file 20).

Fig. 7 Selective sweep signals in Pseudotaxus chienii. The red points (corresponding to the top 5% of the log2(π ratio) distribution and the top 5%
of the FST distribution) are genomic regions under selection in P. chienii. a Distribution of log2(π ratio) and FST values calculated between the
Guangxi group (GX) and Zhejiang group (ZJ). b Distribution of log2(π ratio) and FST values calculated between the Hunan group (HN) and the ZJ
group. c Distribution of log2(π ratio) and FST values calculated between the ZJ group and HN group. d Distribution of log2(π ratio) and FST values
calculated between the ZJ group and GX group
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Association of genomic variation with environmental
variables
We utilized the outlier test, redundancy analysis (RDA),
and latent factor mixed models (LFMMs) to detect sig-
natures of local adaptation among P. chienii populations
and identify unigenes under selection. Forward selection
of the environmental variables revealed two sets of eight
environmental variables as significantly predictive of
genetic variation for all loci and outlier loci (Add-
itional file 21 and Fig. 8). The mean temperature of the
coldest quarter, aspect, soil Fe content, precipitation of
the driest month, and leaf area index were identified as
the most important determinants of genetic variation for
all loci, while the mean temperature of the coldest quar-
ter, soil Fe content, soil Cu content, precipitation of the
driest month, and altitude were the strongest determi-
nants for outlier loci. The RDA axes were ordered by
the amount of variance explained. Eight RDA axes
(RDA1 to RDA8) explained 31.51% of the total genetic
variance for all loci. The amount of explained variance
increased to 64.06% when using only outlier loci as re-
sponse variables. The permutation tests of the RDA
models revealed p-values lower than 0.001 in these two
analyses, thus confirming the high significance of the
constrained variable effect.
Using all loci and outlier loci, we also carried out vari-

ation partitioning analysis to determine the relative con-
tributions of environmental factors and geographic
factors to the genetic variation. The models including all
parameters ([a + b + c] in Table 3) showed a significant

effect of these two factors (adjusted R2 = 0.6484, p =
0.001 for outlier loci; adjusted R2 = 0.3210, p = 0.001 for
all loci). Environmental factors alone [a] (F = 4.0786, ad-
justed R2 = 0.0820, p = 0.001) and geographic factors
alone [c] (F = 1.8585, adjusted R2 = 0.0059, p = 0.001) ex-
plained 8 and 1% of the variation at all loci, respectively;
however, they explained 23% of the genetic variation
when considered jointly [b] (adjusted R2 = 0.2331). Using
outlier loci, pure environmental factors [a] explained
11% of the genetic variation (F = 11.815, adjusted R2 =
0.1130, p = 0.001), and pure geographic factors [c] ex-
plained 1% of the genetic variation (F = 3.1993, adjusted
R2 = 0.0078, p = 0.001). Environmental factors and geo-
graphic factors together explained 53% of the genetic
variation (adjusted R2 = 0.5276) (Table 3). In summary,
the population divergence of P. chienii was strongly
shaped by the joint effect of environmental factors and
geographic factors, and environmental factors were more
important than geography.
To detect candidate outlier loci for local adaptation,

we performed LFMM analyses that tested the correla-
tions of single-locus–single-variable. We identified 244
associations between 164 outlier SNPs and 17 environ-
mental variables (Additional file 22). Among the associa-
tions, 5 were related to temperature, 43 to precipitation,
65 to ecological factors, 43 to topographic variables, and
88 to soil variables. Only precipitation seasonality (CV)
was not found to be associated with any outlier SNP. Of
the other environmental variables, the fraction of
absorbed photosynthetically active radiation was

Fig. 8 The results of redundancy analysis (RDA). a RDA1 and RDA2 axes of an RDA based on all loci. b RDA1 and RDA2 axes of an RDA based on
outlier loci
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associated with the most outlier SNPs (36), followed by
soil Cu content (29), soil Zn content (25), percent tree
cover (21), aspect (18), and precipitation of the driest
month (16).
These 164 outlier SNPs associated with environmental

variables resided in 127 unigenes, of which 84, 93, and
35 were annotated in the SwissProt, Pfam, and KEGG
databases, respectively (Additional file 23). Ninety-three
unigenes were assigned to three main GO categories, in-
cluding 71 unigenes in “biological process”, 83 unigenes
in “molecular function”, and 46 unigenes in “cellular
component”. For the biological process category, uni-
genes involved in “oxidation-reduction process” (GO:
0055114), “transport” (GO:0006810), “ribosome biogen-
esis” (GO:0042254) and “signal transduction” (GO:
0007165) were highly represented. In the molecular
function category, the major GO terms were “protein
binding” (GO:0005515), “ATP binding” (GO:0005524),
and “zinc ion binding” (GO:0008270). The major terms
for cellular component were “membrane” (GO:0016020),
“integral component of membrane” (GO:0016021), and
“nucleus” (GO:0005634).

Discussion
The rapid development of sequencing technologies has
provided powerful tools with which to investigate the
genetic mechanisms in natural populations and new in-
sights into the evolutionary and ecological processes
underlying genetic differentiation and species adapta-
tions [9, 27]. We used RNA-Seq, a commonly used NGS
approach, to quantify the expression level of each
unigene in each individual by mapping clean reads to
reference sequences. SNP markers, third-generation mo-
lecular markers, have wide applicability, particularly SNP
markers from transcriptome sequences, which can ef-
fectively reveal functional SNPs at the whole-genome
level [28]. In this study, 13,545 high-quality SNPs were

identified in 108 individuals of P. chienii based on tran-
scriptome data to explore the driving mechanism of this
species’ adaptations to its natural habitat. Our results
show that very information in natural populations can
be obtained from SNP markers of the P. chienii
transcriptome.

Population divergence and structure
Based on the transcriptome data from the populations,
P. chienii had a lower nucleotide diversity (π = 0.000701)
than other gymnosperms, such as Cupressus chengiana
(π = 0.0077), Cupressus duclouxiana (π =0.0031), and
Cupressus gigantea (π = 0.0029) [29, 30], suggesting that
the sequences of protein-coding genes and functional el-
ements of P. chienii captured by this method are highly
conserved. Kou et al. (2020) [31] analyzed the genetic di-
versity of P. chienii populations using cpDNA sequences
and nuclear loci and found similarly low nucleotide di-
versity (π = 0.0009) for cpDNA and more abundant di-
versity (π = 0.00265) for nuclear loci compared with
those detected in this study. The difference may be due
to the number of loci used in each analysis. Our esti-
mates were based on 13,545 loci, whereas previous stud-
ies used only 14 nuclear loci. Therefore, we believe that
the estimates of this study are more accurate than previ-
ous estimates. SNPs from RNA-Seq data are much more
abundant DNA markers than other markers in plant ge-
nomes and have higher reproducibility, higher genotyp-
ing efficiency, and easier automation [32]. The measures
of genetic diversity HE and HO were similar to the diver-
sity calculated by expressed sequence tag-simple se-
quence repeat (EST-SSR) markers (HE SNP = 0.387, HO

SNP = 0.333 vs. HE EST-SSR = 0.370, HO EST-SSR = 0.341)
[18]. Furthermore, the ZJJ and LMD populations ap-
peared to harbor relatively high genetic variation com-
pared with that in other populations, suggesting that the
ZJJ and LMD populations have undergone adaptation in

Table 3 Redundancy analyses (RDAs) to partition genetic variation in Pseudotaxus chienii into the environment (env.), geography
(geo.), and their joint effects

All loci Outlier loci

Adjusted R2 F p-value Adjusted R2 F p-value

RDA

[a + b] gen. ~ env. 0.3151 7.1537 0.001 0.6406 24.836 0.001

[c + b] gen. ~ geo. 0.2390 7.7218 0.001 0.5354 21.552 0.001

Variation partitioning analysis

[a] gen. ~ env. | geo. 0.0820 4.0786 0.001 0.1130 11.815 0.001

[c] gen. ~ geo. | env. 0.0059 1.8585 0.001 0.0078 3.1993 0.001

[b] gen. ~ geo. + env. 0.2331 0.5276

[a + b + c] Total explained 0.3210 6.6205 0.001 0.6484 22.922 0.001

Total unexplained 0.6790 0.3516

gen., SNP data matrix; env., environmental variables (all loci: eight environmental variables; outlier loci: eight environmental variables); geo., geographic variables
(all loci: five dbMEM variables; outlier loci: six dbMEM variables)
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response to natural selection. After the genetic admix-
ture event (see below), the mixed population (ZJJ popu-
lation) may experience its own unique genetic variation,
resulting in higher genetic diversity. This phenomenon
is common in long-lived gymnosperms, such as C.
chengiana [29]. Positive FIS values were observed in all
sampled populations, suggesting significant heterozygote
deficits. Heterozygote deficits are probably caused by
several factors, including inbreeding, linkage disequilib-
rium, null alleles, recent admixture, and partial clonality
[33, 34]. In our study, inbreeding and/or recent admix-
ture seemed to be the most likely driver of the positive
FIS values, as investigations of Taxus yunnanensis (FIS =
0.228) and Taxus wallichiana (FIS = 0.290) showed
prevalent inbreeding [35, 36].
The genetic differentiation levels among P. chienii

populations/groups were generally high (FST > 0.15), ex-
cept for a few pairs of populations in geographical prox-
imity. The spatial context of natural selection and the
balance between the strength of divergent selection and
migration rates between populations/groups are of great
significance to genetic differentiation [37, 38]. The high
genetic differentiation levels may occur because most P.
chienii grows in the understory; therefore, the biological
characteristics of wind pollination may not help P. chie-
nii spread pollen over a long distance. Additionally, the
seed cone of P. chienii possesses a cup-like, fleshy, white
aril [39] and mainly depends on biotic dispersal. Seeds
with white arils are less attractive to birds and mammals
than brightly colored seeds, such as those of Taxus spe-
cies [40], which limits the spread of P. chienii seeds.
From ecological and evolutionary perspectives, the spe-
cies has been exposed to stressors or diverse environ-
ments, which has resulted in genetic differentiation and
genetic heterogeneity. A few populations in geographical
proximity showed relatively low genetic differentiation,
possibly due to high migration rates and a high rate of
effective pollen and seed dispersal. In this study, geo-
graphic distance and environmental distance were corre-
lated with genetic differentiation (IBD: r = 0.688, p =
0.001; IBE: r = 0.602, p = 0.001), suggesting that IBD and
IBE were important to the divergence among P. chienii
populations. These results further revealed that the gen-
etic differentiation among the P. chienii populations was
mainly the result of geographical isolation and habitat
heterogeneity.
Generally, a higher level of genetic differentiation indi-

cates a stronger population structure. Genetic differenti-
ation among populations with different geographic
distributions was found in the ADMIXTURE and PCA
analyses in our study. The ADMIXTURE results sug-
gested the presence of three major genetic clusters and a
smaller cluster (DXG) across the species’ natural range
(Fig. 2), whereas three clusters were identified for two

chloroplast regions and 14 nuclear loci [31]. Our results
show that SNP markers based on transcriptome data are
better able to detect fine-scale population structure than
classic genetic markers. Here, ADMIXTURE analysis re-
vealed that the ZJJ population was genetically admixed
to the GX, ZJ and JX groups. Intuitively, this isolated
population ZJJ had little chance of leaving the footprint
of admixture introduced by other groups. However,
considering that the HN group had experienced multiple
expansions and contractions during the Quaternary cli-
mate oscillations [41], it was plausible that genetic ad-
mixture was established through gene flow between
populations. Then, the specific habitat requirements of
this group caused it to persist only in montane regions,
and other low-altitude populations might extirpate due
to local maladaptation, creating the geographically iso-
lated population ZJJ. Overall, the transcriptome data
based on high-throughput sequencing used here provide
abundant markers that can contribute to the accurate
description of admixture signals [42].

Population gene expression variation
Gene expression variation among populations may be
due to developmental, environmental, genetic or other
biological effects, which are essential for adaptive evolu-
tion [11]. Understanding the patterns of genetic vari-
ation and gene expression in populations from different
habitats can reveal the response of plants to different en-
vironments through variations in gene expression and/or
allelic characteristics. In our data, we found significant
negative correlations between expression diversity and
nucleotide diversity in eight populations. This result sug-
gests that when the species adapts to the surrounding
environment, gene expression and nucleotide diversity
have a reciprocal relationship. This phenomenon might
be attributed to gene duplication events occurring in the
P. chienii genome during the evolutionary process [43].
Compared with single-copy genes, duplicated genes usu-
ally significantly increase the diversity of gene expres-
sion, while genetic diversity remains relatively weak [44].
Higher gene expression diversity may have balanced the
effects of lower genetic variation, thereby maintaining
the stability of the phenotype under long-term natural
selection in native habitats. We speculate that genetic
variation and expression diversity both played a potential
role in local adaptation.

Evidence for local adaptation
Local adaptation to environmental variables is generally
believed to play a major role in the diversification of spe-
cies, but its contribution relative to those of other evolu-
tionary forces is rarely quantified. Despite the strong
population structure in P. chienii, analysis of genomic
data revealed signatures of divergent selection associated
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with environmental variables. The FST outlier approach,
RDA, the LFMM method, and selective sweep analysis
were used to detect signatures of local adaptation among
P. chienii populations and identify unigenes under selec-
tion. Environmental association studies have been more
robust in identifying loci under selection and can also
provide context for selection forces [45]. Testing for IBD
and IBE with Mantel test revealed that environmental
and geographic distances were important to the diver-
gence among P. chienii populations. We further applied
RDA to dissect the individual roles of environmental fac-
tors and geographic factors and their confounding effect
on genetic variation. Our RDA showed that population
divergence in P. chienii was strongly shaped by the joint
effect of environmental factors and geographic factors,
and environmental factors were more important than
geography, a pattern consistent with local adaptation.
Environmental differences among populations may con-
stitute key factors maintaining genetic differentiation
despite high relative migration rates between local popu-
lations. It follows that environmental differences among
populations are closely related to the maintenance of
genetic variation and that local adaptation may be the
main driving force of these patterns. However, a large
part of the variation remains unexplained. This may be
due to several factors that cannot be fully resolved. First,
although we included a large number of environmental
variables in our study, many other unmeasured eco-
logical forces may also play a role. Second, other evolu-
tionary forces that maintain local genetic diversity, such
as balancing selection, may weaken the signal of locus-
environment associations [46]. Third, the multivariate
environmental association approach models only linear
associations, so nonlinear statistical relationships will
not be captured.
In this study, we found evidence for local adaptation

signals to genetic variation associated with environmen-
tal variables. We detected 164 SNPs residing in 127 uni-
genes as candidate targets of adaptive importance. The
GO annotation analysis of 127 unigenes showed that the
majority of the unigenes were related to abiotic and bi-
otic stress responses, which is of particular interest for
future population genomic research. In the biological
process category, oxidation-reduction process, signal
transduction, and protein phosphorylation were the
most represented GO terms, which is consistent with
the findings of adaptability studies in conifers and other
plants. These three biological processes were shown to
be involved in the drought response in Masson pine
(Pinus massoniana) [47]. The oxidation-reduction
process may have contributed to cold resistance in the
mature leaves of tea plants (Camellia sinensis) [48] and
adaptation to hypoxia, extreme temperatures, and high
ultraviolet (UV) radiation in Kandelia obovata [49].

Protein phosphorylation is involved in activating cold ac-
climation [50]. Signal transduction connects sensing
mechanisms with genetic responses, which is important
for sensitivity to environmental stresses and promotes
effective downstream processes in response to these en-
vironmental stresses [51]. Within the molecular function
category, the term binding, including protein binding,
ATP binding, and DNA binding, was generally related to
the environmental stress response. The GO term bind-
ing was shown to be enriched in upregulated open read-
ing frames (ORFs) associated with the cold response in
Chinese yew (Taxus chinensis) [52]. Additionally, lines of
evidence support that the membrane plays a key role in
abiotic stress and plant defense. The membrane can dir-
ectly or indirectly sense stress through physical proper-
ties to initiate signal transduction pathways [53, 54].
Previous studies revealed significant changes in plasma
membrane function in response to cold stress in T. chi-
nensis [52]. Although the annotation analysis suggested
functional importance for most candidate unigenes, the
unannotated unigenes are still promising candidates for
future study, as they may be related to adaptive genes or
genes of unknown importance.
The allele frequency of SNPs changes under selection

pressure, thereby rapidly maximizing adaptability in dif-
ferent environments. Niche differentiation was detected
for GX vs. ZJ and HN vs. ZJ; thus, we further used se-
lective sweep analysis to identify the unigenes underlying
divergent adaptation in the ZJ, GX, and HN groups. We
found 87 candidate unigenes for habitat adaptation in
the ZJ group. The KEGG pathway of monoterpenoid
biosynthesis was significantly enriched (q-values < 0.05)
for 87 candidate unigenes. Terpenoids play an important
role in abiotic and biotic stresses and are involved in the
defense against pathogens and herbivore attack in coni-
fers [55]. Drought can increase the concentration of
monoterpenoids in conifers, such as Picea abies and
Pinus halepensis [56, 57]. Monoterpenoid biosynthesis
may play an important role in the local adaptation of P.
chienii in the ZJ group. Ubiquitin-mediated proteolysis
was significantly enriched (q-values < 0.05) for candidate
unigenes for habitat adaptation in the HN group.
Ubiquitin-mediated proteolysis impacts many aspects of
plant growth and development, including plant hormone
signal transduction, reproduction, and abiotic stress re-
sponses [58]. Some genes involved in ubiquitin-mediated
proteolysis show signs of positive selection [59]. The
identified candidate unigenes for habitat adaptation in
the GX group are directly or indirectly related to biotic
or abiotic stress responses. For instance, Cluster-242,
496.98097, encoding a 70 kDa heat shock protein
(HSP70), is associated with pathogen and disease resist-
ance and plant responses to high temperatures [60].
These results suggest that these pathways and candidate
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unigenes may play an important role in local adaptation
in the GX, ZJ, and HN groups of P. chienii.
Detecting associations between SNPs and environmen-

tal variables helps us recognize the ecological, biocli-
matic, and topographic variables that influence genetic
variation. We found that the fraction of absorbed photo-
synthetically active radiation, soil Cu content, soil Zn
content, percent tree cover, aspect, and precipitation of
the driest month were associated with the most outlier
SNPs when using the LFMM method (Additional file
22), suggesting their importance in shaping the genetic
variation underlying P. chienii adaptability. The forward
selection performed as part of RDA showed that the
mean temperature of the coldest quarter, soil Fe content,
soil Cu content, precipitation of the driest month, and
altitude were important determinants of outlier genetic
variation. These variables may be selective factors driv-
ing the local adaptation of P. chienii. Aspect, a topo-
graphic factor, is a key predictor of differences in forest
radiation exposure and has a strong influence on the
microclimate [61]. This factor has been found to be re-
lated to genetic variation within and among Salix species
[62]. Both the LFMM method and RDA revealed a
strong signal of divergent selection in relation to
precipitation-related variables. Zhang et al. (2020) [41]
highlighted the importance of precipitation of the driest
month in shaping the species distribution of P. chienii.
Precipitation can directly affect soil water content, thus
affecting the absorption and transport of plant water and
nutrients. A decrease in precipitation of the driest
month is expected over the coming decades (current
with a mean of 45.9 mm; 2050 with a mean of 33.2 mm),
particularly in the distribution range of the JX group of
P. chienii. In the case of rapid climate change, if P. chie-
nii populations cannot adapt to increasing drought, eco-
logical benefits will be greatly damaged. According to a
global assessment, due to droughts, high temperatures,
and insect outbreaks under climate change, the mortality
rate of forest trees may increase [63]. Selecting and
planting genotypes adapted to climate change is of great
significance to the protection of the endangered species
P. chienii. The identified candidate unigenes are directly
or indirectly related to biotic or abiotic stress responses.
For instance, Cluster-242,496.114750, encoding an LRR
receptor-like serine/threonine-protein kinase, is associ-
ated with pathogen and disease resistance [64]. Candi-
date unigenes encoding one methyltransferase, four
ubiquitin, and one auxin-responsive protein were de-
tected (Additional file 23). They were associated with
multiple environmental variables, including leaf area
index, percent tree cover, fraction of absorbed photosyn-
thetically active radiation, altitude, precipitation of the
driest month, and soil Mg, Zn, Cu, and Mn contents.
These proteins have been reported to be related to

loblolly pine adaptability [65]. These detected unigenes
with functional annotations provide strong support for
adaptive variation in P. chienii. Future climate trends in
the distribution range of P. chienii, including increased
temperature and decreased precipitation, will pose chal-
lenges to P. chienii in terms of its environmental adapta-
tion. Our research provides SNPs and candidate
unigenes related to environmental variables to facilitate
elucidation of the genetic variation and structure of P.
chienii in relation to environmental adaptation.

Conclusions
We identified 13,545 SNPs to determine genetic and ex-
pression variation patterns and local adaptation across
10 populations of P. chienii. Gene expression and nu-
cleotide diversity had a reciprocal relationship when P.
chienii adapted to the surrounding environment. Despite
the strong population structure in P. chienii, genomic
data revealed signatures of divergent selection associated
with environmental variables. We identified 244 associa-
tions between 164 outlier SNPs and 17 environmental
variables. The mean temperature of the coldest quarter,
soil Fe and Cu contents, precipitation of the driest
month, and altitude were identified as the most import-
ant determinants of adaptive genetic variation. Most
candidate unigenes with outlier signatures were related
to abiotic and biotic stress responses. The results of our
study are expected to improve insights into evolutionary
processes and local adaptation in P. chienii.

Methods
Sample collection and RNA isolation
Our sampling work complies with the laws of the Peo-
ple’s Republic of China and has a permission letter from
Sun Yat-sen University. Voucher specimens were identi-
fied by Prof. Zien Zhao (Wuhan Botanical Garden, Chin-
ese Academy of Sciences, Wuhan, Hubei, China) and
kept at the Herbarium of Sun Yat-sen University (No:
ds-2018-1001–ds-2018-1010).
Fresh and mature needles of 108 individuals from 10

populations of P. chienii were collected from first-year
branches across the distribution range in China in May
2018 (Fig. 1a). A global positioning system (GPS) was
used to record the geographic coordinates of the sam-
pling locations. Plants were sampled at intervals of 20 m
in each population. All samples were washed with puri-
fied water, cut into pieces and then immediately stored
in RNAfixer (BioTeke, Shanghai, China). The RNAfixer
with samples was stored in a − 20 °C freezer until further
use.
Total RNA extraction of each individual was per-

formed using the RNAprep Pure Plant Kit following the
protocol of the manufacturer (Tiangen, Beijing, China).
The purity and integrity of the extracted RNA were
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detected using a NanoDrop spectrophotometer (Thermo
Scientific, DE, USA) and an Agilent 2100 Bioanalyzer
(Agilent Technologies, CA, USA), respectively. An RNA
integrity number > 6.0 was required for cDNA synthesis
and library construction. One microgram of RNA from
each individual was used for cDNA library preparation.

Library construction, sequencing, and assembly
The Illumina library for each individual was constructed
using the NEBNext Ultra™ RNA Library Prep Kit (NEB,
MA, USA) following the manufacturer’s protocol.
Poly(A) mRNA was enriched from total RNA using oligo
(dT) magnetic beads. Then, the poly(A) mRNA was frag-
mented into small pieces using divalent cations under el-
evated temperature in NEBNext First Strand Synthesis
Reaction Buffer (5×). The RNA fragments were reverse
transcribed into first-strand cDNA using random hex-
amer primers and M-MuLV Reverse Transcriptase
(RNase H-). Subsequently, second-strand cDNA was
synthesized using dNTPs, DNA polymerase I, and RNase
H. The purified double-strand cDNA was end-repaired
and A-tailed, and then Illumina paired-end adapters
were ligated. The library fragments were purified using
AMPure XP beads (Beckman Coulter, Beverly, USA) to
select cDNA fragments with lengths of 250–300 bp.
Then, PCR was performed with Phusion High-Fidelity
DNA polymerase, universal PCR primer and index (X)
primer. After size selection and PCR amplification,
qualified cDNA libraries were sequenced on the Illumina
NovaSeq platform, generating paired-end reads with a
length of 150 bp.
Raw Illumina RNA-Seq reads were filtered via in-

house Perl scripts. Clean reads were obtained by remov-
ing the reads with more than 10% ambiguous bases
(“N”), adapter reads, and Qphred scores ≤20 bases with
more than 50% from the raw reads. Finally, clean reads
of 108 individuals were de novo assembled to obtain the
final unigenes with Trinity v.2.4.0 [66]. The final high-
quality unigenes of 108 individuals served as the refer-
ence sequences for estimating genetic and expression
variation among the 10 populations of P. chienii.

Read mapping and SNP calling
Clean reads for each individual were mapped to the ref-
erence sequences of P. chienii using Bowtie 2 (http://
bowtie-bio.sourceforge.net/bowtie2/index.shtml) with
default parameters. Duplicate reads were excluded by
Picard tools ver. 1.96 (http://broadinstitute.github.io/
picard/); then, the reads were sorted and indexed in
BAM format using SAMtools ver. 1.4 with default set-
tings [67]. mpileup of SAMtools was used to analyze the
alignment results of the reference sequence base sites
with the parameters -q 1 -C 50 -t SP -t DP -m 2 -F
0.002. SNP calling was conducted with BCFtools of

SAMtools using the following parameters: -Q 20 -d 1 -D
1000 -a 2 -w 3 -W 10. To ensure the accuracy of SNP
identification, we also used GATK ver. 3.7 [68] to iden-
tify the SNPs with the parameters FS < 30.0, QD > 2.0,
and DP > 10. All monomorphic SNPs were removed.
Only SNPs identified by both SAMtools and GATK were
retained. To minimize false-positive SNPs and obtain
high-quality SNPs, we filtered the SNP loci using the cri-
teria depth > 2, call rate > 0.5, and minor allele frequency
(MAF) > 0.05 and kept only biallelic SNPs. For
consistency with the gene expression data, we removed
SNPs contained in unigenes with extreme fragments per
kilobase of transcript per million mapped reads (FPKM)
values (see below).

Genetic variation and population genetic structure based
on SNP data
Based on the SNP data, the nucleotide diversity (π) per
site was calculated using VCFtools ver. 0.1.11 (https://
vcftools.github.io/index.html) with nonoverlapping 1000-
bp genomic windows. Pairwise genetic differentiation
(FST), observed heterozygosity (HO), and expected het-
erozygosity (HE) were calculated using Arlequin ver.
3.5.1.2 [69], and the significance of FST was determined
using 1000 permutations. Wright’s inbreeding coefficient
(FIS) was estimated for each population using the basic.-
stats function in the R package ‘hierfstat’ [70].
The population genetic structure of the 108 individuals

was examined in ADMIXTURE ver. 1.23 [71] using the
maximum-likelihood method to identify evolutionary
clusters. The number of genetic clusters (K) was set
from 2 to 10. Cross-validation error (CV error) was used
to determine the most likely number of clusters. The
lowest CV error indicated the optimum K value. GCTA
ver. 1.93.2 software [72] was used to perform PCA on
the P. chienii individuals. The first two components were
plotted for P. chienii to explore its genetic structure.
AMOVA was used to assess the extent of genetic

structure within and among populations as implemented
in Arlequin, and the significance was determined for
1000 permutations.
The best model of nucleotide substitution was identi-

fied with PhyML 3.0 [73, 74] using Akaike’s information
criterion (AIC), and GTRGAMMAI was the best-fitting
model. A maximum likelihood (ML) tree was con-
structed using RAxML ver. 8.2.4 [75] with 1000 boot-
strap replicates.

Gene expression variation and population differentiation
based on FPKM values
The clean reads of each individual were mapped to the
reference sequences of P. chienii using Bowtie 2 of the
RSEM software (http://bowtie-bio.sourceforge.net/
Bowtie2/index.shtml). The readcount values of each
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unigene for 108 individuals were obtained. Considering
the influence of the gene length and sequence depth on
the fragments, all readcounts were normalized to the
FPKM values. The FPKM values were calculated using
the formula below: FPKM = (109 × C)/(N × L), where C
is the number of fragments mapped to the transcript, N
is the total number of mappable reads, and L is the
length of the transcript [76]. The expression level of
each unigene in 108 individuals was determined by cal-
culating the FPKM value. To filter the extremely large
FPKM values, 1 was added to the FPKM value of each
unigene, and then log2 transformation was performed.
Quartile analysis was used to filter out values greater
than 1.5 times the interquartile range [77, 78]. In total,
16,225 unigenes with at least half of the individuals with
log2-transformed FPKM values larger than 0 were
retained.
Gene expression variation in populations was evalu-

ated using Xu et al.’s (2015) [79] method. The popula-
tion gene expression level (Ep) was evaluated as the
average FPKM value of the individuals from the popula-
tion. Expression diversity (Ed) was calculated as the gene
expression variation in the population. The formulas for
Ep and Ed were based on Xu et al.’s (2015) method. To
estimate the gene expression level relationship among
populations (Ep similarity), we calculated Pearson’s cor-
relation coefficients (r) based on the average correlation
coefficients of 108 individuals. The significance of the re-
lationship between genetic distance and Ep similarity in
populations was tested with a Mantel test using 1000
random permutations. To detect the relationship be-
tween nucleotide diversity and expression diversity
within populations, Pearson’s correlation coefficients (r)
of π and Ed for 16,225 unigenes in each population were
calculated. Additionally, Pearson’s correlation analysis
was performed between π and Ep among populations.
The ‘HMISC’ package in R was used for Pearson’s cor-
relation analysis, and the significance was determined
for 1000 permutations [80].

Directional migration rates
We pooled the populations into four groups (Jiangxi
group, JX: BJS and ZZB; Guangxi group, GX: LHS and
YSGY; Hunan group, HN: ZJJ; and Zhejiang group, ZJ:
SQS, SMJ, MS, LMD, and DXG) based on the results
from the PCA, phylogenetic tree, and geographical dis-
tribution. To assess directional relative migration rates
among the 10 populations/four groups of P. chienii, a
putatively neutral dataset (12,566 SNPs) was performed
with the divMigrate function in the R package ‘diveRsity’
[81] based on three measures of genetic differentiation
(Jost’s D, GST, and Nm). This approach is a relative bi-
directional measure of gene flow using all available gen-
etic differentiation measures to evaluate the consistency

of estimates among measures. The confidence interval
(95%) of the relative migration rates was calculated with
1000 bootstrap iterations.

Environmental variables
The environmental variables include 19 bioclimatic, 25
ecological, and three topographic variables. Bioclimatic
data (averaging over the period 1950–2000) comprising
19 bioclimatic variables at a spatial resolution of 2.5 arc-
mins were obtained from the WorldClim database
(http://www.worldclim.org). The ecological variables
comprised five ecological factors and 20 soil variables.
The five ecological factors included the normalized dif-
ference vegetation index, percent tree cover, leaf area
index, enhanced vegetation index, and fraction of
absorbed photosynthetically active radiation, which were
obtained from the Land Process Distributed Active
Archive Center (http://lpdaac.usgs.gov, recorded in
2001–2018) based on the moderate resolution imaging
spectroradiometer (MODIS) dataset. The annual
MODIS layers were generated based on a maximum
value composite procedure in the App Store of the ENVI
5.3 package. Then, the layers of different years were av-
eraged to obtain a single layer representing the eco-
logical factor. Twenty soil variables, including pH,
electrical conductivity, fresh water content, air-dried
water content, organic matter, and total N, P, C, S, Si, K,
Ca, Na, Mg, Al, Fe, Mn, Zn, Cu, and Pb, were obtained
from published research by our research group [82]. The
three topographic variables included altitude, aspect, and
slope. Altitude was derived from data recorded during
field sampling. Aspect and slope were derived from
SRTM elevation data under a digital terrain model with
a resolution of 2.5 arc-mins, and the values for sampling
sites were calculated in ArcGIS ver. 10.4.1 (http://www.
esri.com/software/arcgis/arcgis-for-desktop). To reduce
multicollinearity among variables, the variance inflation
factors (VIFs) were calculated for the 19 bioclimatic vari-
ables, five ecological factors, 20 soil variables, and three
topographic variables using the vif function of ‘usdm’ in
R software [83]. Environmental variables with a VIF > 10
were removed. Five bioclimatic variables, four ecological
factors, six soil variables, and three topographic variables
were retained (Additional file 24).

Isolation by distance (IBD) and isolation by environment
(IBE)
To test for IBD and IBE, we generated geographic and
environmental distance matrices. The 18 environmental
variables (Additional file 24) were subjected to principal
component analysis using the prcomp function in R
software. We selected the resulting first five principal
component axes, which explained 84.72% of the environ-
mental variance. The five principal component axes were
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used to calculate environmental distances (Euclidean
distance) using the dist function in R software. To obtain
geographic distance matrices, we calculated the geo-
graphic distance in kilometers among populations.
To investigate the roles of environmental and geo-

graphic factors in shaping genetic differentiation, we cal-
culated the associations between pairwise FST among
populations and environmental distance and geographic
distance with the Mantel test using the mantel function
of the R package ‘vegan’ (https://github.com/vegandevs/
vegan/), and the significance was determined for 999
permutations.

Ecological niche modeling
After removing duplicate records, a total of 60 records
of P. chienii, including 15 for GX, six for HN, 11 for JX,
and 28 for ZJ, were collected from field sampling, pub-
lished resources, the Chinese Virtual Herbarium (CVH,
http://www.cvh.ac.cn/), and the Global Biodiversity In-
formation Facility (GBIF, http://www.gbif.org), which
covered most of the distribution range of this species.
Current climatic data (averaging over the period

1950–2000) comprising 19 bioclimatic variables at a
spatial resolution of 2.5 arc-mins were obtained from
the WorldClim database (http://www.worldclim.org).
The VIFs were calculated for the 19 bioclimatic variables
to reduce the multicollinearity among the variables. Bio-
climatic variables with a VIF > 10 were removed. Five
bioclimatic variables were retained, namely, mean
temperature of the coldest quarter, precipitation of the
wettest month, precipitation of the driest month, pre-
cipitation seasonality (CV), and precipitation of warmest
the quarter. Maxent ver. 3.3.3 k [84] was used to predict
the current potential distributions of the four groups
(ZJ, JX, GX, and HN) of P. chienii with the following pa-
rameters: replicates, 10; replicated run type, subsample;
maximum iterations, 500; and random test points, 25.
The AUC values were used to predict the performance
of the models, with AUC values closer to 1.0 indicating
better model performance. ENMTools ver. 1.4.4 [85]
was used to measure the niche differences between pairs
of the four groups using the niche overlap tool. Scho-
ener’s D and the standardized Hellinger distance (I) were
calculated to measure niche overlap in group pairs. Iden-
tity tests of six comparisons (GX vs. JX, GX vs. ZJ, HN
vs. GX, HN vs. JX, HN vs. ZJ, and JX vs. ZJ) were
performed.
To examine the effects of past and future climatic

shifts on the four groups of P. chienii, ecological niche
modeling was used to predict potential distribution pat-
terns during the future (2050, average for 2041–2060),
the LIG (approximately 130–114 kya), and the LGM (ap-
proximately 21 kya). Climate layers for the LGM and fu-
ture at a spatial resolution of 2.5 arc-mins and LIG at a

spatial resolution of 30 arc-secs were obtained from the
WorldClim database.

Detection of candidate unigenes and annotation
To determine if there were unigenes putatively under se-
lection in the 10 populations, we implemented an FST
outlier approach in BayeScan ver. 2.1 [86]. It has been
reported that BayeScan software has lower false-positive
rates than other similar software programs. This method
is based on a logistic regression that decomposes genetic
variation into a population-specific FST coefficient (β)
shared by all loci and a locus-specific FST coefficient (α)
shared by all the populations [86]. All parameters set in
BayeScan software were kept as the default. To reduce
the occurrence of false positives, we calculated the q-
values in BayeScan, and SNPs with a q-value lower than
0.001 were considered outlier SNPs. We also calculated
the locus-specific FST coefficient (α), where a positive
value indicates diversifying selection, while a negative
value indicates purifying/balancing selection. In the ana-
lysis of the correlation between genomic variation and
environmental variables, we considered only SNPs with
positive α values and ignored SNPs with negative α
values.
Based on niche overlap analysis, the ecological differ-

entiation of GX vs. ZJ and HN vs. ZJ was valid. There-
fore, we further used selective sweep analysis to detect
adaptation. We calculated the FST values and π ratios
(πGX/πZJ, πZJ/πGX, πHN/πZJ, and πZJ/πHN) for group
pairs. The π ratios were subjected to log2 transform-
ation. The regions with FST and log2(π ratio) values in
the top 5% were considered candidate outliers subjected
to strong selective sweeps. Then, all outliers were
assigned to corresponding unigenes.
We performed functional annotation of the candidate

unigenes containing outlier SNPs identified in BayeScan
and selective sweep analysis. Hmmscan of HMMER ver.
3.1 [87] was used to perform Pfam protein database an-
notation. Based on the protein annotation information
from the Pfam database, GO term annotation was deter-
mined using Blast2GO [88] and a custom script. KEGG
and Swiss-Prot database annotations were implemented
using DIAMOND ver. 0.8.36 [89] with an E-value of
1.0 × 10− 5. To identify significantly enriched biological
functions and pathways, we performed GO and KEGG
enrichment analyses. The GO enrichment analysis of
candidate unigenes was performed using the ‘GOseq’ R
package based on the Wallenius noncentral hypergeo-
metric distribution [90]. KEGG pathway enrichment was
determined using KOBAS (2.0) [91]. q-values (adjusted
p-values) were used to test the statistical significance of
GO and KEGG enrichment, with q-values < 0.05 consid-
ered significant.

Liu et al. BMC Genomics          (2021) 22:388 Page 17 of 21

https://github.com/vegandevs/vegan/
https://github.com/vegandevs/vegan/
http://www.cvh.ac.cn/
http://www.gbif.org
http://www.worldclim.org


Association of genomic variation with environmental
variables
We utilized RDA, a multivariate method, to detect the
relative importance of environmental and geographic
variables to genetic variation. RDA, as a canonical ordin-
ation method, allows for calculation of the variance in
response variables explained by a number of explanatory
variables (canonical axes). To avoid spatial autocorrel-
ation, longitude and latitude coordinates of each individ-
ual were transformed using distance-based Moran’s
eigenvector maps (dbMEM1–dbMEM6, representing
geographic variables). We used environmental variables
(Additional file 24) and geographic variables (dbMEM1–
dbMEM6) as explanatory variables. Hellinger-
transformed allele data were used as response variables.
To avoid overfitting, we performed forward selection on
the environmental variables and geographic variables
separately using the ordiR2step function of the R pack-
age ‘vegan’ [92] to remove variables lacking explanatory
power for partitioning. The final retained environmental
and geographic variables are shown in Additional file 21
for the following analyses. The SNP matrixes, including
all loci and outlier loci, were used as response variables
in RDA. Environmental and geographic explanatory vari-
ables and the SNP matrixes of response variables were
used in RDA with no conditional treatment. We also
performed variation partitioning in RDA using the var-
part function of the R package ‘vegan’. All RDA models
and constrained axes were assessed for significance with
999 permutations using the ANOVA.cca function in R
software.
A univariate method for LFMM was also used to test

correlations of outlier SNPs with environmental vari-
ables using the ‘LEA’ package in R [93]. LFMM is a
powerful tool for testing the correlation of single-locus–
single-variable after taking population structure into ac-
count, thereby accurately detecting adaptive signatures,
and has been proven to strike a good balance between
low false-positive rates and high power [94]. The num-
ber of latent factors (K) was set to 4 based on the AD-
MIXTURE result. The analysis was run with a burn-in
of 100,000, 50,000 iterations, and 10 repetitions. The p-
values were used to test for statistical significance, with
p-values < 0.005 indicating significant correlations.
Candidate unigenes that were significantly related to
environmental variables were subjected to functional
annotation.
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