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Abstract

Background: Whole genome sequencing of cultured pathogens is the state of the art public health response for
the bioinformatic source tracking of illness outbreaks. Quasimetagenomics can substantially reduce the amount of
culturing needed before a high quality genome can be recovered. Highly accurate short read data is analyzed for
single nucleotide polymorphisms and multi-locus sequence types to differentiate strains but cannot span many
genomic repeats, resulting in highly fragmented assemblies. Long reads can span repeats, resulting in much more
contiguous assemblies, but have lower accuracy than short reads.

Results: We evaluated the accuracy of Listeria monocytogenes assemblies from enrichments (quasimetagenomes) of
naturally-contaminated ice cream using long read (Oxford Nanopore) and short read (Illumina) sequencing data.
Accuracy of ten assembly approaches, over a range of sequencing depths, was evaluated by comparing sequence
similarity of genes in assemblies to a complete reference genome. Long read assemblies reconstructed a
circularized genome as well as a 71 kbp plasmid after 24 h of enrichment; however, high error rates prevented high
fidelity gene assembly, even at 150X depth of coverage. Short read assemblies accurately reconstructed the core
genes after 28 h of enrichment but produced highly fragmented genomes. Hybrid approaches demonstrated
promising results but had biases based upon the initial assembly strategy. Short read assemblies scaffolded with
long reads accurately assembled the core genes after just 24 h of enrichment, but were highly fragmented. Long
read assemblies polished with short reads reconstructed a circularized genome and plasmid and assembled all the
genes after 24 h enrichment but with less fidelity for the core genes than the short read assemblies.
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Conclusion: The integration of long and short read sequencing of quasimetagenomes expedited the
reconstruction of a high quality pathogen genome compared to either platform alone. A new and more complete
level of information about genome structure, gene order and mobile elements can be added to the public health
response by incorporating long read analyses with the standard short read WGS outbreak response.
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Background
State of the art for pathogen typing
Rapid response, whole-genome sequencing (WGS) net-
works such as GenomeTrakr [1], PulseNet [2], and the
National Antimicrobial Resistance Monitoring System
(NARMS) [3, 4] have revolutionized the strain typing
and source attribution of bacterial pathogens and anti-
microbial resistance (AMR) important to human and
animal health. These programs have relied primarily on
high throughput short-read sequencing data generated
using the Illumina MiSeq platform. Accurate strain typ-
ing of bacterial pathogens using short reads is typically
accomplished with SNP (single nucleotide polymorph-
ism) and/or MLST (multi-locus sequence typing) ana-
lyses. Both can be performed directly on the raw reads
or with assemblies of the raw reads. SNP analyses quan-
tify the number of SNPs between a set of isolates and a
reference genome [5]. High resolution MLST analyses
involve identifying the profile of alleles for genes in the
core genome and whole genome [6, 7], cgMLST and
wgMLST, respectively. Both methods can differentiate
between very closely related strains of Salmonella enter-
ica, Listeria monocytogenes, Escherichia coli, Staphylo-
coccus aureus and many other pathogens [8–10].
However, despite providing high resolution, SNP and
cgMLST/wgMLST analyses do not analyze nor require
the entire genome assembly and, thus, miss aspects of
genome architecture, such as the synteny of features and
mobile elements with variable gene content [11].

The assembly of genomes using short and long reads
Ideally, complete genomes would be routinely sequenced
and assembled de novo from outbreak samples for strain
typing analyses. However, this is not yet possible in every
situation. Although short reads can be sequenced with
an error rate of less than 0.1% [12], these reads are typic-
ally 250 base pairs or less in length and cannot span
many genomic repeat regions, resulting in fragmented
assemblies that preclude the recovery of complete bac-
terial genomes [13]. In contrast, long read sequencing
technologies like the Oxford Nanopore platform have
higher sequencing error rates (~ 13% [14, 15]), but can
routinely produce reads that are over 10 Kbp, thus span-
ning genomic repeats and supporting the assembly of
complete bacterial genomes and plasmids [16].

Although assemblies of nanopore long reads can gen-
erate genome-length contigs, they often have a large
number of errors inherited from the reads. The hybrid
assembly of Illumina short and nanopore long reads can
remarkably improve the quality of the assemblies while
maintaining syntenic contiguity [16]. A study of the as-
sembly of several Salmonella enterica strains demon-
strated that short read assembly followed by long read
scaffolding, reconstructed genomes more accurately than
using short reads or long reads alone [17]. Another
study reconstructed entire genomes of Shiga-toxin pro-
ducing Escherichia coli strains using nanopore long
reads that were polished with Illumina short reads [18];
however, these assemblies had less accurate cgMLST
typing compared to those using only MiSeq short reads,
despite the short read polishing.

Microbiological recovery of the target pathogen
Irrespective of sequencing technology, for applications
such as the source tracking of bacterial pathogens, a
fundamental challenge is the extraction of sufficient
quantities of pathogen DNA to sequence in the first
place. This is because pathogens frequently occur at
low abundance in complex microbial communities,
sometimes amongst large numbers of host cells, and/
or in chemically challenging matrices. Current
methods address this challenge by selective culture
enrichment and pure colony isolation of the patho-
gens prior to sequencing and analysis. This approach
however, is labor-intensive and can take days to
weeks to provide sufficient DNA for sequencing.
While protocols and media formulations for the en-
richment of L. monocytogenes vary only slightly be-
tween agencies (Food and Drug Administration
(FDA), International Organization of Standardization
(ISO), and the United States Department of Agricul-
ture (USDA)), in-house FDA metagenomic and quasi-
metagenomic analyses of timepoints along recovery
continuums from different starting matrices have
demonstrated that enrichment dynamics and efficien-
cies vary according to chemical and microbiological
features of the input matrix (ie; different foods such
as fresh produce, poultry, complex environmental
samples, and varying initial loads (CFUs) of target
pathogens) [19]. Community dynamics during all
types of pathogen enrichments (e.g. Salmonella
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enterica, Escherichia coli, Listeria spp.) are still poorly
understood and co-enriching non-target species often
compete with pathogens of clinical significance [20].

Metagenomics
Metagenomics is the direct sequencing of microbial
communities [21] and, in theory, could replace culture
enrichment for pathogen source tracking. Short read se-
quencing has been used extensively for metagenomics
due to low error rates and high throughput, but cannot
assemble many of the genomic and intergenomic repeats
present in environmental DNA. In contrast, the long
reads generated by nanopore sequencing platforms can
resolve many of the genomic and intergenomic repeats.
Recently, metagenomic studies have successfully used
nanopore sequencing for rapid identification of domin-
ant pathogens [22, 23] contributing complete assemblies
for a small subset of the bacteria in the full metagenome
[13, 24, 25]. However, achieving sufficient depth of
coverage to assemble pathogen genomes directly from
metagenomes is often prohibitively expensive.

Quasimetagenomics
A middle ground between the direct sequencing of
samples and the sequencing of isolates from selective
enrichments is quasimetagenomics, the sequencing of
abbreviated recovery enrichments [13, 26]. Quasimeta-
genomics has been used by FDA scientists since 2009
in efforts to recover pathogens from complex micro-
biomes such as outbreaks of Salmonella in tomatoes
[27, 28], to better understand Latin cheese microbiota
[29], to look at enrichments for Salmonella from cil-
antro [30], E.coli in flour [31], pathogens in seafood
[32–34] and in the public health research response to
the Blue Bell ice cream outbreak of 2015, which re-
sulted in the dataset presented here [20, 26]. The first
FDA ice cream work (2015) received a lot of atten-
tion in the food safety community and the quasimeta-
genomic approach was quickly emulated by other
food safety research groups [26, 35, 36]. Many groups
are moving the needle forward–demonstrating that
strain level differentiation during an outbreak re-
sponse can be achieved more rapidly with quasimeta-
genomic approaches [35, 36]. Here we build upon the
first ice cream report [20] which demonstrated that a
quasimetagenomic approach could recover the same
quality of source tracking data much earlier than state
of the art WGS approaches; and a second work which
validated the bioinformatic SNP and cgMLST source
tracking efficiency of the quasimetagenomic data [26];
and–presented here–the added value of GridIon long
reads for circularization of genomes and plasmids.

Integrated microbiological, molecular and bioinformatic
innovations that will move the field forward
Here, we provide a detailed benchmarking analysis for
assessing how rapidly and accurately a targeted patho-
gen, L. monocytogenes, can be assembled from quasime-
tagenomic samples using short and long read
sequencing technologies. The evaluated assembly tools
include those developed specifically for metagenomic as-
semblies (MegaHit for short read assembly, metaFlye for
long read assembly, and Opera-MS for hybrid assembly)
as well as popular tools developed for long read genome
assembly (Canu and Redbean) and hybrid genome as-
sembly (HybridSpades). Additionally, we evaluated the
impact of polishing with three tools: Pilon, ntEdit (both
were used to polish long read assemblies with short
reads), and Racon (was used to polish long read assem-
blies with long reads). The results of this study allowed
us to point out the strengths and weaknesses in
currently available tools and to make recommendations
for future research.

Results
Characteristics of the sequencing data
The GridIon nanopore instrument generates sequencing
data in batches of 4000 reads, denoted here as Bn for the
nth batch. The first 30 batches of GridIon reads, at each
enrichment time, were used for this study, i.e., the first
120,000 reads corresponding to batches B1, B2, …,B30

(Fig. 1). To analyze the quality of assemblies as a func-
tion of increased sequencing depth, each successive
batch of reads was combined with the previous batches
for assembly to form “cumulative batches”, denoted as
C1, C2,...,C30, where Cn = B1 + B2 + ... + Bn (Fig. 1). To
compare assembly results strictly based on sequencing
technology, the number of base pairs for the MiSeq and
GridIon data was normalized. Over a range of sequen-
cing depths, MiSeq raw read files were partitioned into
30 corresponding batches of read pairs to match the cu-
mulative batches by number of base pairs for GridIon
reads. Table 1 records the total number of sequenced
bases per C30 at each enrichment time.
The mean read length for C30 across enrichment time

points ranged from 174 to 198 nucleotides for Illumina
MiSeq and 1923 to 4445 nucleotides for Oxford Nano-
pore GridIon. The longest sequenced GridIon read was
69,402 nucleotides long (Table 2). For the GridIon, there
was a general increase in the mean and maximum read
length as the enrichment time increased. Furthermore,
the reads that mapped to the L. monocytogenes reference
genome had a longer mean and maximum length com-
pared to the rest of the reads across all enrichment time
points (Supplementary Figure 1). The putative L. mono-
cytogenes reads also had a much lower mean GC content
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(38%) compared to the rest of the reads (49–54%) across
enrichment time points (Supplementary Figure 2).
The sequencing error rate for the reads mapping to

the L. monocytogenes reference genome was 0.03% for
the MiSeq reads and between 6.3 and 18% for the Grid-
Ion reads. The GridIon sequencing error rate has a
range based upon whether the soft-clipping of read
alignments (i.e. the ends of the reads not included in the
alignment range) was included as error or not. Each read
is thus assigned two error estimates: an upper estimate
of error that treats the unaligned portion of the read as
an error, and a lower estimate that relies solely on the
errors identified within the aligned range. Insertions, de-
letions, and mismatches were only counted for the
aligned portion of the reads i.e. excluding the soft-
clipped regions. For the long reads, 29.6%, 25.4%, and

45% of the errors were due to mismatches, insertions,
and deletions, respectively—in accordance with previ-
ously published results [14]. For the MiSeq, the sequen-
cing error rate and mean base quality were relatively
uniform across samples. For the GridIon, the estimated
sequencing error rate range decreased from 24H (7% to
18%) to 40H (6.3% to 13%) while the mean per-base
quality score slightly increased over the same time
period, from 21.83 to 23.19, respectively.

Selection of the reference genome
The accuracy of the assemblies was assessed with respect
to a complete reference genome that had been isolated
and sequenced (PacBio SMRT technology) from ice
cream samples from the same facility as used for our
analysis [37]. The reference was treated as a “gold

Fig. 1 The effective time required to sequence and analyze the quasimetagenomic samples. The blue circles marked as 24H, 28H, 32H, 36H, and
40H denote the five enrichment time points where the quasimetagenomic samples were collected and sequenced with the Illumina MiSeq (short
read) and the Oxford Nanopore GridIon (long read). Diamonds represent the 30 batches (B1 to B30) of 4000 GridIon reads, each generated 45min
apart. For our analysis, reads from each batch were merged with previously obtained batches to form cumulative batches (Ci). The time taken to
assemble the reads is shown with boxes labeled ‘A’. C18 at 24H marks the earliest time point where a complete Listeria monocytogenes genome
was reconstructed (with metaFlye). The green circle corresponds to the time required to culture and sequence a pure colony isolate of Listeria
monocytogenes i.e. 144 h. Note: bioinformatic analysis can be performed in “real-time” on the GridIon batches as they are output whereas an Illumina
MiSeq sequencing run must finish before the bioinformatics can begin. However, for our analysis we partitioned the reads from each MiSeq run into 30
batches—each composed of an equal number of sequenced bases as the GridIon batches

Table 1 Summary of sequence data for C30 at each enrichment time

24H 28H 32H 36H 40H

Sequenced base pairs 2.3 × 108 3.3 × 108 3.9 × 108 5.4 × 108 5.0 × 108

Number of GridIon reads 1.2 × 105 1.2 × 105 1.2 × 105 1.2 × 105 1.2 × 105

MiSeq reads in C30 (total MiSeq reads
sequenced)

1.2 × 106 (2.9 ×
106)

1.9 × 106 (4.0 ×
106)

2.2 × 106 (3.6 ×
106)

3.0 × 106 (3.5 ×
106)

2.7 × 106 (2.9 ×
106)
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standard” with an expected accuracy of ~ 99.999% [38].
Previous research had shown that the outbreak consisted
of two strains. One that was only isolated from Facility 1
and another that was mainly isolated from Facility 2
[37]. The ice cream samples used for our analysis came
from Facility 1. The reference genome used here had
been used as a reference for SNP analysis of the isolates
from Facility 1, showing they differed by 29 SNPs or
fewer. Another reference genome, from Facility 2, had
been used as the representative of the second strain. The
C30 MegaHit quasimetagenome assemblies showed a
higher similarity with the reference from Facility 1 than
Facility 2 (mean Mash [39] distance: 0.0206 and 0.0218
respectively). The reference from Facility 1 was subse-
quently used for our analysis.
The similarity between the L. monocytogenes contigs de-

rived from the quasimetagenomes and the reference se-
quence was assessed, and 55 loci were identified (46 single
nucleotide insertions, 2 di-nucleotide insertions, and 5 sin-
gle nucleotide polymorphisms) that differed at all enrich-
ment times. Four of these variants (1 single nucleotide
polymorphism and 3 single nucleotide insertions) occurred
within the core of the L. monocytogenes genome (see
Methods for a description of how the core was defined).

Assessing the presence of multiple L. monocytogenes
strains
The presence of multiple, closely-related L. monocyto-
genes strains in the quasimetagenomes could affect the

accuracy of the assemblies. A prior analysis of the ice
cream samples [20] had identified three putative co-
occurring L. monocytogenes strains based upon the de-
tection of three 16S rRNA gene variants. However, ana-
lysis of the 16S rRNA genes in the reference genome
identified 6 copies of the 16S rRNA operon which clus-
tered, by sequence, within three distinct clusters consist-
ent with the originally-determined variants.
The presence of multiple strains in the quasimetagen-

omes was assessed and 586 loci were identified (75 within
the core genes) where the pile-up of MiSeq reads indi-
cated the presence of two alleles, i.e. the reference allele
and a variant. The percent of reads supporting the variants
had a normal distribution with a mean of 17% and a
standard deviation of 4%—indicating a 5:1 ratio of relative
abundance. This evidence suggests that two highly-clonal
strains co-occur in our quasimetagenomic samples.

General quasimetagenome assembly statistics
Ten assembly approaches were tested (Table 3), which
were grouped into four broad categories: short read,
long read, short read hybrid and long read hybrid. For
simplicity, a tool was defined as a hybrid assembly ap-
proach if it used both short and long reads whether it be
short read assemblies that get scaffolded with long reads
(short read hybrid) or long read assemblies that get
polished with short reads (long read hybrid).
All assembly approaches had a mean runtime (for the

full set of reads, C30, across enrichment times) of

Table 2 GridIon read length and sequencing error statistics for C30
Enrichment time
(hours)

Mean read
length

Max. read
length

Average quality
score

Min. est. sequencing error
rate

Max. est. sequencing error
rate

24 1923 48,588 21.8 7% 18%

28 2721 55,258 22.9 6% 17%

32 3268 57,233 22.8 7% 16%

36 4445 62,426 23.2 6% 13%

40 4129 69,402 23.2 6% 13%

Table 3 The ten assembly approaches tested

Tool Application Abbreviation

MegaHit short read metagenome assembler short read

Redbean long read genome assembler long read

Canu long read genome assembler long read

metaFlye long read metagenome assembler long read

Racon polishing long read assemblies with long reads long read

HybridSpades hybrid genome assembler; short read assembly followed by long read scaffolding short read hybrid

Opera-MS hybrid metagenome assembler; short read assembly followed by long read scaffolding either (1) de novo or (2)
using reference genomes

short read hybrid

ntEdit polishing long read assemblies with short reads long read hybrid

Pilon polishing long read assemblies with short reads long read hybrid
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approximately 40 min or less (Table 4) except Canu
which had a mean runtime of 98 min per sample. The
fastest assembly approach was Redbean with a mean
runtime of just one minute (Supplementary Figure 3).
The contiguity of the assemblies was measured using sev-

eral metrics: the total assembly length (Supplementary Fig-
ure 4), number of contigs (Supplementary Figure 5), N50
(Supplementary Figure 6), and longest contig assembled
(Supplementary Figure 7). The mean values for C30 across
enrichment times for each contiguity metric are described
in Table 4. Approaches that first assemble short reads
(short read and short read hybrid assemblies) contrasted
substantially with those that first assemble long reads (long
read and long read hybrid assemblies) having consistently
longer total assembly lengths, orders of magnitude more
contigs, lower N50s, and shorter longest contigs. In general,
as the enrichment of L. monocytogenes progressed, there
was a general decrease in the number of contigs and total
assembly size (Supplementary Figures 4 and 5).
As expected, the long read and long read hybrid as-

semblies had the highest N50 values and the longest

contigs—often near the reference genome length for
L. monocytogenes (~ 3 Mbp). Amongst the long read
assembly tools, the metagenome assembler metaFlye
consistently produced the highest N50 values with the
longest contigs nearest to the length of the L. mono-
cytogenes reference genome (Table 4); however, the
differences between long read assembly tools de-
creased with enrichment.
In contrast, the short read and short read hybrid

assemblies had low N50 values and the longest
contigs assembled were consistently shorter (often by
orders of magnitude) with little to no increase be-
yond 60X depth of coverage. Opera-MS, using
reference-guided scaffolding, was the main exception,
assembling contigs of 2 Mbp or more at all enrich-
ment time points.

Taxonomic composition of the quasimetagenomic
samples
The number of species identified in the assemblies
ranged from 2 to 10 with the short read and short read

Table 4 Mean assembly statistics (C30 at each enrichment time) for each assembly approach

Assembly tool Runtime Total assembly length Number of contigs N50 Longest contig

metaFlye (long read) 40.6 4,291,417 27 3,056,133 3,056,133

Canu (long read) 98 3,470,967 21 1,754,979 2,071,553

Redbean (long read) 1 3,474,503 35 2,123,769 2,131,343

MegaHit (short read) 32.8 7,972,605 7315 97,577 672,182

metaFlye+Racon (long read) 41.6 4,261,624 27 3,039,238 3,039,238

HybridSpades (short read hybrid) 22.6 11,681,048 19,285 112,850 686,270

OperaMS (no reference) (short read hybrid) 12.2 10,340,211 13,921 105,382 655,220

OperaMS (reference) (short read hybrid) 13.6 10,363,273 13,913 205,943 1,919,416

metaFlye+Racon+Pilon (long read hybrid) 41.6 4,271,759 27 3,041,086 3,041,086

metaFlye+Racon+ntEdit (long read hybrid) 41.6 4,274,358 27 3,041,440 3,041,440

Fig. 2 Taxonomic classification of cumulative batch 30 from each enrichment time point. For clarity, only the short read MegaHit and long read
metaFlye assemblies were plotted (short read assembly results mirrored short read hybrid assemblies and long read assemblies mirrored long
read hybrid assemblies). a The total bp of contigs per species (must have a minimum of 5000 bp) classified by Kraken. b Species in sample,
excluding L. monocytogenes, R. mucilaginosa and unclassified sequences highlights how the short read assemblies capture more species than the
long read assemblies
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hybrid assemblies containing more species than the long
read and long read hybrid assemblies (Fig. 2). The num-
ber of species decreased with enrichment time, and L.
monocytogenes and Rothia mucilaginosa were the only
species detected at all time points. Bacillus cereus was
the most closely related species to L. monocytogenes de-
tected in the quasimetagenomes (both species are mem-
bers of the order Bacillales).
L. monocytogenes was the most abundant species at all

times and its abundance increased with enrichment
time, but the abundance estimates differed for the MiSeq
and GridIon (Table 5). At 24H, 33% and 60% of the
MiSeq and GridIon reads, respectively, mapped to the L.
monocytogenes reference genome. At 40H, 92% and 97%
of the MiSeq and GridIon reads respectively, mapped to
the reference genome.

Reconstruction of the L. monocytogenes genome from the
quasimetagenomes
The most contiguous recovery of the L. monocytogenes gen-
ome, as measured by the mean NG50 across enrichment
time points (only using C30 at each time point), was by long
read and long read hybrid assembly approaches (Fig. 3). For
the long read assemblers Canu, Redbean, and metaFlye the
mean NG50 values were 1,535,966 bp, 1,568,760 bp, and 2,
490,733 bp, respectively. Because metaFlye assembled
genome-length contigs for L. monocytogenes the most con-
sistently of the long read assemblers, only the metaFlye as-
semblies were used for the long read hybrid assemblies.
The long read hybrid approaches (using metaFlya and
Racon in combination with Pilon or ntEdit) slightly
decreased the mean NG50 of the metaFlye assemblies, 2,
477,272 bp, 2,478,715 bp, 2,478,772 bp, respectively.
The short read Megahit assemblies had the smallest

mean NG50 at 162,346 bp. The short read hybrid assem-
blies of HybridSpades and Opera-MS without reference-
guided scaffolding had mean NG50’s that were several
fold higher than the Megahit assemblies, 431,211 bp and
375,881 bp, respectively. Opera-MS, using reference-
guided scaffolding, had a mean NG50 of 1,414,301 bp,
nearly an order of magnitude higher than Megahit and
close to that of the long read assembler Canu.
Only the long read assemblers were able to assemble

genome-length contigs (over 3 million bp) for L. mono-
cytogenes. The earliest complete reconstruction of the L.

Table 5 Percent of reads that map to the L. monocytogenes
reference genome

Enrichment
time (hour)

MiSeq (reads mapped
with Bowtie2)

GridIon (reads mapped
with MiniMap2)

24 33 60

28 68 88

32 75 94

36 88 97

40 92 97

Fig. 3 The NG50 versus the total number of base pairs sequenced per cumulative batch for the assembled L. monocytogenes contigs at each of
the enrichment time points for each assembly approach. (Abbreviations: SR = short read, LR = long read, HY = hybrid)
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monocytogenes genome was at 24H and C18 with meta-
Flye (33X depth of coverage of the L. monocytogenes
genome), 24H and C22 with Canu (40X depth of cover-
age of the L. monocytogenes genome), and 28H and C16

with Redbean (47X depth of coverage of the L. monocy-
togenes genome). The genome length contigs, irrespect-
ive of the long read assembly approach, were frequently
up to tens of thousands of base pairs longer than the ref-
erence genome, mainly due to over-circularization of the
assembly by a read length or less. Additionally, each long
read assembler recovered a circularized 71 kbp putative
L. monocytogenes plasmid that was always fragmented in
the short read assemblies. The best BLAST hits within
the NCBI nt database for the assembled plasmid were to
known L. monocytogenes plasmids (NCBI accessions
CP053631.1 and CP044431.1). The plasmid was not
found to host any known resistance or virulence genes.

Assembly errors in the L. monocytogenes genomes
reconstructed from the quasimetagenomes
Quast was used to compare the mean number of misas-
semblies, mismatches per 100 Kbp, and indels (inser-
tions and deletions) per 100 Kbp in the L.
monocytogenes contigs for each assembly approach,
given the highest sequencing depth of coverage of the
quasimetagenomes (i.e. C30) across enrichment times
(Fig. 4). The number of misassemblies and mismatches
varied more by tool than assembly strategy. The mean
number of misassemblies ranged from 10.8 (Canu) to 0
(HybridSpades). The mean number of mismatches per
100 Kbp ranged from 31.8 (Redbean) to 1.2 (metaFlye).
In contrast, the long read assembly approaches had a
pronounced indel rate versus other approaches, ranging
from 265 (Canu) to 481 (metaFlye). The combination of

metaFlye with Racon substantially reduced the number
of indels to 74 per 100 kbp. Combining short read and
long read information with long read hybrid assembly
approaches further reduced the number of indels to ~ 3
per 100 kbp. Short read assembly/short read hybrid as-
sembly approaches had the lowest indel rate of around 1
to 2 per 100 kbp.

Accuracy of the L. monocytogenes metagenome-
assembled genomes
At all enrichment time points and C30 reads (for both
short and long reads), there was 100% breadth of cover-
age of the L. monocytogenes reference genome and up to
~160X depth of coverage.
The fraction of the L. monocytogenes genome that was

typeable by the MiSeq and GridIon reads was assessed
by identifying regions in the reference genome where
the C30 reads mapped ambiguously (i.e. mapped with the
same alignment score to multiple genome locations). For
the MiSeq and GridIon reads, a median of 3.9% (118,
615 bp) and 0% (0 bp), respectively, of the reference gen-
ome consisted of ambiguous regions.
Earlier results provided evidence for the presence (with

a 5:1 relative abundance ratio) of two strains of L. mono-
cytogenes in the quasimetagenomes. The less abundant
strain differed from the more abundant strain at 586
loci. Analysis with Snippy showed that no more than 13
of the 586 variants in the low abundance strain were
present in a given C30 assembly (across enrichment
times). However, the long read assemblies contained the
highest median number of variants (maximum was 12
with metaFlye) while the other assembly approaches had
a median of 3 or less.

Fig. 4 The quality of assembled contigs annotated as L. monocytogenes, with respect to the reference genome, using Quast for cumulative batch
30 at each of the enrichment time points. The number of mismatches, insertion/deletion (indels), and misassemblies per 100 kbp for each
assembly approach. (Abbreviations: SR = short read, LR = long read, HY = hybrid)
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Next, the accuracy of the assemblies (C1 to C30 at
each enrichment time) was assessed by calculating the
BLAST distance between the core genes (Fig. 5) and
the complete set of genes (Fig. 6) of the reference
genome and the L. monocytogenes contigs. As defined
earlier, the BLAST distance is a measure of sequence
similarity equalling the number of mismatches, inser-
tions, and deletions in the BLAST alignment between
the reference genes and the assembled genes. The
short read and short read hybrid assemblies attained
the smallest BLAST distances for the core genes,
while the long read hybrid assemblies attained the
smallest BLAST distances for the complete set of
genes.
For the core genes, the smallest BLAST distance ob-

served was 5 (Fig. 5). Four of the differences were caused
by variants identified previously in the core genes of the
L. monocytogenes extracted from the quasimetagenomes.
The fifth difference varied in location for different as-
semblies, and showed no relation to the variants discov-
ered previously.
The short read hybrid approaches assembled the core

genes with BLAST distance 5 at the earliest time point:
HybridSpades at 24H and C22 corresponding to 40X
(long reads) and 19X (short reads) depth of coverage of
the L. monocytogenes reference genome; Opera-MS, both
with and without reference-guided scaffolding, at 24H
and C28 corresponding to 50X (long reads) and 25X

(short reads) depth of coverage of the L. monocytogenes
reference genome. Megahit assemblies attained a BLAST
distance of 5 after 28H and C11 corresponding to 28X
depth of coverage of the L. monocytogenes reference gen-
ome. At 24H, 28H and 36H the short read hybrid assem-
blies obtained a BLAST distance 5 with fewer short
reads than the short read assemblies; however, at 32H
and 40H, the short read and short read hybrid assem-
blies required the same amount of short read data to
achieve a BLAST distance of 5.
The long read assemblies never achieved a BLAST dis-

tance of less than 2000 even with 158X depth of cover-
age of L. monocytogenes. Polishing the long read
metaFlye assemblies with Racon improved the assembly
of the core genes, achieving a minimum BLAST distance
of 609. Long read hybrid assembly with Pilon achieved a
BLAST distance of 5 at 28H and C14 which corre-
sponded to 36X (short reads) and 38X (long reads)
depth of coverage of the L. monocytogenes reference gen-
ome; however, it achieved BLAST distance 5 less con-
sistently than short read or short read hybrid approaches
(Fig. 5). Long read hybrid assembly with ntEdit assem-
bled the core genes with less accuracy than Pilon, with a
median BLAST distance (C1 to C30 across enrichment
times) of 81 and 11, respectively.
The long read hybrid approaches assembled the

complete gene set with the lowest BLAST distance, with
Pilon outperforming ntEdit (Fig. 6). Pilon achieved a

Fig. 5 Core gene BLAST distances. BLAST distance between the core genes of the reference genome and the assemblies versus the total number
of base pairs sequenced per cumulative batch. (Abbreviations: SR = short read, LR = long read, HY = hybrid)
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BLAST distance of 132, the best observed for any tool,
at 28H and C14 corresponding to 36X (short reads) and
38X (long reads) depth of coverage of the L. monocytogenes
reference genome. The mean BLAST distance across en-
richment time points was 699 for Pilon and 798 for ntEdit.
None of the other assembly approaches attained this level
of accuracy. For reference, the next best tool, metaFlye+
Racon, had a mean BLAST distance of 2991.

Variation in assembly quality between successive
cumulative batches
In addition to accuracy, the precision with which
assemblies can be reconstructed is of great import-
ance for pathogen detection. The accuracy of the as-
sembly approaches (in terms of divergence in core
and full gene sets with respect to the L. monocyto-
genes reference) varied widely between successive
cumulative batches (Fig. 7).
The tools that most consistently assembled the core

genes were Opera-MS (without reference guided scaf-
folding), HybridSpades, MegaHit, and metaFlye+Racon+
Pilon; the median difference in BLAST distance between
successive cumulative batches for these tools was 0, 1, 1,
and 5, respectively, across all enrichment time points.
All assembly approaches had a median difference in
BLAST distance of less than 50 except Opera-MS with
reference guided scaffolding (121), Canu (1183) and
Redbean (10,930).

The variability in the accuracy for the reconstruc-
tion of the complete gene set was an order of magni-
tude greater than for the core genes. The most
consistent tools were HybridSpades, metaFlye+Racon+
Pilon, metaFlye+Racon+ntEdit, metaFlye+Racon, and
metaFlye—the median difference in BLAST distance
between cumulative batches was 132, 137, 140, 183,
and 207, respectively. All assembly approaches had a
median difference in BLAST distance of less than
1000, with the exceptions of Opera-MS with reference
guided scaffolding (1019), Canu (4758), and Redbean
(32,655).

Depth of coverage did not always improve assembly
quality
Increased depth of coverage did not always correlate
with improved performance in assembly metrics. For
example, the longest contig assembled by the short
read assemblies was very similar at 30X depth of
coverage and at 150X depth of coverage, 695,760 nt
and 695,778 nt, respectively. In some cases, the per-
formance of assembly approaches actually decreased
with increased depth of coverage. For example, the
lowest BLAST distance for the complete gene set for
the metaFlye+Racon+Pilon assemblies increased from
132 to 153 despite an increase of 100X depth of
coverage of the L. monocytogenes genome for both
short and long reads.

Fig. 6 Complete gene set BLAST distances. BLAST distance between the complete gene set of the reference genome and the assemblies versus
the total number of base pairs sequenced per cumulative batch. (Abbreviations: SR = short read, LR = long read, HY = hybrid)
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Discussion
Public health labs are continually developing and testing
new methods and approaches to increase the speed and
resolution of pathogen source tracking. Expediting
source attribution will contribute to reduced illnesses,
deaths and the economic burden of illness outbreaks.
Currently, the standard workflow for strain typing and
source attribution involves sequencing genomes (primar-
ily with Illumina MiSeq technology) of isolated colonies,
cultured from selective enrichments. Sequence data is
analyzed using SNP and/or MLST analyses. Here we
evaluated the contribution of quasimetagenomics and
the applied integration of (short) MiSeq and (long) Grid-
Ion reads for the improvement of this workflow.

Quasimetagenomics expedites source tracking
Currently, direct metagenomic sequencing of samples
cannot replace genome sequencing of culture isolates for
the strain typing of pathogens; however, quasimetage-
nomics has shown great promise for reducing the
amount of enrichment time needed to type pathogens
with sequence data [26, 35, 36]. Previous work on the
listeriosis ice cream outbreak demonstrated that quasi-
metagenomic short read sequencing provided sufficient
coverage of the L. monocytogenes genome to determine
its membership in the outbreak cluster at 24 h enrich-
ment—a significant improvement over the ~ 6 day pro-
cedure required to culture and sequence an isolate
genome [26]. This work supports that MiSeq short read
sequencing can expedite the recovery of a target patho-
gen from quasimetagenomes, accurately reconstructing
the L. monocytogenes core genes at 28 h of enrichment.
Further, the integration of MiSeq short read and GridIon

long read sequencing further expedited the accurate as-
sembly of the core genes and increased the contiguity of
assemblies—including the reconstruction of a complete
genome and plasmid—at 24 h of enrichment (Fig. 1).
This highlights that an integrated approach to quasime-
tagenomics can greatly expedite and enhance source
tracking.

Long reads have added value over short reads for
quasimetagenomics
Although short reads can be used for high resolution
SNP and cgMLST/wgMLST analyses they cannot span
many genomic repeat regions, resulting in fragmented
assemblies that preclude the recovery of complete bac-
terial genomes [13]. The fragmented assemblies can pre-
vent the identification of genes, gene synteny, repeats,
structural variants, and extrachromosomal sequences,
like plasmids and phages, that could be readily observed
in complete assemblies.
Our results showed that ~ 4% of the L. monocytogenes

genome was not typeable by the MiSeq reads. In con-
trast, the entire L. monocytogenes genome was typeable
with the GridIon reads, enabling the complete recon-
struction of the L. monocytogenes genome and plasmid
at 24 h of enrichment and only 33X depth of coverage.
The ability of long reads to span genomic repeats will
support much higher resolution whole genome based
source tracking methods and provide detailed informa-
tion about the mobileome. However, similar to previous
studies [40], we found the high sequencing error rate of
the nanopore reads to induce incorrect base calls in the
assembled sequence, thereby negatively impacting strain
typing and strain attribution. Nonetheless, with time, we

Fig. 7 Consistency of assembly approaches between successive cumulative batches. Median successive cumulative batch difference in BLAST
distances, across enrichment time points, for the A) the core genes and B) the complete gene
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expect the sequencing error rate to decrease and the
utility of nanopore sequencing for source tracking to in-
crease substantially.
Another advantage of nanopore over MiSeq sequen-

cing is that the data is output in batches of reads every
30 to 60min (as opposed to a MiSeq sequencing run
which takes ~ 24 h depending on the number of cycles).
As assembling the reads is much faster than sequencing
itself (Fig. 1), nanopore sequencing allows the analysis to
terminate as soon as sufficient reads have been obtained
for accurate analysis—a point that may vary depending
on the characteristics of the sample. This ability can
greatly expedite source tracking by facilitating near-real-
time bioinformatic analyses.

Hybrid assembly outperforms other approaches but with
trade-offs
Our results support the accuracy of hybrid assemblies
[17, 18, 36]—hybrid assembly, using both Illumina short
reads and nanopore long reads, could reconstruct more
complete and accurate genomes than using either of the
platforms alone. However, the initial assembly strategy
(i.e. whether the short reads were assembled first or long
reads) had a substantial impact on the quality of the re-
constructed genomes. Short read hybrid assembly ap-
proaches led to a more accurate assembly of the core
genes, but the assemblies were more fragmented. The
use of reference genomes to scaffold assemblies in-
creased the contiguity of the short read hybrid assem-
blies, but also introduced assembly errors—a potential
consequence if the references used for scaffolding has
structural differences compared with the genomes being
assembled. For the long read hybrid assembly ap-
proaches, a higher indel rate prevented the accurate as-
sembly of the core genes; however, the assemblies had
higher contiguity, sometimes reconstructing the
complete L. monocytogenes genome. Additionally, the
long read hybrid assembly approaches led to the most
accurate recovery of the complete set of genes, with
potential implications for characterizing the phenotype
(e.g., drug resistance) of the pathogen. The choice of the
hybrid assembly approach can be made subject to
whether the application of the reconstructed genome
mandates highly accurate core genes or an overall
accurate complete genome.

Short read based assembly approaches showed the best
performance
Assemblies need to be accurately reconstructed to be
useful for SNP and cgMLST/wgMLST based source
tracking analyses. Among the assembly approaches
tested, the most accurate was the reconstruction of the
core genes using either the short read or short read hy-
brid assembly strategy. Short read hybrid assembly was

consistently able to accurately assemble the core genes
with the same amount or fewer short reads than the
short read assemblies. However, the combined use of
short and long reads entails higher costs in both
personnel time and reagents, which may not be justified
as similar accuracy can be obtained with short reads
alone at a slightly higher depth of coverage. In contrast,
no assembly approach could reconstruct the complete
set of genes with high accuracy or consistency, although
long read hybrid approaches were by far the best per-
forming. Nonetheless, given a lower sequencing error
rate, long read approaches might become preferrable
with the added value of assembling complete genomes
and mobile elements like plasmids.

Areas of improvement for assembly algorithms
At the time of our analysis, metaFlye was the only meta-
genomic long read assembler available, and it performed
better than the other long read assemblers in our appli-
cation. This observation highlights that long read assem-
blers developed for single genomes are not effective
when samples contain mixtures of DNA from multiple
organisms—suggesting the need for further research in
developing efficient metagenomic assembly tools for
long read data. Additionally, the quality of the metaFlye
assemblies was improved considerably by polishing the
assemblies with the long reads themselves, indicating
that none of the long read assemblers make full use of
the information available in the long reads.
The observed differences between hybrid assembly ap-

proaches that start with short reads and those that start
with long reads, suggest that hybrid approaches are cur-
rently limited by the weaknesses of the different tech-
nologies. This highlights the scope for improvement in
hybrid assembly approaches, underscoring that we are
still far from developing techniques which effectively in-
tegrate their strengths (e.g., the contiguity of long reads
and high per-base quality of the short reads).
A weakness common to all assembly approaches was

sensitivity to the addition of cumulative batches of
sequence data, resulting in inconsistent gains/losses in
assembly quality. This affected many metrics such as the
N50 and the accuracy of the assembled genes. The dif-
ferential sensitivity of assembly approaches to the
addition of sequence data from the same sample
suggests that assembly tools can be made more robust
and consistent—greatly benefiting many applications
including strain typing.
An advantage for quasimetagenomics is the detection

of co-occurring strains that might be missed by trad-
itional methods (i.e. culturing and sequencing a single
isolate). Our analysis suggested the presence of at least
two strains of L. monocytogenes in the quasimetagen-
omes. However, the current tools do not account for the
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variations within the (quasi-)metagenomic samples and
current assembly approaches simply reconstruct the
most abundant strain, which is what we observed with
our assemblies. While further analysis of the data can re-
veal the strain structure hidden by the consensus assem-
bly, we believe it is preferable that assemblers
themselves account for and reveal the strains contained
in the sample, information that could be valuable for
source tracking.

Conclusion
The integration of nanopore long read and Illumina
short read sequencing expedited the reconstruction of
high quality L. monoctyogenes assemblies from ice cream
quasimetagenomes. The core genes were accurately re-
constructed after 24 h enrichment with the short read
hybrid assemblies and 28 h for the short read assem-
blies–a significant reduction from the standard 6 day
protocol. Although the GridIon long read assemblies
had too many errors to reconstruct the core genes with
high fidelity, they had added value for reconstructing
complete genomes and plasmids–providing information
about synteny, gene content and genome structure that
were not accessible with short reads. Hybrid assembly
showed the best performance but with different weak-
nesses depending on whether the short or long reads
built the initial assembly–highlighting areas for algorith-
mic improvement that integrate the strengths of long
and short reads (e.g., the contiguity of long reads and
high per-base quality of the short reads). A new and
more complete level of information about genome struc-
ture, gene order and mobile elements can be added to
the public health response by integrating microbiological
(quasimetagenomic), molecular (long and short read se-
quencing) and optimized bioinformatic approaches.

Methods
Experimental design
Using long and short read sequencing technologies, we
compared the performance of various assembly ap-
proaches for reconstructing the genome of L. monocyto-
genes from selective enrichments of naturally
contaminated ice cream samples (Fig. 1). The isolation
of a pure colony of L. monocytogenes for sequencing typ-
ically requires up to 6 days of selective culture enrich-
ment [26]. During the selective enrichment, aliquots
were collected at 4-h intervals from 24 to 40 h (denoted
as 24H, 28H, 32H, 36H, 40H). MiSeq short read and
GridIon long read sequencing were performed on DNA
from these incremental enrichments. At each time point,
over a range of sequenced depth of coverage of the qua-
simetagenomes, the sequence data was assembled using
the short and long reads in combination and separately.
Assembly quality was evaluated by comparison to a

complete L. monocytogenes reference genome—se-
quenced and assembled from PacBio data—obtained
from the full 6-day enrichment protocol.

Enrichment
Ice cream samples, associated with the 2015 Blue Bell
multistate listeriosis outbreak, were homogenized and
added to Buffered Listeria Enrichment Broth (BLEB)
with pyruvate according to the specifications outlined in
Chapter 10 of the FDA BAM [19]. The mean MPN/g of
L. monocytogenes in the ice cream samples was 11.99.
After four hours, three filter sterilized selective agents
(M52) were added to achieve final concentrations of 10
mg/L acriflavin, 40 mg/L cycloheximide, and 50mg/L
sodium nalidixic acid in the BLEB. Four replicates of
negative (no ice-cream) and positive controls (L. mono-
cytogenes cells) were also evaluated for bacterial growth
every four hours over the 40-h enrichment.

DNA extraction and sequencing for short reads
For each of the enrichment time points (24H, 28H, 32H,
36H, and 40H), DNA was extracted using DNeasy Blood
and Tissue kit (Qiagen) following the protocol for
Gram-positive bacteria with minor modifications: 1.5 ml
of the culture was pelleted (5000×g, 15 min) and the pel-
let resuspended in 200 mL of enzymatic lysis buffer con-
taining 20mM Tris-HCl (pH -8.0), 2 mM Sodium
EDTA, 1.2% Triton X- 100, 20 mg/ml of lysozyme. Sam-
ples were incubated for 60 min at 37 °C. Short read li-
braries were prepared with Nextera Flex (Illumina)
library prep kit according to the manufacturer’s specifi-
cations. Libraries from enrichment time points 24H,
28H, 32H, 36H, and 40H were multiplexed along with
20 other libraries from different time points from the
same study on to Illumina MiSeq 2 × 250 cartridge (Illu-
mina, CA) following manufacturer recommended
protocol.

DNA extraction and sequencing for long reads
For each enrichment time point (24H, 28H, 32H, 36H,
40H), 2 ml aliquots of enrichment were removed and
pelletized using a benchtop Centrifuge (Eppendorf 5418
R, NY, USA) at 4000 rpm for 10 mins. The pellet was re-
suspended in 300ul of TE Buffer. 300ul of the resus-
pended cells were loaded on the Maxwell® RSC
Instrument (automated DNA extraction instrument,
Madison, WI, USA) cartridge for DNA extraction. Gen-
omic DNA was extracted using Maxwell® RSC Cultured
Cells DNA Kit (Cat no: AS1260, Madison, WI, USA) on
Maxwell RSC instrument following the manufacturer
recommended protocol for Gram-positive bacteria.
Sequencing libraries were prepared using the ligation

sequencing kit (Cat no: SQK-LSK109, Oxford Nanopore,
Oxford, UK), according to the manufacturer’s
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specifications along with Native Barcoding Expansion 1–
12 (Cat no: EXP-NBD104, Oxford Nanopore, Oxford,
UK) for multiplexing the samples. The libraries were
multiplexed into 2 pools (Pool1: 24H, 28H, 32H): Pool 2:
36H, 40H). The libraries were sequenced using GridIon
with Flow cell (Cat no: FLO-MIN106, Oxford, UK) fol-
lowing the manufacturer’s recommended protocol. The
GridIon outputs the raw signal data in batches of 4000
sequenced reads in fast5 format files [41]. Each fast5 file
was converted into fastq formatted DNA sequences
using Guppy for basecalling [42]. The fast base calling
mode was used, which has a speed of ~ 4.6 Mbp/second.
The GridIon typically outputs a batch of reads every 30
to 60min (internal to lab), but is affected by factors such
as the length and quality of the DNA fragments being
sequenced.

L. monocytogenes reference genome
Previous work identified two strains from the L. monocy-
togenes ice cream outbreak [37]. Two reference genomes
(NZ_CP016213.1 and NZ_MAGN00000000.1) were used
for the SNP analysis of the two strains. These reference
genomes were compared with the L. monocytogenes as-
semblies from the quasimetagenomes using Mash (v2.0,
k = 25, s = 100,000). The complete L. monocytogenes gen-
ome (Genbank accession NZ_CP016213.1) was more
similar to the data in the quasimetagenomes (see Results
section) and was used as the reference for our analyses.
This reference organism had previously been isolated
from a single colony at the end of the enrichment
protocol and sequenced with PacBio RSII from ice
cream samples from Facility 1, the same facility our
samples came from [37]. The reference is 3,030,827
bp long with 2984 protein-coding genes (2,710,041 bp
in total length) predicted by Prokka (v1.12) [43] and
a GC-content of 38%. The core genes (using the 1013
gene cgMLST scheme developed for L. monocytogenes
at the FDA [6, 7]) were identified by BLAST [44]
alignment. The total length of the core genes was 1,
075,554 bp. Six copies of the 16S rRNA were identi-
fied in the reference genome with BLAST using the
RNAmmer database [45].

Partitioning the sequenced reads into cumulative batches
The GridIon nanopore sequencing instrument generates
the data in batches of 4000 reads, denoted here as Bn for
the nth batch. Our analysis used the first 30 batches of
reads, i.e., the first 120,000 reads corresponding to
batches B1, B2, …,B30 (Fig. 1). To analyze the quality of
assemblies as a function of increased sequencing depth,
each successive batch of reads was combined with the
previous batches for assembly to form “cumulative
batches”, denoted as C1, C2,...,C30, where Cn = B1 + B2 +
... + Bn (Fig. 1). To compare assembly results strictly

based on sequencing technology, the number of base
pairs for the MiSeq and GridIon data was normalized.
Over a range of sequencing depths, MiSeq raw read files
were partitioned into 30 corresponding batches of read
pairs to match the cumulative batches by number of
base pairs for GridIon reads. Table 1 records the total
number of sequenced bases per C30 at each enrichment
time.

Detection of genomic variants and the presence of
multiple strains
The detection of variants between the reference and the
L. monocytogenes sequences reconstructed from the qua-
simetagenomes was conducted with two methods. In
both cases, the MiSeq reads from cumulative batch C30

from each enrichment time were analyzed. The first
method called variants with Snippy (v4.6) [46] if there
was ≥10X depth of coverage and ≥ 95% of the reads sup-
ported the variant. The second method consisted of
mapping the MiSeq reads to the reference genome with
Bowtie2 (v2.3.4) [47] and analyzing the pile-up of reads
with SAMtools (v1.7) [48]. Loci with ≥50X depth of
coverage and where 20 to 90% of the aligned reads indi-
cated the presence of another allele (while the rest of the
aligned reads supported the reference allele) were con-
sidered to be evidence for multiple strains.

Raw read statistics and reference genome coverage
Raw read statistics were collected for the 30 batches of
reads (B1 to B30) per enrichment time point, including:
mean per base quality score, number of reads, number
of base pairs, read length distribution, and estimated se-
quencing error rate. To estimate the sequencing error
rate, the short and long reads were mapped to the L.
monocytogenes reference genome with Bowtie2 (v2.3.0)
and MiniMap2 (v2.17-r974-dirty) [49], respectively,
using default settings. The number of mismatches, inser-
tions, and deletions were counted for the mapped reads
with respect to the reference genome. For the GridIon
reads, an estimated range was provided for the sequen-
cing error rate because MiniMap2 is a local, as opposed
to a global, read alignment tool. The range is based on
whether soft-clipping of the read alignments is included
as sequencing error (maximum estimate of error) or not
(minimum estimate of error). Insertions, deletions, and
mismatches were only counted for the aligned portion of
the reads i.e. excluding the soft-clipped regions. The
read mappings were used to estimate the breadth and
depth of coverage (DOC) of the L. monocytogenes refer-
ence genome.

Assembling the sequenced reads
Short reads and long-reads from each cumulative
batch (C1 to C30) were assembled per enrichment
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time point (Fig. 1). The short reads were assembled
using MegaHit (v1.2.9) [50] with default settings and
scaffolded with MetaCarvel [51]. The long reads were
assembled using Canu (v1.7) [52], Redbean (v2.5)
[53], and metaFlye (v2.6-release) [54] with default set-
tings. The Redbean assemblies were polished with
MiniMap2 (v2.17-r974-dirty) and SAMtools (v1.5) fol-
lowing the tutorial for Redbean on its GitHub page.
Unlike metaFlye, which is a long read metagenome
assembler, Canu and Redbean are not designed for
metagenomic assembly. However, these assemblers
were chosen for comparative analysis as they are fre-
quently used long-read genome assemblers. All of the
metaFlye assemblies were polished, using the long
reads, with Racon (v1.4.15) [55]. HybridSpades
(v3.14.0) [56] and Opera-MS (v0.8.3) [40] (with and
without reference genome scaffolding) were used for
short read hybrid assembly—short read assembly
followed by scaffolding with the long reads. Opera-
MS was chosen because it is a metagenome assem-
bler, while HybridSpades was chosen because it is a
popular genome assembler. Pilon (v1.23) [57] and
ntEdit (v1.3.1) [58] were used for long read hybrid as-
semblies—long read assembly with metaFlye followed
by short read polishing. Each tool was run with 12
cores of 2.70 GHz Intel Xeon E5–2680 processor.

Assembly statistics
The runtime (user time) of each assembly method on
the server was recorded for cumulative batch C30 at each
enrichment time point. Quast (v5.0.2) [59] was used to
report the number of insertion/deletions/mismatches
and the NG50 for the C30 assembled L. monocytogenes
contigs with respect to the reference genome.
General quasimetagenomic assembly statistics (total

assembly length, the number of contigs, the longest con-
tig, the N50) were collected for every cumulative batch
(C1 to C30 at each enrichment time) using a custom Py-
thon script.

Comparison of the reference genome with the L.
monocytogenes assembled from the cumulative batches
We estimated the fraction of the reference genome
where reads (MiSeq and GridIon) mapped ambiguously,
i.e. mapped with the same alignment score to multiple
genome locations. The MiSeq reads were mapped with
Bowtie2 and the GridIon reads were mapped with Mini-
Map2. The mean MAPQ score was calculated for each
base of the reference genome. Loci with median scores
lower than 40 were considered ambiguous [60].
The presence of alleles from the low abundance strain

was assessed for the C30 assemblies (across enrichment
times) with Snippy by aligning the assemblies to the

reference genome and cross-referencing the variant loci
identified when looking for multiple strains.
The L. monocytogenes contigs assembled from each cu-

mulative batch (C1 to C30 at each enrichment time) were
assessed for accuracy with respect to the reference gen-
ome. Accuracy was assessed by measuring the BLAST
distance (a measure of sequence similarity) between the
predicted genes (both the core and complete set of
genes) of the reference and the L. monocytogenes
metagenome-assembled genomes. We define the BLAST
distance as the number of mismatches, insertions, and
deletions in the BLAST alignment between the reference
genes and the assembled genes. Preferably, the edit dis-
tance between the reference genes and the genes found
in the assemblies would have been calculated, but cor-
rectly identifying the entire length of genes, especially in
noisy long read assemblies, is difficult; instead, the
BLAST distance forms an approximation of the edit
distance.
If the L. monocytogenes genome assembled from a

sample comprised a single contig, the synteny of the
core genes was compared to that in the reference.

Taxonomic classification
The contigs from the MegaHit (short read) assemblies
and metaFlye (long read) assemblies (from each cumula-
tive batch at every enrichment time) were taxonomically
classified with Kraken (v1.1.1) [61] and the MiniKraken
database using default settings. A species was considered
present if ≥5000 nt of contigs were annotated as that
species.
The proportion of reads mapped to the L. monocyto-

genes genome was used as the relative abundance of L.
monocytogenes in the samples.
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Additional file 2: Supplementary Figure 2. GC content distributions
for long reads that mapped to the Listeria monocytogenes reference
genome and those that did not.

Additional file 3: Supplementary Figure 3. Runtimes for the
assembly approaches in minutes when assembling cumulative batch 30
from each of the enrichment time points. (Abbreviations: SR = short read,
LR = long read, HY = hybrid).

Additional file 4: Supplementary Figure 4. Total assembly length
versus the total number of base pairs sequenced per cumulative batch at
each of the enrichment time points for each assembly approach.
Sometimes the results for Canu, Redbean and metaFlye overlap as do
Opera-MS (NoRef) and Opera-Ms (RefCluster). (Abbreviations: SR = short
read, LR = long read, HY = hybrid).

Additional file 5: Supplementary Figure 5. Number of contigs versus
the total number of base pairs sequenced per cumulative batch at each
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of the enrichment time points for each assembly approach.
metaFlye+Racon, metaFlye+Racon+Pilon, and metaFlye+Racon+ntEdit
are obscured by the line for metaFlye in each of the plots. (Abbreviations:
SR = short read, LR = long read, HY = hybrid).

Additional file 6: Supplementary Figure 6. N50 versus the total
number of base pairs sequenced per cumulative batch at each of the
enrichment time points for each assembly approach. metaFlye+Racon,
metaFlye+Racon+Pilon, and metaFlye+Racon+ntEdit are obscured by the
line for metaFlye in each of the plots. (Abbreviations: SR = short read,
LR = long read, HY = hybrid).

Additional file 7: Supplementary Figure 7. The longest contig
assembled versus the total number of base pairs sequenced per
cumulative batch at each of the enrichment time points for each
assembly approach. metaFlye+Racon, metaFlye+Racon+Pilon, and
metaFlye+Racon+ntEdit are obscured by the line for metaFlye in each of
the plots. (Abbreviations: SR = short read, LR = long read, HY = hybrid).
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