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Abstract

Background: The combination of sodium bisulfite treatment with highly-parallel sequencing is a common method
for quantifying DNA methylation across the genome. The power to detect between-group differences in DNA
methylation using bisulfite-sequencing approaches is influenced by both experimental (e.g. read depth, missing
data and sample size) and biological (e.g. mean level of DNA methylation and difference between groups)
parameters. There is, however, no consensus about the optimal thresholds for filtering bisulfite sequencing data
with implications for the reproducibility of findings in epigenetic epidemiology.

Results: We used a large reduced representation bisulfite sequencing (RRBS) dataset to assess the distribution of
read depth across DNA methylation sites and the extent of missing data. To investigate how various study variables
influence power to identify DNA methylation differences between groups, we developed a framework for
simulating bisulfite sequencing data. As expected, sequencing read depth, group size, and the magnitude of DNA
methylation difference between groups all impacted upon statistical power. The influence on power was not
dependent on one specific parameter, but reflected the combination of study-specific variables. As a resource to
the community, we have developed a tool, POWEREDBiSeq, which utilizes our simulation framework to predict
study-specific power for the identification of DNAm differences between groups, taking into account user-defined
read depth filtering parameters and the minimum sample size per group.

Conclusions: Our data-driven approach highlights the importance of filtering bisulfite-sequencing data by minimum
read depth and illustrates how the choice of threshold is influenced by the specific study design and the expected
differences between groups being compared. The POWEREDBiSeq tool, which can be applied to different types of
bisulfite sequencing data (e.g. RRBS, whole genome bisulfite sequencing (WGBS), targeted bisulfite sequencing and
amplicon-based bisulfite sequencing), can help users identify the level of data filtering needed to optimize power and
aims to improve the reproducibility of bisulfite sequencing studies.
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Background
Epigenetic processes regulate gene expression via modi-
fications to DNA, histone proteins and chromatin with-
out altering the underlying DNA sequence, and there is
increasing interest and understanding of the role that
epigenetic variation plays in development and disease
[1]. The most extensively studied epigenetic modification
is DNA methylation (DNAm), the addition of a methyl
group to the fifth carbon position of cytosine that occurs
primarily, although not exclusively, in the context of
cytosine-guanine (CpG) dinucleotides. Despite being
traditionally regarded as a mechanism of transcriptional
repression, DNAm is actually associated with both in-
creased and decreased gene expression depending upon
the genomic context [2], and also plays a role in other
transcriptional functions including alternative splicing
and promoter usage [3].
Inter-individual variation in DNAm has been associated

with cancer [4], brain disorders [5–8], metabolic pheno-
types [9, 10] and autoimmune diseases [11]. A number of
high-throughput methods have been developed to quan-
tify genome-wide patterns of DNAm, although these differ
with regard to enrichment strategy, quantification accur-
acy and analytical approach [12]. Many approaches are
based on the treatment of genomic DNA with sodium bi-
sulfite, which converts unmethylated cytosines into uracil
(and subsequently to thymine after amplification) while
methylated cytosines are unaffected. The field of epigen-
etic epidemiology in human cohorts has been facilitated
by the development of cost effective, standardized com-
mercial arrays such as the Illumina EPIC Beadchip [13].
Data generated using this platform is relatively straightfor-
ward to process and analyze, with a number of standard-
ized software tools and analytical pipelines [14, 15]. These
arrays are only currently commonly available for human
samples and are limited to capturing predefined genomic
positions making up only ~ 3% of CpG sites in the human
genome [16].
For studies requiring greater coverage of the genome,

or for the quantification of DNAm in non-human organ-
isms, it is typical to employ highly parallel short read se-
quencing of bisulfite-treated DNA libraries. A key step
in the analytical pipeline of such data is the mapping or
alignment of these short sequences back to the genome
of interest, a process that is complicated by the degener-
ated sequence complexity of bisulfite-treated DNA [17].
As well as the need to determine accurately where in the
genome a read originates from, the analysis of bisulfite
sequencing data involves distinguishing reads mapping
to methylated alleles from those mapping to unmethy-
lated alleles. For each cytosine, the level of DNAm is es-
timated by quantifying the proportion of methylated (C)
to unmethylated (T) cytosines from the sequenced reads
overlapping that position. Bisulfite sequencing data

provides information about cytosine methylation occur-
ring in three distinct sequence contexts: CpG, CHH or
CpH sites.
In this paper, we sought to characterize the properties

of bisulfite sequencing data with the goal of exploring
the experimental variables that influence statistical
power and sensitivity to identify differences in DNA
methylation in population-based analyses. We define
‘DNAm sites’ as vectors, such that each DNAm site has
a ‘DNAm point’ per sample, which incorporates ‘read
depth’ (i.e. the total number of reads covering that
DNAm site), and ‘DNAm value’ (i.e. the proportion of
methylated reads at that DNAm site). As with all se-
quencing applications, the total coverage, defined here
as the total number of reads across the genome, is crit-
ical to the success of an experiment, as it will result in a
higher average read depth at any individual DNAm
point. Read depth influences both accuracy and statis-
tical power. DNAm is measured as a proportion, there-
fore, when read depth is low there are only a finite
number of possible values and the sensitivity of bisulfite
sequencing is constrained. For example, a DNAm point
covered by only four reads can only have five possible
configurations of the ratio of methylated to unmethy-
lated reads (4:0, 3:1, 2:2, 1:3, 0:4) resulting in the possible
DNAm proportions of 0.00, 0.25, 0.50, 0.75, or 1.00. This
lack of sensitivity has a direct effect on the magnitude
and accuracy of differences that can be detected between
groups, meaning that DNAm points with low average
read depth may not have sufficient power for the detec-
tion of small or even moderate changes in DNAm. This
is particularly pertinent as many studies of differential
DNAm in complex phenotypes and disease typically
identify changes of < 5% [8, 18]; such small differences
are likely to require precise proportions of the DNAm to
be detected.
An additional challenge for the interpretation of bisul-

fite sequencing data compared to array-based methods,
which have a fixed content, is that the precise regions of
the genome covered by sequencing reads generated in
any given experiment can be highly variable. This means
that DNAm sites captured in a sequencing experiment
may not contain many DNAm points, and that even
where the DNAm points have been assayed across many
of the samples, the read depth is potentially highly vari-
able. This results in a matrix of DNAm values with a
high proportion of missing data, effectively lowering the
sample size at that DNAm site, in turn reducing the
power to detect associations in analysis.
The gold standard bisulfite-sequencing method is

whole genome bisulfite sequencing (WGBS) [19], al-
though this can be cost prohibitive for many studies and
is not yet amenable for large epidemiological analyses.
Furthermore, in a study where the main interest is
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cytosines, in particular at CpG sites, a high number of
WGBS reads are uninformative. Reduced representation
bisulfite sequencing (RRBS), in contrast, involves a target
enrichment step using the methylation-insensitive en-
zyme Mspl to target CpG-rich regions of the genome
[20] prior to bisulfite conversion. This increases the pro-
portion of informative sequencing reads, and RRBS typ-
ically interrogates DNAm sites in 85–90% of CpG
islands [21, 22].
While multiple tools exist for the alignment and quan-

tification of DNAm from bisulfite-sequencing data (e.g.
Bismark [17], GSNAP [23], BSMAP [24], BS-Seeker3
[25]), there is no consensus about the optimal approach
for determining the appropriate minimum read depth or
number of DNAm points required to ensure high-
quality data for a well-powered statistical analysis. For
example, existing studies have utilized a huge variety of
read depth thresholds; a relatively arbitrary value be-
tween 5 and 20 reads per DNAm point is often used in
filtering steps [26–29], most commonly with no justifica-
tion provided for the use of that threshold. There is also
no consensus as to what to do with DNAm sites that
have very few DNAm points. Part of this inconsistency
arises from a lack of guidelines or studies exploring how
read depth and missingness influence statistical power.
The aim of this study was to determine the relation-

ship between read depth and the accuracy of DNAm
quantification, as well as the effect of missing DNAm
points on statistical power for identifying group differ-
ences in DNAm with a particular focus on RRBS studies.
Using properties derived from a large RRBS dataset gen-
erated by our group, we designed a simulation frame-
work to explore how accuracy changes as a function of
read depth, as well as comparing the DNAm level esti-
mated from RRBS data with levels quantified using a
novel Illumina array [30]. We then extended our simula-
tion framework to investigate how statistical power to
identify differences in DNAm level between groups var-
ies as a function of read depth and sample size while
also considering the effect of i) the level of DNAm at in-
dividual DNAm sites, ii) the expected difference in
DNAm between groups, and iii) the balance of sample
sizes between comparison groups. Our data-driven ap-
proach highlights the importance of filtering by mini-
mum read depth and minimum number of DNAm
points per DNAm site, and illustrates how the choice of
threshold is influenced by the specific study design and
the expected differences between groups being com-
pared. Finally, we present an approach for estimating
statistical power for a bisulfite sequencing study for a
given read depth and minimum DNAm points filtering
threshold which can be used to improve the detection of
true positives and reproducibility of findings. Our tool,
POWer dEtermined REad Depth filtering for Bisulfite

Sequencing (POWEREDBiSeq), is available at https://
github.com/ds420/POWEREDBiSeq as a resource to the
community.

Results
Read depth in RRBS data follows a negative binomial
distribution, while the level of DNAm is bimodally
distributed
As part of an ongoing study of aging, we profiled DNAm in
125 frontal cortex samples dissected from mice aged 2–10
months old using the original RRBS protocol [20] (see
Methods). Prior to quality control filtering, a mean of 41,199,
876 (SD= 6,753,486) single end reads were generated per
sample (Additional file 2). The quality of the sequencing data
was assessed using FastQC [31], before reads were aligned to
the mm10 reference (GRCm38) genome using Bismark [17].
Here, we define DNAm sites as vectors, such that each
DNAm site has a DNAm point per sample, containing read
depth and DNAm values. That is, DNAm site = {DNAm
point1 = {m1, rd1}, …, DNAm pointi = {mi, rdi}, …, DNAm
pointn = {mn, rdn}}, for i in 1 to n samples, where mi repre-
sents the proportion of DNAm at a DNAm pointi, and rdi is
the read depth, defined here as the total number of reads at
the DNAm point. If rdi is 0, there will be no DNAm point
associated with sample i (Fig. 1). Across all samples, there
was a total of 64,199,621 distinct DNAm points covered (in-
cluding CpG, CpH and CHH sites), with a total of 3,419,677
different DNAm sites assayed, and each sample containing a
mean of 2,170,454 (SD= 124,281) DNAm points across all
DNAm sites. We characterized the distribution of read depth
for each sample across DNAm points, observing a unimodal
discrete distribution, skewed to the left and characterized by
a long tail (Fig. 2a). This distribution is typical of count data
and is expected in sequencing datasets where the vast major-
ity of DNAm points are covered by relatively few reads and a

Fig. 1 An overview and example of the term ‘DNAm point’ used in
our analysis
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Fig. 2 Characterization of read depth and mean DNAm across the DNAm points profiled by RRBS. The distribution of a read depth across DNAm
points and b proportion of DNAm across DNAm points. Each line represents one sample. Read depth plots were capped at a read depth of 200
to facilitate the interpretation of plots, with less than 0.5% (1140174) of DNAm points being characterized by > 200 reads

Fig. 3 The consequence of ‘missingness’ in RRBS data demonstrated by array and simulation bisulfite-sequencing data. A) A boxplot showing the
proportion of DNAm points that have ‘extreme’ DNAm (0.05 < DNAm < 0.95) calculated for DNAm points with different read depths (x axis). B)
Violin plots showing the distribution of estimated DNAm values from a simulated bisulfite sequencing experiment for a DNAm site where the
true value is 0.50, as a function of read depth. Line graphs showing the Pearson correlation (Ci) and root mean squared error (RMSE) (Cii)
between simulated and ‘real’ DNAm values for 1000 DNAm points as a function of read depth. These analyses used a subset of real data selected
to contain DNAm points with read depth > 10 and evenly distributed DNAm (see Methods). Scatterplots of DNAm values quantified using RRBS
(x-axis) and a custom vertebrate Illumina DNAm array [30] (y-axis) in matched samples (n = 80) for D) all DNAm points and E) the subset of
DNAm points with read depth greater than the peak Pearson correlation read depth in Fi (i.e. 22 reads). Line graphs showing Fi) the Pearson
correlation and Fii) error (RMSE) of RRBS data and array data as a function of the read depth filter applied to the RRBS dataset
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minority of DNAm points are covered by a large number of
reads. Across all DNAm points, 22.1% (60,117,549) had less
than or equal to than 5 reads and 3.30% (8,941,868) had
more than 100 reads. Next, we visualized the distribution of
DNAm levels across all DNAm points, observing the ex-
pected bimodal distribution, with the majority of DNAm
sites being either completely methylated (50% of DNAm sites
> 0.95) or unmethylated (49% of DNAm sites < 0.05) [32]
(Fig. 2b).

Read depth has a dramatic, non-linear effect on accuracy
of DNAm estimates
One consequence of low read depth in RRBS data is re-
duced accuracy for the quantification of DNAm at
DNAm points. While DNAm points that are either com-
pletely methylated or unmethylated can theoretically be
characterized precisely with a single read, this is not the
case for DNAm points with intermediate levels of
DNAm, which may be inaccurately classed as methylated
or unmethylated at low read depths. To understand the
extent of this problem, we compared the proportion of
DNAm values at extremes (less than 0.05 or greater than
0.95), with increasing read depths across DNAm points
(Fig. 3A). As expected, the proportion of DNAm sites es-
timated to have extreme levels of DNAm was greater at
lower read depths; 86.1% (SD = 4.94) of sites were esti-
mated to have DNAm > 0.95 or < 0.05 at a read depth of
5, compared to 64.7% (SD = 6.90) at a read depth of 50.
This suggests that, compared to DNAm points with a
read depth of 50, more than 20% of DNAm points with
a read depth of 5 may have been inaccurately classified
as having an extreme level of DNAm.
To formally quantify the error in estimating DNAm,

we used simulations of increasing read depth to estimate
DNAm for a hypothetical DNAm site with an intermedi-
ate level of DNAm (0.50), calculating the difference be-
tween the estimated and true DNAm level. For read
depths < 10, we observed a discrete distribution of esti-
mated DNAm (Fig. 3B), with the range of predictions
spanning 0.00–1.00 but centered on 0.50. In line with
the Central Limit Theorem, we observe that as read
depth increases, the distribution of estimated DNAm
levels becomes more continuous and normally distrib-
uted around a DNAm value of 0.50. We expanded these
simulations to consider DNAm sites with DNAm levels
across the full distribution of possible values. We simu-
lated 10,000 DNAm points with DNAm uniformly sam-
pled between 0.00–1.00 and sampled 10,000 RRBS
DNAm points with matched DNAm levels for compari-
son (see Methods). We found that as read depth in-
creases, the correlation across DNAm points between
estimated and actual DNAm level tends towards 1.00
(Fig. 3Ci) and the root mean squared error (RMSE)
tends towards 0.00 (Fig. 3Cii). However, these effects are

non-linear, with more dramatic improvements in accur-
acy occurring at lower read depths; i.e. there is a jump
from a correlation of 0.589 to 0.926 between 1 and 10
reads with relatively minimal gains after that. Similarly,
the RMSE drops from 0.404 at a read depth of 1.00 to
0.124 at a read depth of 10.

RRBS and Illumina arrays DNAm values correlate highly
Commercial DNAm arrays, such as the Illumina EPIC
BeadChip array, are commonly utilized as an alternative
strategy to bisulfite sequencing approaches in large hu-
man studies, due to their relatively low cost and the ease
of interpreting data [33]. To further characterize the ac-
curacy and sensitivity of RRBS, we performed a compari-
son with DNAm levels quantified using a novel Illumina
Beadchip vertebrate DNAm array [30] on an overlapping
set of 80 mouse frontal cortex DNA samples. A total of
3552 unique DNAm sites were quantified in both the
RRBS and array datasets, with each RRBS sample con-
taining a mean of 2263 overlapping DNAm data points
(SD = 104). First, we compared the distribution of
DNAm estimates across all DNAm points between the
two technologies, observing the expected bimodal distri-
bution with both approaches (Supplementary Figure 1).
Of note, the array data contains a higher proportion of
DNAm sites with intermediate levels of DNAm (0.05–
0.95), and the unmethylated and methylated peaks are
shifted inwards from the boundaries, highlighting the re-
duced sensitivity of the array for quantifying extreme
levels of DNAm [16]. In contrast, the peaks in the RRBS
data are at 0.00 and 1.00. The array samples also have
less variability between samples, with distributions look-
ing nearly identical, due to DNAm points being consist-
ently characterized for each DNAm site. Directly
comparing the estimated level of DNAm between the
two assays, we observed a strong positive correlation
(Pearson correlation = 0.794) even with no read depth
filtering in the RRBS data (Fig. 3D). The correlation be-
tween assays increases as more stringent read depth fil-
tering is applied to the RRBS data, with the maximum
correlation (Pearson correlation = 0.840) obtained at a
read depth threshold of 22 (Fig. 3E, Fi). Although this
correlation indicates a relatively strong relationship be-
tween the estimates of DNAm quantified using RRBS
and the Illumina array, it does not necessarily indicate
that the DNAm estimates generated by the two plat-
forms are equal. Closer inspection showed that the rela-
tionship between RRBS- and array-derived DNAm
estimates is not linear (Fig. 3D), and therefore we also
explored absolute differences in DNAm estimates be-
tween the two assays. We observed a notable skew, with
DNAm estimates from the array being generally higher
than those from RRBS (mean difference = 0.112, SD =
0.223), and this relationship was observed regardless of
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read depth (Supplementary Figure 2). As expected, the
RMSE between DNAm estimates generated using array
and RRBS decreases as the stringency of read depth fil-
tering in the RRBS dataset increases (Fig. 3Fii), plateau-
ing at a read depth of ~ 30. Of note, the minimum
RMSE observed was 0.180, suggesting some systemic dif-
ferences between the two platforms in estimated DNAm
levels. Our findings corroborate previous findings in
which DNAm estimates generated using Illumina arrays
and BS data are strongly correlated [34–37].

RRBS enrichment results in a subset of DNAm sites that
have consistent read depth across DNAm points
In order to perform a statistical analysis of DNAm dif-
ferences between groups (e.g. in a study of cases vs con-
trols), multiple samples, usually representing biological
replicates, are required. We have demonstrated the im-
portance of filtering RRBS data by read depth on obtain-
ing accurate estimates of DNAm, however, this has the
consequence of increasing the number of missing
DNAm points (Fig. 4a). As expected, we found that read
depth is not random across DNAm sites, but highly cor-
related between pairs of samples (Fig. 4b). To demon-
strate this further, we iteratively increased the number of
samples and calculated the proportion of DNAm points
shared across DNAm sites (Fig. 4c). The proportion of
DNAm points present decreases in a non-linear manner
before plateauing at 0.20, demonstrating that there is a
subset of DNAm sites for which read depth is greater

than 0 across all or most DNAm points. DNAm sites
containing all possible DNAm points, that is, each
DNAm point had a read depth > 1, were found to have
consistently higher read depth, with a strong correlation
in read depths between DNAm points (Fig. 4d). This
correlation in read depth between samples is a result of
the enrichment strategy used in RRBS, meaning that
specific CpG-rich regions are dramatically overrepre-
sented in the sequencing data across all samples. As ex-
pected, the common DNAm sites containing all possible
DNAm points were enriched in CpG islands compared
to all DNAm sites (Fig. 4e) reflecting the MspI-based en-
richment strategy used in RRBS [20].

Simulated data demonstrates the consequence of read
depth, sample size, and mean DNAm difference per
group on power
Statistical power to identify differences in DNAm be-
tween two groups (e.g. cases vs controls), defined as the
proportion of successfully detected true positives, will
vary across DNAm sites and is influenced by multiple
variables. In bisulfite sequencing studies, these include
read depth, the number of samples in each group, the
ratio of group sizes, the mean DNAm level, and the ex-
pected difference in DNAm between groups. We ex-
plored how each of these variables influences power by
simulating bisulfite sequencing data for a given DNAm
site following the framework laid out in Fig. 5. Briefly, a
two group comparison was simulated, with sample size,

Fig. 4 A subset of higher read depth DNAm sites are over-represented in RRBS datasets. a A line graph of the mean proportion of DNAm points remaining (y-
axis) after filtering by increasing read depth thresholds (x-axis). b The Spearman’s correlation of read depth between all pairs of samples. c The proportion of
overlap in the DNAm points present across an increasing number of samples compared. d Read depth plotted from two randomly selected samples, colored
by the number of DNAm points that the DNAm site that have a read depth > 0. 1000 DNAm points were randomly selected and read depth is plotted up to
200 to facilitate the interpretation of plots. e The proportion of DNAm sites in intergenic regions (purple), CpG islands (blue), shelves (green) and shores (yellow)
for all DNAm sites and all DNAm sites with read depth > 1 across all samples
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mean read depth, μDNAm (the mean DNAm across the
DNAm point) and ΔμDNAm (the mean difference in
DNAm between groups) used as input variables that
were either kept constant or varied to observe the effect
on power. Each exemplar DNAm site was simulated 10,
000 times, containing all DNAm points for the given
sample size. A two-sided t-test was used to compare
groups and power calculated as the proportion of p-
values smaller than 5 × 10− 6. It is important to note that
all parameters, including r, the p-value threshold for
power, and number of DNAm sites simulated, were se-
lected with the aim of visualising how power might
change with each variable in turn. Subsequent findings
are based on exemplar DNAm sites, and exact values
should be taken as such; they may not be representative
of a wider study, as our aim was solely to characterize
the relationship between each variable and statistical
power. The values used to generate the results for each

variable shown in Fig. 6 can be found in Supplementary
Table 1.
As expected, increased read depth had a positive effect

on power across each of the scenarios we considered,
however, the potential gains are highly dependent upon
the specific combination of parameters (Fig. 6a). For ex-
ample, in a scenario where each group contains 30 sam-
ples and the mean DNAm level is 0.25, there is a
relatively dramatic increase in power to detect a DNAm
difference of 0.20 between groups as read depth in-
creases, with 80% power at a mean read depth of 37,
although there are minimal gains with read depths > 50.
In contrast the gain in power with increased read depth
is much less pronounced when detecting a mean DNAm
difference of 0.10, and there is very little power at any
read depth to detect a DNAm difference of 0.05. There-
fore, if small effect sizes are relevant for the phenotype
under study, power will need to be increased through

Fig. 5 Outline of the framework for simulating bisulfite-sequencing data and assessing power in a DNAm site. This framework can be expanded
to simulate a range of different DNAm sites by varying the input parameters
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other methods, e.g. increased sample size, as read depth
filtering alone will not be sufficient. The relationship be-
tween read depth and power was previously also found
in WGBS data, with higher total sequencing depth in-
creasing the true positives detected [38].
We next investigated the effect of sample size and the

ratio of group sizes on power (Fig. 6b), concluding that
the optimal design in terms of maximizing power is to
have equal sized comparison groups, assuming that the
total sample size is constant. Fixing mean read depth to
be 20 and a mean DNAm level of 0.25, our simulations
showed that to have 80% power to detect a DNAm dif-
ference of 0.20 between groups a total sample size of 94
is required when the sample size ratio between groups is
60:40 (56 and 38 samples, respectively), which is only
two more samples than required when the sample size
ratio is balanced (i.e. 50:50). In the most extreme sce-
nario we considered, an 80:20 ratio between groups, a
total of 154 samples (123 and 31, respectively) are
needed to have 80% power to detect a DNAm difference
of 0.20 between groups. This has implications for the
handling of DNAm sites where DNAm points are miss-
ing; it suggests that there may be a tolerable level of
‘missingness’ when comparing DNAm between groups
that can be ‘rescued’ by having a greater sample size in
the second comparison group. As with read depth (Fig.
6a), we found a non-linear relationship with power for
both sample size (Fig. 6b) and mean DNAm difference

between groups (Fig. 6c). Where each of these variables
is the limiting factor, we found that the greatest gains in
power occurred initially, with diminishing returns at
higher levels and an eventual plateau. Where other vari-
ables act to reduce the overall power, the power curve is
flattened and a plateau is not reached. One interesting
observation from our simulations was the U-shaped rela-
tionship between power and mean level of DNAm at a
given site (Fig. 6d). Power is highest at DNAm sites with
either very low or very high levels of DNAm, and de-
creases to a minimum at intermediate levels of DNAm.
We hypothesize that this reflects the relationship be-
tween the mean and variance in DNAm [39] (Fig. 6e),
where the variance is lowest at the extremes, an artefact
of DNAm being measured as proportion bounded at
0.00 and 1.00.

Simulated bisulfite sequencing studies can be utilized to
estimate power given suggested filtering
Our results indicate that, given the complex interplay of
multiple experimental parameters, the choice of thresh-
old for filtering DNAm sites is not always straightfor-
ward and will depend on the specific research question
being addressed. Furthermore, the power calculations
presented so far only consider a single DNAm site,
whereas genome-wide comparisons of DNAm typically
involve the analysis of hundreds of thousands of DNAm
sites; given the effect of the properties of DNAm sites

Fig. 6 Power is influenced by read depth, sample size, and mean DNAm level in two-group comparisons. Power curves plotting statistical power to detect
significant differences in DNAm between two groups as a function of a read depth, b sample size and the effect of an unbalanced sample size between
groups, c the mean difference in DNAm between the groups and d the mean DNAm at simulated DNAm sites. e The variance for the simulated data shown
in panel d. Simulations were performed 10,000 times with a negative binomial parameter of r = 1.5

Seiler Vellame et al. BMC Genomics          (2021) 22:446 Page 8 of 16



(e.g. in mean DNAm level) on power, no DNAm site
can be considered to be ‘representative’ of the others.
Therefore, we extended our simulation framework to
quantify a study-level power statistic that considered all
DNAm sites, allowing for the calculation of power given
an RRBS dataset, and the read depth and minimum
DNAm points per DNAm site filtering to be carried out.
The extension of the simulation framework can be seen

in Fig. 7 and is described in Methods. Briefly, an actual
RRBS data set was used to estimate the simulation pa-
rameters (namely, sample size, μDNAm, μRD and nega-
tive binomial parameter, r) so that simulations reflect
the real data. We compared the real and simulated data
finding that the distribution of simulated read depths is
highly comparable to real data for lower read depths
(Fig. 8 Ai). Higher read depths do not seem to be

Fig. 7 Flow diagram describing the framework for simulating bisulfite sequencing studies utilized in POWEREDBiSeq. An application of the framework
described in Fig. 5, used to assess the power of a two-group bisulfite sequencing study given different filtering parameters
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captured as accurately by the negative binomial distribu-
tion, however, given that 95% of DNAm points have
read depth < 85 (Fig. 8 Aii), this should be less important
to the simulation. Overall, simulated DNAm estimates
were similar to real DNAm levels across DNAm points,
although there was some deviation, for example, a slight
under representation of DNAm points with DNAm pro-
portions above 0.25 and an overrepresentation of DNAm
points with DNAm proportions above 0.25 (Fig. 8B).
To demonstrate the methodology, we considered a

hypothetical study design with a total of 125 samples,
specifying an expected mean DNAm difference between
groups of 0.06, picked arbitrarily to allow for power
visualization. To profile how read depth influences the
power of the study, we incrementally increased the mini-
mum read depth from 1 to 75, and to investigate the ef-
fect of the minimum number of DNAm points needed
to find a difference between groups (i.e. the minimum
effective sample size at any DNAm site given filtering by
read depths and the often sparse nature of RRBS), we
chose three arbitrary values: 2, 30 and 60. Power only

increased subtly as read depth filtering became more
stringent (Fig. 8C), compared to the gain of increasing
the number of DNAm points. However, the gain is not
consistent across all study designs, with greater gains in
smaller studies (Fig. 8D). For example, with a minimum
of two DNAm points per group, increasing the read
depth threshold from 1 to 75 resulted in an increase in
power of 10.9%, compared to a smaller increase of 4.83
and 4.89%, respectively, when the minimum DNAm
points were set at 30 or 60. Our analysis reaffirms the
interplay between all study-specific experimental vari-
ables. However, it should be noted that even with the
most extreme read depth filtering, the maximum power
for a group with a minimum of two DNAm points is still
dramatically lower that the power of a study with a lar-
ger minimum and no or negligible filtering. Finally, we
summarized our study wide power calculation in the R
function POWer dEtermined REad Depth filtering for
Bisulfite Sequencing (POWEREDBiSeq), which is avail-
able as a resource to the community at https://github.
com/ds420/POWEREDBiSeq. The calculation results in

Fig. 8 Summarizing the simulation and predictions of POWEREDBiSeq. Ai) A QQplot comparing the read depth (RD) of 10,000 simulated DNAm
points to 10,000 randomly sampled true DNAm points from an RRBS dataset. Aii) The proportion of DNAm points remaining in the RRBS dataset
with read depths >x. B) A QQplot comparing the DNAm of 10,000 simulated DNAm points to a 10,000 randomly sampled true DNAm points. C)
The relationship between the difference in power predicted by POWEREDBiSeq at different minimum sample sizes (n = 2, 30 and 60) as the
minimum read depth threshold is increased, with a mean difference between groups of 0.06. D) The relationship between the increase in power
to detect a mean difference in DNAm between groups of 0.06 predicted by POWEREDBiSeq at a read depth of 75 compared to power at a read
depth of 1 as a function of the number minimum of samples per group
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largely consistent and normally distributed predictions
of power, however, outliers can occur, suggesting that
multiple iterations should be performed (Supplementary
Figure 3).

Discussion
In this paper, we systematically characterize the proper-
ties of a representative RRBS dataset, assessing the distri-
bution of read depth and missing data across DNAm
sites. Using our framework of bisulfite sequencing data
simulation, we investigate the impact of various study
variables (e.g. read depth, group size, skewness in group
size, and magnitude of DNAm difference) on the accur-
acy of DNAm quantification, and power to detect
DNAm differences between two groups. As a resource
to the community, we have developed a tool (POWER-
EDBiSeq), which utilizes our findings to predict power
for individual study designs, accounting for the filtering
to be applied.
When comparing to simulated data, we found that the

accuracy to detect a given DNAm difference between
groups improves with increased read depth. This likely
reflects the fact that count data is only able to represent
continuous data if the number of counts (i.e. sequencing
reads) is high enough. Overall, we found a strong correl-
ation in DNAm estimates derived from RRBS and Illu-
mina DNAm array data; this relationship increases with
minimum read depth filtering and reaches a maximum
when excluding DNAm sites covered by less than 22
reads. The high correlation between platforms and the
relationship with read-depth concurs with previous ana-
lyses comparing RRBS and the Illumina 450 K array [34],
RRBS and the Illumina 27 K array [35], targeted bisulfite
sequencing and the Illumina EPIC array [36], and WGBS
and the Illumina EPIC array [37]. This finding has impli-
cations for studies using RRBS to identify differences in
DNAm as it highlights the importance of read depth fil-
tering in generating an accurate measure of the true
DNAm level.
We investigated the impact of various experimental

variables on power, defined as the proportion of true
positives detected in a two-group comparison, in a
bisulfite-sequencing study utilizing simulated data. We
observed that these variables (read depth, sample size,
DNAm difference between groups and mean DNAm at
a given DNAm site) act together to influence power.
Read depth, sample size and DNAm difference between
groups will all limit power in a certain range, with power
plateauing at 100% when they are no longer the limiting
factor. DNAm level at a DNAm site has a U-shaped rela-
tionship with power, where DNAm points with extreme
DNAm (near 0 and 1) are more powered to identify
between-group differences primarily because the vari-
ance in DNAm at these DNAm sites is smaller. Our

findings highlight the importance of data filtering for
maximizing power; the minimum number of DNAm
points needed across each DNAm site to be compared
has a dramatic effect on power, as it dictates the mini-
mum effective sample size at any one DNAm site. Read
depth also influences power, although we observed that
read depth filtering alone cannot overcome an inad-
equate study design (i.e. too few samples). As a resource
to the community, we have summarized our data simu-
lations so that others can apply them to their data to cal-
culate the power to identify between-group differences
in DNAm within the context of their specific study de-
sign. Our scripts are packaged into the POWEREDBiSeq
application (https://github.com/ds420/POWEREDBiSeq)
which allows users to optimize their power by, for ex-
ample, simulating the effects of increasing their sequen-
cing read depth filtering threshold or minimum DNAm
points across groups.
Although our analyses and simulations focused on

RRBS datasets, many of our conclusions are valid for
other types of bisulfite sequencing data. For example,
the relationship between read depth and accuracy ap-
plies to any bisulfite sequencing based DNAm experi-
ment that profiles DNAm at a single nucleotide
resolution. Additionally, the relationship between power
and read depth, sample size, DNAm difference, and
mean DNAm is also relevant for other sequencing based
DNAm studies. Various methods differ in read depth
and the distribution of DNAm sites sequenced across
the genome. Targeted bisulfite sequencing (TBS) and
amplicon-based sequencing, for example, typically pro-
file a more restricted set of DNAm sites than RRBS, as
only regions of interest are enriched. This results in a
more uniform distribution of reads across DNAm points,
which acts to improve power across the study. In whole
genome bisulfite sequencing (WGBS) studies, however,
while more DNAm sites are interrogated across the gen-
ome as a whole, the read depth per DNAm point tends
to be lower than that obtained using RRBS or TBS.
POWEREDBiSeq can be applied to other bisulfite se-
quencing types because the internal variables, such as
DNAm distribution and number of DNAm sites, are cal-
culated based on input data. For the same reason,
POWEREDBiSeq is also applicable to DNAm at CHH
and CGH sites, which are often covered in bisulfite se-
quencing studies but have dramatically different proper-
ties to DNAm at CpG sites, although it is important to
verify that the simulated and real data distributions are
alike. In datasets with a frequent occurrence of high read
depths across DNAm points (> 100), some caution in
the use of POWEREDBiSeq is warranted, as we found
that the negative binomial distribution underestimates
higher read depths when simulating data. This was not
pertinent in our case as the 95% of sites had a read
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depth below 85. For the simulation of read depth, Pois-
son [40] or negative binomial distributions [41] have
been used; we chose the negative binomial approach as
it allows the variance to differ from the mean. The bino-
mial distribution has been utilized to model DNAm in
previous studies [40, 42].
The results of POWEREDBiSeq will be dependent on

the planned filtering stringency of the user, as well as
the biological question that the bisulfite sequencing ex-
periment aims to address; for example, a study looking
into DNAm changes between cancer and non-cancer
samples will have higher power due to the comparatively
large DNAm differences between groups [43] compared
to those observed in many complex disease case and
control studies [8, 18]. Bisulfite sequencing data gener-
ated in cell lines and genetically identical mouse models
will be comparatively less ‘noisy’ than analyses of diverse
human populations using heterogeneous tissues such as
blood, resulting in increased power. Retaining poor qual-
ity (i.e. low read depth) DNAm sites in a bisulfite se-
quencing dataset increases the multiple testing burden,
meaning it will be harder to identify true between-group
differences in DNAm at higher quality, more adequately
powered, DNAm sites. A limitation of POWEREDBISEQ
and our data simulations is that they are based on a
two-group comparison (e.g. cases vs controls), meaning
our findings are not specifically applicable to more com-
plex study designs. One question not addressed by our
analysis is whether, for a given amount of available re-
source, it is optimal to sequence more samples at the
same level or increase sequencing depth for a smaller
number of samples. This was explored previously by Zil-
ler and colleagues [38] using WGBS data; they con-
cluded that with a low total sequencing depth of 10x,
the best sensitivity was achieved by including an add-
itional replicate per group with 5x coverage. If total se-
quencing depth potential was higher, the most optimal
sensitivity was gained by increasing the number of repli-
cates, rather than increasing sequencing depth above
10x. An equivalent study has not been carried out in
RRBS data due to a lack of additional RRBS studies with
sufficient coverage.
To our knowledge, this is the first attempt to de-

velop recommendations for bisulfite sequencing ex-
periments based on sequencing read depth, minimum
number of DNAm points and statistical power. We
believe findings from this work will improve the re-
producibility of bisulfite sequencing studies; we en-
courage researchers working in this field to clearly
detail any data filtering steps and ensure an appropri-
ate filter for read depth and other parameters has
been applied, with justification for the choice of
threshold.

Methods
DNAm quantification by RRBS
Genomic DNA was isolated from mouse cortex [44]
using the AllPrep DNA/RNA Mini Kit (QIAGEN) and
assessed for quality and quantity using the NanoDrop
8000 spectrophotometer (Thermo Fisher Scientific) and
the Qubit high sensitivity assay (Qubit dsDNA HS
Assay, Thermo Fisher Scientific). RRBS libraries were
prepared using the Premium RRBS kit (Diagenode). The
final RRBS library pools were distributed across thirty-
two HiSeq2500 (Illumina) lanes and subjected to 50 bp
single-end sequencing as previously described [20].

Preprocessing the dataset
RRBS sequencing quality was assessed using FastQC
(version v0.11.7) [31] with all samples characterized by
high quality base calls (quality score > 28 across all
bases). Sequences were trimmed using TrimGalore (ver-
sion 0.4.4_dev) [45], with a quality score of 20 and an
error rate of 0.2 used to remove poor quality bases at
the ends of reads. Reads with fewer than 20 base pairs
after trimming were then removed. Reads were aligned
to the mm10 (GRCm38) mouse genome [46] using Bis-
mark v0.19.0 with default parameters [17], which imple-
ments SAMtools 1.8 [47] and Bowtie2 v2.3.4.1 [48]. The
total number of aligned reads and cytosines can be
found in Additional file 2.

Statistical methods
All subsequent analysis was carried out in R 3.5.2 (2018-
12-20) [49] using the R packages ggplot2 (version 3.2.1)
[50], Cowplot (version 1.0.0) [51], Tidyr (version 1.0.0)
[52], Viridis (version 0.5.1), viridisLite (version 0.3.0)
[53], colortools (version 0.1.5) [54], and reshape2 (version
1.4.3) [55].

Annotating RRBS to the CpG islands
R packages annotatr (version 1.8.0) [56] and Genomi-
cRanges (version 1.34.0) [57] were used to annotate
CpGs to features for the analyses shown in Fig. 3E. The
annotatr package assigned CpG islands as per the mm10
reference annotation, with CpG shores defined as 2Kb
upstream/downstream from the ends of the CpG islands,
and CpG shelves as another 2Kb upstream/downstream
of the farthest upstream/downstream limits of the CpG
shores. The remaining genomic regions make up the
inter-CGI annotation.

DNAm quantification quantified by array
A subset of 80 DNA samples were additionally profiled
using a custom Illumina DNAm array (the “Horvath-
MammalMethylChip40” [30]). Briefly, this array includes
~ 36 k CpGs that are located in genomic regions highly-
conserved across 50 mammalian species. Data was
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loaded from idat files into an RGChannelSet object using
the minfi package (version 1.28.4) [58–64] and processed
through the following steps: 1) checking the methylated
and unmethylated intensities and excluding samples <
800, 2) confirming successful bisulfite conversion ex-
cluding samples with low conversion rates (< 80%), 3)
confirming correct sex using profiles from the X
chromosome, and 4) confirming tissue type, excluding
any sample predicted incorrectly based on DNAm pro-
file. Prior to analysis data was normalised using the Ses-
ame package (version 1.4.0) [65], and filtered to DNAm
sites classed as mapping uniquely to the mouse genome,
leaving 23,633 DNAm sites.

Framework for simulating RRBS data
We developed an analytical framework to profile the
power of RRBS DNAm sites, enabling us to vary differ-
ent parameters such that we could explore a number of
research questions. The DNAm site-level simulation
workflow is described in Fig. 5, which aims to compare
the DNAm between two groups, A and B. For each
DNAm site simulated, there are 8 parameters to con-
sider: N1 and N2 are the sample size each group, respect-
ively, μRD is the mean read depth of the DNAm site to
be simulated, r is a negative binomial parameter, de-
scribed in more detail below, μDNAm is the mean
DNAm across the DNAm site, ΔμDNAm is the mean
difference in DNAm between groups, nSites is the num-
ber of DNAm sites to be simulated, and pValue is the p-
value used to assess power.
When simulating a DNAm site, the first step is to

simulate read depth. Read depth could be assigned an
arbitrary value, or, where realistic variation across
DNAm points was required, could be sampled from a
negative binomial distribution [41]. The negative bino-
mial distribution is defined by the parameters r and p,
although within the R function rnbinom() can be defined
by μRD and r, which can calculated from real data using
eq. (6), the derivation of which is as follows:
The negative binomial equations are:

μ ¼ pr
1−p

ð1Þ

σ2 ¼ pr

1−pð Þ2 ð2Þ

Where μ is the mean (in this case, μRD) and σ2 is the
variance of the read depth data calculated across all sam-
ples. We want r in terms of μ and σ2. Multiply (2) by 1
− p and equate that and (1) to get:

σ2 1−pð Þ ¼ μ ð3Þ

Rearrange for p:

p ¼ 1−
μ
σ2

ð4Þ

Substitute (4) into (1) and simplify:

μ ¼
1−

μ
σ2

� �
r

1− 1−
μ
σ2

� �

μ ¼
1−

μ
σ2

� �
r

μ
σ2

ð5Þ

Rearrange (5) for r:

r ¼
μ2

σ2

1−
μ
σ2

ð6Þ

Once read depth was established, a binary value repre-
senting DNAm status was assigned to each read using the
binomial distribution. For each read in group A, the prob-
ability of being methylated was μDNAm, and for group B
was μDNAm ± ΔμDNAm, where the probability was
bound between 0 and 1. The proportion of DNAm was
calculated as the mean DNAm at each DNAm point.
The process was repeated for nSites. To calculate

power, a two-sided t-test was performed between groups
A and B. Power was defined as the proportion of DNAm
sites for which the t-test p-value was smaller than
pValue.

Profiling the accuracy of RRBS data
To investigate how the distribution and accuracy of
DNAm changed with increasing read depth, we consid-
ered a range of read depths (1–50). To profile accuracy
across levels of DNAm in an RRBS study, we simulated
10,000 DNAm points per read depth, with DNAm sam-
pled uniformly between 0 and 1. Ten thousand DNAm
points with matching DNAm were sampled from the
RRBS data and correlation and RMSE were calculated
between the true and the estimated DNAm points for
each read depth.

Profiling the power of RRBS data
To calculate the power of RRBS DNAm sites, we investi-
gated a hypothetical two-group comparison study design
(e.g. a case vs control analysis). We aimed to explore the
effects of read depth, mean DNAm level, the sample size
and sample size balance of groups, and the mean DNAm
difference between groups on power. To this end, we
utilized the simulation framework described above and
in Fig. 5 to simulate specific DNAm sites so that the
resulting shift in power, given a change in a variable or
combination of variables, could be visualized. The
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parameters assigned can be seen in Supplementary Table
1, where the variable parameter took a range of discrete
values as seen in the x axes in Fig. 6. μRD set was used
as a negative binomial parameter, from which read depth
(> 0) was sampled. For group A, μDNAm was used as
the probability of DNAm, sampled from the binomial
distribution. For each set of parameters chosen, 10,000
DNAm sites were simulated. The r value was 1.5, and
pValue 5 × 10− 6, which were chosen arbitrarily to allow
for the visualization of changing power.

Profiling the power of RRBS studies given data filtering
We aimed to create a power calculator to determine the
statistical power of a bisulfite sequencing study with speci-
fied read depth and minimum DNAm point filtering
thresholds and specified mean DNAm difference between
groups across a two-group study design. To this end, we
utilized the simulation framework described above and in
Fig. 5 to simulate filtered data. The following input data
was required (also described in Fig. 7): RRBSTrue - the un-
filtered matrix of RRBS data, ΔμDNAm - the mean differ-
ence in DNAm between groups expected given the
biology of the samples, nDNAmPoint - the minimum
number of DNAm points needed per DNAm site, RDFil-
ter – the minimum read depth filter to be applied, pheno
– an optional variable dictating group membership.
These were used to estimate the variables for the

framework in Fig. 5: N1 and N2 were assigned using
pheno, or if pheno was not given, assigned as half of the
number of samples in RRBSTrue. The data being simu-
lated represented data that remained was post-filtering,
therefore, given that we need at least nDNAmPoint
DNAm points with sufficient read depth, μRD was cal-
culated separately for the first nDNAmPoint DNAm
points to the latter. For the first nDNAmPoint DNAm
points, μRD was the larger of the mean read depth
across RRBSTrue (estimated using 60,000 DNAm sites)
and RDFilter, and subsequent read depth must be >
RDFilter. For the remaining DNAm points, the mean
read depth was used, where all simulated read depths <
RDFilter were assigned a read depth of 0 to represent
that they would get filtered out of the data. r was esti-
mated using eq. 6 and a subset of 60,000 DNAm sites
from RRBSTrue. To estimate μDNAm, we first estimated
the probability that a filtered DNAm site falls into one
of the following ranges: 0–0.05, 0.05–0.95, 0.95–1, using
a subset of 100,000 DNAm sites from RRBSTrue. The
ranges were sampled using the probabilities calculated
and a uniform distribution used to set μDNAm from the
values across the selected range. To ensure that the sub-
sets of RRBSTrue used to estimate variables were
enough, we investigated the decline in prediction vari-
ability for each (Supplementary Figures 4, 5 and 6).

Forty thousand DNAm sites were simulated, using the
above inputs and step 1 of the workflow presented in
Fig. 5 and above. The resulting p-values were boot-
strapped to result in the same number as the number of
DNAm sites remaining in RRBSTrue after filtering by
RDFilter and nDNAmPoint. The power was calculated
using a Bonferroni correction for the number of DNAm
sites remaining.
We created POWEREDBiSeq so that others can calcu-

late their statistical power in bisulfite sequencing studies.
The R function is available at https://github.com/ds420/
POWEREDBiSeq.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07721-z.

Additional file 1: Supplementary Figure 1. The distribution of DNAm
levels across the genome profiled using RRBS or a custom array.
Supplementary Figure 2. DNAm estimates derived from RRBS are on
average lower than those from the array platform. Supplementary
Figure 3. A histogram of POWEREDBiSeq calculations showing variability
in estimated power. Supplementary Figure 4. r is more accurately
estimated when using a larger number of DNAm sites. Supplementary
Figure 5. DNAm priors are more accurately estimated when using more
DNAm sites. Supplementary Figure 6. The proportion of DNAm sites
remaining is more accurately estimated when using more DNAm sites.
Supplementary Table 1. A summary of parameters used in simulation
analysis.

Additional file 2. RRBS information on total number of reads aligned,
unaligned ambiguously aligned, and total number of reads, as well as the
number of methylated and unmethylated CpGs, CpH, and CHH’s, and
total number of cytosines.
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