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Abstract

techniques.

utility of genomic diagnosis.

Background: Chlamydia psittaci is an avian pathogen that can cause lethal human infections. Diagnosis of C.
psittaci pneumonia is often delayed due to nonspecific clinical presentations and limited laboratory diagnostic

Results: The MinlON platform established the diagnosis in the shortest time, while BGISEQ-500 generated
additional in-depth sequence data that included the rapid characterization of antibiotic susceptibility. Cytopathy
appeared only in cell cultures of BALF. BALF yielded a higher bacterial load than sputum or blood, and may be the
most suitable clinical specimen for the genomic diagnosis of severe pneumonia.

Conclusions: This study indicated that the benefits of metagenomic sequencing include rapid etiologic diagnosis
of unknown infections and the provision of additional relevant information regarding antibiotic susceptibility. The
continued optimization and standardization of sampling and metagenomic analysis promise to enhance the clinical
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Background

Chlamydia psittaci is a zoonotic intracellular pathogen
that may cause fulminant disease in humans [1]. Genomic
analysis has shown that C. psittaci is comprised of 15 geno-
types [2, 3]. Genotype E isolates, first isolated from a human
pneumonitis outbreak in the 1920 s, has been subsequently
reported in a wide variety of hosts including pigeons, ratites,
ducks, turkeys, and occasionally, humans [4, 5].
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C. psittaci infection of humans, referred to as psittacosis,
causes a spectrum of disease severity that encompasses
asymptomatic transient carriage, mild pneumonia, and
severe pneumonitis that can cause respiratory and multi-
organ system failures, and in rare cases, death [6-9].
Clinical progression and mortality may be related to delays
in diagnosis and treatment [4]. However, early diagnosis is
confounded by nonspecific clinical presentations; low levels
of clinical suspicion of an uncommon infection, and limited
availability of diagnostic assays in most clinical laboratories
[10, 11]. Cultures of C. psittaci are hazardous, time-
consuming and require enhanced biosafety measures and
expertise; serologic assays require acute and convalescent
samples, and are thereby yield untimely results; and specific
PCR has disadvantage that high sensitivity may depend on
samples collected from the clinical phase [11].

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07725-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jiangyq@bmi.ac.cn
mailto:jiekenlee@126.com
mailto:hongbinsong@263.net

Wang et al. BMC Genomics (2021) 22:406

Rapid diagnosis informs the prompt initiation of
therapy to enhance clinical outcomes, and may also
facilitate prompt source identification and contract
tracing to prevent additional cases [12]. Metagenomic
next-generation sequencing (mNGS) has been increasingly
used for rapid and accurate diagnosis of infectious diseases
including psittacosis [13, 14]. We report herein a case of
fatal psittacosis diagnosed by mNGS. Our case illustrates
that both the selection of specimen types and sequencing
platforms are important in the diagnosis of severe
pneumonia.

Results

Patient characteristics

A 60-year-old woman was admitted to the emergency
department on July 25, 2019 with an eleven-day evolu-
tion of intermittent fever, non-productive cough, fatigue
and arthralgia. Past medical history was notable for
chronic hepatitis B infection, but was negative for nico-
tine, alcohol or drug abuse; unusual environmental or
zoonotic exposures; or antecedent illnesses among fam-
ily members. On the first hospital day, computerized
tomography (CT) of the chest disclosed bilateral pul-
monary infiltrates with dense consolidation of the right
lung, polyglandular mediastinal lymphadenopathy, and
partial tracheobronchial stenosis in both lungs (Fig. 1).
Additional findings included a leukocyte count of
15.12 x 10°/L. (reference range: 3.5-9.5 x 10°/L) with
95.9 % neutrophils (40-75 %), platelet count 47 x 10°/L
(100-300 x 10°/L); and C-reactive protein 564 mg/L
(0-8 mg/L). Antibiotic therapy was initiated with moxi-
floxacin, tigecycline, and imipenem. On the second
hospital day, the patient underwent endotracheal in-
tubation and mechanical ventilation indicated for
respiratory failure. The antibiotic regimen was revised
to moxifloxacin plus tigecycline after C. psittaci was

Fig. 1 Chest computed tomography (CT) scan of a 60-year-old
woman with severe pneumonia demonstrated large areas of
consolidation in the right lung, ill-defined consolidation in the left
lung, partial tracheobronchial stenosis in both lungs, and
polyglandular mediastinal lymphadenopathy
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identified on the second hospital day. However, the
patient’s condition continued to deteriorate, and she
died on the fourth hospital day.

Pathogen identification, isolation and verification

From the sample receipt to the results, it took 11 h for
the MinION platform, 24 h for the Illumina platform,
and approximate 200 h for the BGI platform. The read
length of BGI and Illumina platforms is 100 and 75 bp,
respectively, while MinION generated reads with lengths
ranged from 35 bp to 26,140 bp. Specific reads obtained
from all three sequencing platforms identified C. psittaci
as the dominant pathogen. Cytopathy was observed only
in the BALF culture (Fig. S1). PCR assays identified C.
psittaci only in the BALF culture, whereas cell blood and
sputum cultures were PCR-negative (Table S1). We desig-
nated our isolate C. psittaci strain L99; genomic analysis
indicated that it belonged to ompA genotype E (Fig. S2).

Phylogenetic analysis of Chlamydia psittaci strain L99
Genomic analysis of C. psittaci strain L99 was conducted
on the six data sets. No single nucleotide polymorphisms
were identified among the three platforms. the draft gen-
ome of C. psittaci was assembled into 34 contigs using
all of the sequencing data. The patient’s exposure history
provided no information to implicate the source of C.
psittaci. Phylogenetic analysis suggested that C. psittaci
strain L99 was related to C. psittaci MN(NC_018627.1),
a human isolate from the USA [15]; and C. psittaci
Strain 01DC12 (NC_019391.1), from swine in the
Germany [16] (Fig. 2). However, MLST analysis showed
that C. psittaci strain L99 belonged to sequence type
ST35, which is consistent with C. psittaci MN rather
than Strain 01DC12 (ST56). In all sequencing data, no
resistance gene and virulence factor were identified in C.
psittaci L99 genome.

Divergent sequencing data between platforms and
samples

Only host- and C. psittaci-specific sequences were
recognized by MinION, however, species identified by
the BGISEQ-500 and Illumina platforms were quite di-
verse. Species detected in the same sample types were
quite different between these two platforms (Table S2).
Besides of dominant C. psittaci, both platforms identified
Propionibacterium acnes and Klebsiella pneumoniae in
sputum and blood samples. However, there were no sig-
nificant inter-platform differences in pathogens identi-
fied in the different sample types.

C. psittaci strain L99 was the only pathogen identified
in all six data sets. The BGISEQ-500 platform generated
more data and provided the most comprehensive gen-
omic information on unique read numbers, coverage,
and sequencing depth of C. psittaci strain L99 than
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Fig. 2 Whole-genome phylogeny of C. psittaci strain L99. The phylogenetic tree was constructed by the maximum likelihood method with
bootstrap analysis (n = 1000)The left side represents the host of C. psittaci and the right side represents the country of C. psittaci, which are
distinguished by different colors. The C. psittaci strain L99 is marked with a black arrow and red font. The values of internal nodes with bootstrap

100! C.psittaci NJ1(NZ_AFVK01000001.1)

either the MinION or Illumina platforms (Fig. S3). The
average read depth of C. psittaci strain L99 obtained for
different samples from each platform was displayed in
Fig. S4. The BGI platform generated an average read
depth of 6.84x, 5.25x and 2.79x for the BALF, sputum
and blood samples, respectively. Illumina generated an
average depth of 1.50x and 1.21x for the sputum and
blood sample, while MinION had an average depth of
1.00x for the BALF sample.

Divergent results on the BGISEQ-500 platform

The BGISEQ-500 platform yielded results that differed
according to sample type. Coverages of the C. psittaci
genome in BALF, sputum and blood were 99.5 %, 99 and
88 %, respectively. The depth of the C. psittaci genome
decreased in BALF, sputum, and blood, respectively
(Fig. 3). Of the top ten identified species, eight pathogens
were detected in all three sample types (Table 1). C.

psittaci strain L99 was the most abundant pathogen in all
sample types.

Discussion

We identified C. psittaci by applying mNGS to multiple
sample types from a patient with severe pneumonia.
BALF was the only sample that yielded C. psittaci by
traditional cell culture, while mNGS results of all three
samples were diagnostic. Our study demonstrated
mNGS has the advantages of rapidity and high sensitivity
when applied to unknown infections. And compared
with specific PCR, mNGS could also provide information
about resistance genes or genetic markers that may
facilitate clinical treatment and epidemiologic investi-
gations [17, 18].

Phylogenetic analysis disclosed that C. psittaci strain
L99 was closely related to C. psittaci MN(NC_018627.1),
isolated from an American case of psittacosis. However,
our patient’s medical history was negative for travel,
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Fig. 3 Difference of sequencing data of Chlamydia psittaci strain L99 in multiple samples on BGISEQ-500 platform. The colors from dark to light
represent the three data sets of BALF, sputum, and blood, respectively. The four sets of data include data output of sample, number of unique
reads (n/1000) of C. psittaci strain L99, coverage of C. psittaci strain L99 genome, and depth of C. psittaci strain L99 genome
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zoonotic, or other significant exposures. Our case shows
that the epidemiologic sources of psittacosis cases may
not always be evident. Consequently, it is necessary to
educate the populace, healthcare providers, and public
health officials on psittacosis to facilitate early diagnosis
and epidemiologic investigations.

In the identification of multiple bacterial species, there
are some sequences of C. abortus and C. felis, which
belong to the same genus as C. psittaci. Analysis on the
reads matching C. abortus or C. felis revealed that these
reads can be aligned to C. psittaci but with higher iden-
tity. The species classification of metagenomics sequen-
cing reads by Centrifuge should be carefully reviewed.

We found that BALF was the most sensitive of the
three specimen types for isolation and detection.
Metagenomic diagnosis in clinical infection showed that

Table 1 Top ten species in three sample types by BGISEQ-500

Top ten species Number of unique reads(n)

BALF Sputum Blood
Chlamydia psittaci® 39,385 30,320 14,478
Propionibacterium acnes® 64 59 171
Stenotrophomonas maltophilia® 54 102 150
Chlamydia abortus 46 23 /
Klebsiella pneumoniae® 29 22 24
Salmonella enterica® 27 56 43
Pseudomonas aeruginosa® 20 16 29
Moraxella osloensis® 17 9 26
Micrococcus luteus 10 8 /
Escherichia coli® 8 10 50
Enterococcus faecium / / 11
Staphylococcus epidermidis / / 11

“indicates species that were detected in all three sample types. “/” indicates
species that were not among the top ten species of the corresponding sample

genome coverage of C. psittaci in BALF (0.5012 %) was
about 2.86-fold higher than in blood (0.1755 %) [14]. In
our study, the genome coverage of C. psittaci in BALF
was as high as 99.5 %. Therefore, BALF may be consid-
ered the specimen of first choice for the diagnosis of C.
psittaci pneumonia.

Conclusions

In this study, through the comparison of different
platforms and analytes, MinION provides real-time
sequencing and long reads but with limited output
and high cost, while the BGI platform can generate
sufficient data and provide more information with
lower cost but longer time. The Illumina platform
had a performance between MinlON and BGI on time
and cost, which is prevalent in clinical applications.
Compared with serology and multiplex PCR which can
only detect known pathogens, the continuous optimization
and cost reductions of mNGS, combined with appropriate
sample selection, can promote rapid diagnosis and provide
more clinically broad-spectrum pathogens and epidemio-
logically relevant information, especially in unknown
infections.

Methods

Sample collection and nucleic acid extraction

Lower respiratory tract specimens (bronchoalveolar lav-
age fluid [BALF] and sputum) and blood were collected
for nucleic acid extraction. For MinION and BGISEQ-
500 library preparation, BALF and blood were centri-
fuged at 3000 rpm for 20 min under 4°C to collect
supernatant. Sputum was digested by 1% trypsin at
37C for 30 min. 500uL supernatants and 500uL
digested sputum were used for nucleic acid extraction
using the QIAamp MinElute Virus Spin Kit (Cat No:
57,704, Qiagen, USA) according to the manufacturer’s
instructions, respectively. RNA was transformed into
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double-stranded DNA with NEBNext Ultra II RNA
First Strand Synthesis Module (Cat No: E7771, NEB)
and NEBNext Ultra II Non-Directional RNA Second
Strand Synthesis Module (Cat. No: E6111, NEB)
according to the manufacturer’s instructions.

Aliquots of blood and sputum were sent to Vision
Medicals (sequencing company, Beijing) for sequencing.
Nucleic acids were extracted using TIANamp Micro
DNA Kit (DP316, TIANGEN BIOTECH, China) follow-
ing the manufacturer’s operational manual.

Metagenomic sequencing and analysis

Library preparation and sequencing kits were selected
according to corresponding sequencing platforms. Kit
details are shown in Table S3. The entire processes were
carried out according to the manufacturer’s protocols.
The DNA preparing for library were sheared into 200 bp
with micro-TUBE (Cat. No: 520,045, Covaris, USA) on
Covaris M220 for Illumina platform and 300 bp by frag-
mentase for BGI platform. There was no fragmentation
during library preparation for MinION platform.

Quality control and removal of low-quality reads were
performed by PycoQC v2.2.4 [19] and SOAPnuke v2.0.7
[20], respectively. Clean reads were classified by Centri-
fuge v1.04 [21]. Bowtie 2 (version 2.3.5.1) [22] and
MEGAHIT (version 1.2.9) [23] were used for read align-
ment and genome assembly, respectively.

The maximum likelihood phylogenetic tree of C. psit-
taci strain L99 and other 22 previously described global
C. psittaci strains from NCBI was constructed by
kSNP3.1 [24] with bootstrap analysis (n =1000). Seven
genes of strain L99 (enoA-fumC-gatA-gidA-hemN-hflX-
oppA) were used for genotyping through the Chlamy-
diales MLST database [25]. Resistance genes and virulence
factors were identified by BLAST analysis of the assem-
bled sequences against the Comprehensive Antibiotic
Resistance Database and the Virulence Factors Database
with cutoffs of 95, respectively.

Pathogen verification

Vero cell cultures were inoculated directly with BALF,
sputum, and blood samples, and incubated for 4 days. Cyto-
pathy was observed by light microscope. Vero cells were
collected for nucleic acid extraction using the QIAamp
MinElute Virus Spin Kit (Cat No: 57704, Qiagen) according
to the manufacturer’s manual. DNA was processed to de-
tect the C. psittaci outer membrane protein A (ompA) gene
by PCR using primers ompA-F (5-ACTATGTGGGAAGG
TGCT-3) and ompA-R (5-TAGACTTCATTTTGTTGA
TCTGA-3’) [26]. The products were used for agarose gel
electrophoresis and Sanger sequencing. Nuclease-free water
was used as a negative control. The sequence of PCR prod-
uct was evaluated by BLAST analysis against the NCBI
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database and used for typing by DNAStar with representa-
tive genotype sequences of C. psittaci.
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