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Abstract

Background: The spleen is the largest secondary lymphoid organ and the main site where stress erythropoiesis
occurs. It is known that hypoxia triggers the expansion of erythroid progenitors; however, its effects on splenic

gene expression are still unclear. Here, we examined splenic global gene expression patterns by time-series RNA-
seq after exposing mice to hypoxia for 0, 1, 3, 5, 7 and 13 days.

Results: Morphological analysis showed that on the 3rd day there was a significant increase in the spleen index
and in the proliferation of erythroid progenitors. RNA-sequencing analysis revealed that the overall expression of
genes decreased with increased hypoxic exposure. Compared with the control group, 1380, 3430, 4396, 3026, and

decreased.

splenic transcriptional changes during hypoxia.

1636 genes were differentially expressed on days 1, 3, 5, 7 and 13, respectively. Clustering analysis of the
intersection of differentially expressed genes pointed to 739 genes, 628 of which were upregulated, and GO
analysis revealed a significant enrichment for cell proliferation. Enriched GO terms of downregulated genes were
associated with immune cell activation. Expression of Gatal, Tall and KIfl was significantly altered during stress
erythropoiesis. Furthermore, expression of genes involved in the immune response was inhibited, and NK cells

Conclusions: The spleen of mice conquer hypoxia exposure in two ways. Stress erythropoiesis regulated by three
transcription factors and genes in immune response were downregulated. These findings expand our knowledge of
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Background

The spleen contains two compartments: the white pulp
(WP) and the red pulp (RP). The WP embeds with mul-
tiple lymph node-like structures and is involved in the
defense against blood-borne pathogens [1]. Adaptive and
innate immune cells localize in specific areas in the
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spleen to orchestrate the immune response [2]. The RP
removes aged, dead or opsonized cells from the circula-
tion. The spleen is also a reservoir of red blood cells
(RBC), and can store 15-25% of the total RBC volume
[3, 4]. Hematopoietic stem cells (HSCs) are also found
in the RP of the murine spleen [5]. Physiological or clin-
ical conditions that reduce tissue oxygen tension can
trigger stress erythropoiesis in the spleen [6], and the
spleen servers as a niche for HSCs [7].

The spleen is associated with adaptation to hypoxia and
hypoxic stress. In response to exercise, apnea, or simu-
lated altitude, stored RBCs are ejected and the volume of
the spleen decreases in humans [8, 9]. Individuals living at
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high altitude, like Sherpas and mountain climbers
who have summited mount Everest, have larger
spleen volumes [10, 11]. Animal studies have shown
that up to 40% of the increased RBCs may originate
in a tonic contraction of the spleen during hypoxia
[12]. The spleen weight, cell counts and components
of the WP and RP also changed during hypoxia [13—
17]. Additional experiments are required for further
understanding molecular mechanisms underlying
stress erythropoiesis, which is often referred to as
splenic erythropoiesis in mice model [18].

Erythropoietin (EPO)- and Bone morphogenetic pro-
tein 4 (BMP4)-dependent pathways regulate erythrocyte
differentiation. EPO is the main regulator of red cell pro-
duction in both the basal and stress state. After 12h of
exposure to severe hypoxia, EPO serum levels increase
300% with respect to the control value [19]. Expression
of BMP4, induced by EPO [20] and primarily regulated
by Hif2a, has been identified as a key signal involved in
stress erythropoiesis, especially in phenylhydrazine
(PHZ)-induced acute anemia [21-24]. Interestingly, the
hypoxic and immune responses are interconnected [25],
and pro-inflammatory cytokines can trigger erythropoi-
esis [26-28]. However, our understanding of the
mechanisms underlying stress erythropoiesis, and of
splenic immune responses during hypoxia, is incomplete.
Moreover, global changes in gene expression have not
been sufficiently investigated. In this study, we used
time-series RNA-seq to investigate transcriptional
changes in the murine spleen at different time points
during hypoxic treatment and findings of the present
study provide evidence that Gatal, Tall and KIfI pro-
mote stress erythropoiesis and immune response genes
downregulated.

Results

Hypoxia induces splenomegaly and splenic erythropoiesis
To investigate whether the spleen changed during hyp-
oxia exposure, we calculated the spleen index. The
spleen index was not influenced by the body weight
(Fig. 1a) and index increased significantly on days 3, 5,
and 7 compared to the control group. However, after 7
days of hypoxia, the spleen index began to decline and
returned to normal by day 13. Furthermore, a significant
increase in RBC count was observed from the third day
until the end of the experiment (Fig. 1b). To determine
which cell populations contributed to splenomegaly, we
performed H&E staining (Fig. 1c) and found that the red
pulp was enlarged after hypoxia. Furthermore, the CD71
expression via immunohistochemical staining in red
pulp significantly increased compared to that of the con-
trol animals (Fig. 1d). Accordingly, the CD71 stained
area of spleen was significantly expanded by hypoxia
intervention, even 24 h after hypoxia exposure (Fig. le).
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However, CD71" cells did not decrease with spleen
index.

Transcriptomic profiling of the spleen at different time
points during hypoxia

After characterizing the dynamics of the histological
changes, we performed transcriptomic profiling of the
spleens on days 1, 3, 5, 7, and 13 of hypoxia exposure. In
total, 23 samples collected at 6 different time points were
profiled. We abtained 1,239,556,096 total clean reads, with
an average of 53,893,743 per sample (Additional Table 2).
We selected GRCm38 as our reference genome, and the
mapping rate ranged from 94.83 to 95.59%. In the end, 32,
775 genes were detected by RNA-seq.

To examine whether hypoxic stress changed the ex-
pression of genes, we conducted principal component
analysis (PCA), which revealed higher variation between
the Hy and control groups (Fig. 2a). We estimated mean
normalized expression values for each gene using RSEM
and found that the majority of genes were downregu-
lated by hypoxia exposure (Figure Sla). To detect genes
showing differential expression between control and the
5 time points of the Hy group, we performed DESeq2,
and identified 1380, 3430, 4398, 3026, and 1636 genes,
respectively (Fig. 2b, Additional Tables 3, 4, 5, 6 and 7).
Intersection of the DEG datasets identified 739 genes in-
volved in this process (Fig. 2b). These genes play a role
mainly in metabolism and the cell cycle based on KEGG
analysis (Figure S1b, Additional Tables 8, 9, 10, 11 and
12). To explore the expression pattern of these 739
genes, we performed temporal profile cluster analysis
with Mfuzz (Additional Table 13). We found that the ex-
pression pattern of 3 modules differed from that of the
overall genes (Fig. 2c). Next, we performed GO analysis
(Additional Table 14) of these 3 gene modules with up-
regulated expression and found enrichment for cell pro-
liferation, and cell cycle regulation (Fig. 2d). The other
cluster with downregulated genes (cluster 4), was
enriched for cell activation, especially of immune cells
(Fig. 2e). To identify whether the proliferating cells were
erythroid progenitors, we conducted immunofluores-
cence with anti-CD71 and anti-PCNA antibodies. The
results showed that CD71" cells were the main source of
cell proliferation (Fig. 2f). Intersection analysis of KEGG
pathways indicated that 21 pathways, including Fanconi
anemia and the NF-«f signaling pathways, were com-
mon to the five DEG datasets (Additional Figure S1c).

Key transcription factors during stress erythropoiesis
identified by WGCNA analysis

To identified gene modules associated with increasing
erythroid cell numbers, blood counts and spleen index
information were extracted, and the correlation between
the 5 different color modules was determined by
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Fig. 1 Histological analyses of the spleen. a Spleen index were calculated by one-way ANOVA (P = 0.02) and followed by LSD multiple
comparison test (p =0.033, 0.007, 0.006, respectively). Spleen index and the body weight index were calculated as described in Methods. b RBC
counts of mice were calculated on the normoxia group (DO) and the day 1 (D1), 3 (D3), 5 (D5), 7 (D7), 13 (D13) after exposure to hypoxia (one-
way ANOVA followed by LSD multiple comparison test was used and p < 0.01). ¢ H&E stain of spleen (x 10, bar = 100 um). d Representative
figures on IHC staining for CD71 (X 10, bar = 100 um). e The quantification of IHC staining results (wilcox test was used). P-value: * p < 0.05 and

weighted gene co-expression network analysis (WGCN
A) (Figure S2, S3a). The module-trait relationship heat-
map demonstrated that the blue and turquoise modules
were linked to spleen index and RBC counts (Fig. 3a).
Turquoise module was the most meaningful module
based on its strongly negative correlations with the
spleen index and RBC counts (r = - 0.76, — 0.62, respect-
ively). To define the kinetics of terminal erythropoiesis
in this model, the CIBERSORT analysis was used to
achieve the relative fraction of erythroid cells (Fig. 4d,

Additional Table 19). The proerythroblasts were rapidly
exhausted after exposure to hypoxia (Figure S4a), and
the orthochromatic erythroblasts made the extremely
contribution during stress erythropoiesis. The WGCNA
also showed a great correlation between the Turquoise
module and terminal erythropoiesis (Figure S4b). 88
genes in this module were enriched in erythrocyte differ-
entiation GO term, including Hifla (Additional Table
22). Correlations between these genes and Hifla expres-
sion levels were calculate. There were 35 genes showed
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Fig. 2 RNA-seq expression profile of spleen exposed to hypoxia. a Principal component analysis (PCA) of gene expression. b Venn diagram for
genes overlapping among five DEG sets (top). The DEGs number in each hypoxia group (bottom). ¢ Clusters obtained via the soft clustering
method for 739 DEGs of spleen during hypoxia. d and e Enrichment map of GO terms. Nodes and edges represent GO BP terms and associations
between two terms respectively. GO, Gene Ontology; BP, Biological Process; (d for cluster 1-3 and e for cluster 4 in Fig. 2c). f Double
immunostaining for PCNA (green) and CD71 (red) on paraffin sections of spleen (x 40, bar = 100 pm)

absolute values of Pearson correlation coefficient higher
than 0.9 (Figure S5). Slc4al, Dyrk3, Fech, Epb42, Rhd
were also in the 739 DEGs. The Arnt (Hif -1p) motif
was significantly enriched in in promoter region of these
5 genes (Additional Table 23) by scanning tool FIMO.

There were 438 genes in the intersection of turquoise
module and 739 DEGs. The GO enrichment analysis
was performed to determine their biological function
(Additional Table 16). The analysis showed that 2 Go
terms (22 genes) were related to RBC differentiation
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(Fig. 3b). To explore the interactions within these genes,
we performed PPI network analysis by using the STRI
NG database. The network was constructed with 333
genes (nodes) and 5612 gene-gene interactions (edges),
adding weight information acquired from WGCNA.
MCODE was used to find the module related to RBC
differentiation (Fig. 3c, Additional Table 15). The RNA-
seq data showed that genes in this module were charac-
terized by high expression on day 3 and 5 after exposure
to hypoxia (Fig. 3d). We validated these genes using
qPCR (Fig. 3e) and found that the results agreed with
the RNA-seq analysis (Figure S3b). The cytoHubba algo-
rithm results applied for hub gene identification showed
that Gatal, Tall, and KIfl played the main role in RBC
differentiation (Fig. 4a). Interactions between these three

transcription factors were analyzed by ChEA3 (Fig. 4b).
Finally, we measured GATA1 expression in the spleen
by immunofluorescence and found higher expression,
together with CD71 during hypoxia (Fig. 4c).

Immune response genes are inhibited in the spleen
during hypoxia

Genes related to immune cell activation were suppressed
after hypoxia exposure (Fig. 2e). Another interesting
finding was that immune cells, such as white blood cells
(WBC), only increased significantly on day 3 (Fig. 5a).
To identify genes involved in this process, we found that
genes in the yellow module was negativity relate to the
white blood cell and lymphocyte cell in peripheral blood
(Fig. 3a). These genes also enriched in the immune
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response (Fig. 5b). Next, we clustered these genes to 4
patterns and found that expression of 37 genes in Clus-
ter 2 decreased rapidly in 3days (Fig. 5¢, Additional
Table 17). Biological function enrichment analysis also
showed immune response (Fig. 5d). Furthermore, based
on the GSEA analysis, we found that genes related to
immune cell migration were downregulated on day 3
(Fig. 5e, Additional Table 18). To investigate changes in
immune cell types in the spleen, we used the CIBER-
SORT analytical tool (Fig. 5f, Additional Table 20). The
result showed that B cells were the main component,
and that they increased slightly on days 1 and 3 of hyp-
oxia exposure (Kruskal-Wallis test, p = 0.047, 0.047). NK
cells decreased rapidly on days 1, 3, and 13 (Kruskal-

Wallis test, p =0.01, 0.01 and 0.01). However. other cell
types did not change during hypoxic stress.

Discussion

Our data showed that stress erythropoiesis occurs in the
spleen to compensate for the reduced oxygen supply
during hypoxia, resulting in splenomegaly, especially
during the first week. Transcriptomic analysis showed
that hypoxia promotes splenic cell proliferation and re-
presses immune cell activation. Furthermore, Gatal,
Tall, and KIfl were identified as key TFs regulating
stress erythropoiesis in the spleen. In silico analysis of
immune cell populations demonstrated inhibition of the
immune response. Transcriptomic analysis of global
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gene expression patterns during hypoxia sheds new light
on how the spleen adapts to this stress.

Splenomegaly can be caused by three main factors: in-
creased splenic function, infiltration, or congestion [29].
In this case, the spleen enlarged due to the expansion of
CD71" cells during the first week. It is widely believed
that CD71 expression is very high in early erythroid
precursors [6]. Moreover, flow cytometry analysis has
shown that cell-surface CD71 on EryA peaks on day 3 of
hypoxia [30]. This means that splenomegaly was caused
by increased splenic function during stress
erythropoiesis.

Hypoxia changes energy metabolism, mitochondrial res-
piration, lipid and carbon metabolism, as well as nutrient
acquisition by the cell [31], and also plays an important
role in maintaining the proliferation of stem cells [32]. We
found that the Fanconi anemia pathway, which promotes
stem cell function and survival [33], was enriched in each
of the DEG datasets. EPO promotes the viability, prolifera-
tion, and terminal differentiation of erythroid precursors,
is also known to inhibit inflammation by decreasing NF-
KP signaling [34, 35], which is at the center of the molecu-
lar mechanisms controlling inflammation [36, 37]. Genes
in this pathway were mainly downregulated (Figure S4c).
The “canonical” pathway of NF-«kf activation is triggered
by proinflammatory cytokines, such as IL-1pB. In vitro ex-
periments have determined that increased levels of IL-1
can enhance the proliferation of stress erythroid progeni-
tors [26, 27]. However, in our dataset, /L-1 was downreg-
ulated with the expansion of erythroid progenitors. The
NE-kp signaling pathway may be key pathway regulating
stress erythropoiesis and the immune response.

Gatal, Klfl, and Tall regulate erythroid differenti-
ation, and mice deficient in these TFs show severe em-
bryonic lethality [38—42]. GATA1 targets genes involved
in heme biosynthesis, erythropoietin signaling, and anti-
apoptotic and proliferation pathways, and is also
required for Epor expression [43, 44]. GATA1 also mod-
ulates the transcription of Tall and Kifl during eryth-
roid differentiation [45, 46]. Ex vivo studies showed that
these three TFs (GATAI, FLI1, TAL1) play a predomin-
ant role, above that of cytokines (EPO or TPO), in the
capacity of bipotent populations (BPPs) to differentiate
into erythroblasts (ERYs) or megakaryocytes (MKs), and
that ERYs were biased toward expression of GT
(GATA1, TAL1) [47]. On the other hand, KIfI upregula-
tion occurs along the E-MEP trajectory and promoted
the lineage specification to erythroid differentiation [48,
49]. The forecasted relative fraction of cell type in ter-
minal erythropoiesis stage showed the ratio of ortho-
chromatic erythroblast cells increased with hypoxia
exposure, while Gatal, Tall and KIfl were down-
regulated during terminal erythroid differentiation [50,
51]. Increasing co-expression of Gatal, Tall and KifI
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not only influence MEP cell fate but can also enlarge the
pool of CD71" cells to increase EPO sensitivity.

It has been shown that Tall expression blocks T cell
differentiation [52]. Unfortunately, we failed to estimate
T cells in the spleen. Hypoxia plays an important role in
innate immunity. NK cells, a subset of innate lympho-
cytes, are sensitive to conditions of hypoxia [53, 54]. Our
results are in agreement with a hypoxia—ischemia model
that showed that NK cells expression was reduced in the
spleen [55]. However, another study showed that when
rats were exposed to mild hypoxia, the NK cell ratio was
significantly higher, but then decreased after 7 days [56].
Increasing evidence demonstrates that hypoxia regulates
multiple immune processes, such as cell migration, anti-
gen presentation and immune effector functions. Tran-
scriptomic analysis of the large yellow croaker also
showed that immune response genes were downregu-
lated in spleen [57]. This inconsistency with the pheno-
typic values that leukocytes were transiently increased
on day 3. Other studies on rats and fishes suggested that
hypoxia stress increased WBC number in peripheral
blood [58-60]. The evidence of transcriptome and esti-
mated immune cells excluded the involving of spleen in
this process, other immune organs might contribute it.
During short-term hypoxia, the spleen downregulated
immune-related genes and reduced some kinds of im-
mune cells to compensate stress erythropoiesis.

Although, we conducted the CIBERSORT analysis
to find out the fraction of erythroid and immune
cells, the relative ratio of these two kinds of cells is
still unknown. This makes it difficult to separate the
effects of altered gene expression from the effects of
changing cell type proportions in this study and sin-
gle cell RNA-seq may be required for the future stud-
ies and help address this issue.

It is known that hypoxia-inducible factor (HIF), a key
transcriptional effector of the hypoxia response, facili-
tates a high production of red blood cell. Each functional
HIF unit is composed of constitutively expressed B
subunit (HIF-1p) and an oxygen responsive a subunit
(HIF-1a, 2« or 3a). However, only Hif3a, involved in the
regulation of EPO signaling [61], was upregulated in our
data. Two variants of the HIF3A gene were associated
with familial erythrocytosis in human [62]. During the
hypoxic condition, stabilized HIF-a activates transcrip-
tion of target genes with Arnt (HIF-1P) in the nucleus
[63]. Slc4al, Dyrk3, Fech, Epb42, Rhd contained Arnt
motif in promotor region and the expression of these
genes are likely regulated by Hif3a. It is important to
note that Dyrk3 is erythroid-restricted gene and act to
attenuate erythroblast development [64, 65]. According
to the expression pattern of Dyrk3 and Hif3a (Additional
Table 13), Hif3a increased rapidly in response to hypoxia
and might promote transcription of down-stream genes
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Dyrk3, to place an upper limit on red cell production
during stress erythropoiesis. Further studies on the func-
tion of Hif3a in stress erythropoiesis are still needed.

As was previously reported, Erythropoietin and BMP4-
dependent stress erythropoiesis are two ways to regulate
erythrocyte differentiation. However, Bmp4 expression
only significantly downregulated on day 5 and 7 in our
data, Epor was continuously upregulated during hypoxia.
This means that although anemia and hypoxia both pro-
duce tissue hypoxia, the strategies of the spleen to over-
come this stress conditions are different.

Conclusions

In this study, we reported the global change of splenic
gene expression by time-series RNA-seq during hypoxia
treatment. The spleen enlarged with red pulp to gener-
ate more erythrocytes to conquer this stress. Gatal,
Tall and KIif1 were major TFs to maintain cell prolifera-
tion and stress erythropoiesis. Both gene expression
patterns and GSEA analysis showed immune response
genes was inhibited, and NK cells forecasted in silico de-
creased during hypoxia. The NF-«p signaling pathway,
always functional during hypoxia, may be as a key path-
way regulating both stress erythropoiesis and immune
response. Additionally, Hif3¢ might involve in this
process. At last, this study will provide the availability
data of spleen at different time exposure to hypoxia.

Methods

Mice

All animal procedures were conducted in accordance
with the Guide for the Care and Use of Laboratory Ani-
mals and were approved by the Animal Welfare and
Ethic Committee of the Northwest Institute, Chinese
Academy of Sciences. ICR mice (7-8 weeks old) were
purchased from the SIBEIFU company. We only used
male mice to exclude any effects of the estrous cycle on
erythropoiesis. We randomly assigned the mice to two
groups: 3 in the normoxic (Nox) group and 20 in the
hypoxic (Hy) group. Animals in the Hy group were
placed in an altitude chamber with a pressure of 52.93
KPa, corresponding to an altitude of 5000 m. The con-
centration of oxygen in the chamber was 19.5%. It was
opened daily for 1h to provide the animals with fresh
water, food and straw. Animals stayed in the chamber
for the duration of the experiment. We analyzed 5 time
points during hypoxic exposure: on days 1, 3, 5, 7 and
13. Animals in the control (Nox group) were sacrificed
upon arrival at Xining, and the body weight and the
weight of the spleen were recorded. The effects of hyp-
oxia on the spleen were investigated based on the spleen
index, calculated as the weight of the spleen (in mg)/
body weight (in g). The body weight index was
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calculated as follows: body weight on a specific day of
hypoxia exposure /the mean weight of the control.

Blood counts

Fresh blood was collected from anesthetized mice in
EDTA tubes by retro-orbital bleeding, and was used to
determine RBC, hematocrit, and hemoglobin values
using a fully automated hematology analyzer (PROKAN,
PE-6800VET, China).

Immunohistochemistry (IHC) and immunofluorescence (IF)
Spleens were fixed overnight with 4% paraformaldehyde
(PFA). After dehydration in ethanol, samples were
embedded in paraffin (HistoCore Arcadia, Leica,
Mannheim, Germany). Paraffin-embedded tissues were
cut into 4 pum slices with a microtome (Leica RM2235,
Leica, Mannheim, Germany). After deparaffinization and
rehydration, sections were stained with hematoxylin and
eosin (H&E). For IHC, the sections were boiled in 10
mM sodium citrate buffer (pH6.0) for 20 min and
washed with 0.01 M phosphate-buffered saline (PBS) for
5min. This was repeated 3 times at room temperature
(RT). Endogenous peroxidase activity was blocked with
3% H,0, for 10 min at RT. Sections were washed 3
times with PBS (5 min per wash) and incubated for 30
min at 37° with 10% normal goat serum. Next, samples
were incubated overnight at 4°C with anti-CD71
(ab84036, Abcam) antibody diluted in 3% BSA (1:200).
Sections were then washed with PBS, followed by incu-
bation for 30 min at 37° with HRP-conjugated goat anti-
rabbit secondary antibody (Servicebio; Wuhan, China).
After 3 washes with PBS (10 min per wash), antigens
were visualized by adding 3,3-diaminobenzidine (DAB,
ZSGB-BIO, Beijing, China) and sections were counter-
stained with Ehrlich’s hematoxylin. Slides were examined
with a microscope (ECLIPSE E200, Nikon, Tokyo,
Japan), and images were captured by CCD (MS60,
MshOt, Guangzhou, China).

Immunofluorescent staining procedure: following anti-
gen retrieval, the tissue sections were incubated for 5
min with a spontaneous fluorescence quenching reagent
(Wuhan Servicebio Technology Co., Ltd., Wuhan,
China). Sections were then incubated for 1 h at RT with
10% normal donkey serum. Next, the samples were
incubated overnight at 4° with the primary antibodies
(diluted 1:200): anti-CD71 (ab84036, Abcam), anti-
GATA1 (sc-265, Santa Cruz) and anti-PCNA
(RLM3031, Ruiying Biotechnology, China). Sections were
then washed and incubated with the secondary anti-
bodies for 2 h at RT. After 3 final washes with PBS (10
min each), the sections were stained with Hoechst33342
(H33342) (Sigma, St. Louis, MO, USA) and mounted
with 50% glycerol for microscopic examination (Leica,
Mannheim, Germany).
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Quantitative analysis of immunohistochemical tissue
sections

Fiji (version 1.52 g) was used to determine the propor-
tion of tissue that was CD71 positive. This proportion
was estimated by calculating the total area of the spleen
(defined by hematoxylin staining) based on 10-24 serial
sections. The relative level of CD71 positivity in the tis-
sue sections was calculated as follows: positive area /
total area of the spleen.

RNA isolation, cDNA library construction and sequencing
Total RNA was extracted from the 23 spleens by using
TRIzol° reagent, according to the manufacturer’s
instructions (Invitrogen, CA) and genomic DNA was
removed with DNase I (TaKara). RNA quality was de-
termined using a 2100 Bioanalyser (Agilent) and quan-
tity using a ND-2000 system (NanoDrop Technologies).
Only high-quality RNA samples (OD260/280 = 1.8 ~ 2.2,
0D260/230 > 2.0, RIN > 6.5, 285:185>1.0, >2 pug) were
used to construct the sequencing library..

The RNA-seq library for transcriptome analysis was
prepared using the TruSeq™ RNA sample preparation kit
(San Diego, CA) and 1pug of total RNA per sample.
Briefly, mRNA was isolated by the polyA selection
method with oligo (dT) beads and then treated with
fragmentation buffer. Next, double-stranded cDNA was
synthesized using a SuperScript double-stranded cDNA
synthesis kit (Invitrogen, CA) and random hexamer
primers (Illumina). The synthesized cDNA was subjected
to end-repair, phosphorylation, and ‘A’ base addition
according to Illumina’s library construction protocol.
Libraries were size-selected for cDNA fragments of 200—
300 bp by means of 2% low range ultra-agarose, followed
by PCR amplification (15 PCR cycles) using Phusion
DNA polymerase (NEB). After quantification with a
TBS380 mini-fluorometer, the paired-end RNA-seq li-
brary was sequenced using the Illumina NovaSeq 6000
platform (2 x 150 bp read length).

RNA-Seq analysis

The raw paired-end reads were trimmed and quality
controlled by SeqPrep (https://github.com/jstjohn/
SeqPrep) and Sickle (https://github.com/najoshi/sickle)
with default parameters. The clean reads were separately
aligned to the reference genome (GRCm38, http://asia.
ensembl.org/Mus_musculus/Info/Index) with orientation
mode using TopHat (http://tophat.cbcb.umd.edu/, ver-
sion2.0.0) [66] software. We acquired 185.02 Gb of clean
data. The alignment rate was above 94% across all sam-
ples. The expression level of each transcript was calcu-
lated Transcripts Per Kilobase of exon model per
Million mapped reads (TPM) by using RSEM [67]
(http://deweylab.biostat.wisc.edu/rsem/). To identify dif-
ferentially expressed genes (DEGs) between the Nox and
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Hy groups, EdgeR [68] was utilized to calculate the fold
change in gene expression. DEGs were selected based on
an adjusted P-value <0.05 and |log2FoldChange| > =1.
In addition, functional-enrichment analysis, including
GO and KEGG (www kegg.jp/kegg/keggl.html) [69], was
performed using the R package clusterProfiler [70]
(version 3.17.3). Significantly overrepresented biological
process GO terms were identified based on a g-value <
0.01. We identified which DEGs were significantly
enriched in GO terms when compared with the whole-
transcriptomic background.

Time-series clustering of differentially expressed genes
The R package Mfuzz (v2.49) [71] was used for cluster-
ing analysis of the intersection of DEGs along time.
Mfuzz (https://bioconductor.org/packages/release/bioc/
html/Mfuzz.html) is a software package for soft-
clustering of microarray data which operates based on
fuzzy c-means algorithm. Average expression values at
each time point were used as the input to generate 4
(k =4) clusters based on the expression trend.

Weighted gene co-expression network analysis (WGNCA)
To perform unsigned WGCNA analysis, we used the R
WGCNA package (https://cran.r-project.org/package=
WGCNA) ([72]. (Soft-power 5, mergeCutheight 0.25,
minModuleSize 30). We identified 5 modules. Module-
Trait relationships were calculated by Pearson correl-
ation between the eigengene of each module and the
specific phenotype data. Module eigengenes and
orthogroup connectivity were calculated separately in
each network using the moduleEigengenes() and intra-
modularConnectivity() functions in WGCNA,
respectively.

Protein—protein interaction (PPI) networks can assist
in the identification of key genes and pivotal gene mod-
ules involved in the response to hypoxia. Relations be-
tween genes were visualized by means of Cytoscape
(v3.8.0) [73]; MCODE verified the key modules, and the
hub gene were identified with cytoHubba. To explore
the relationship among three transcription factors (TFs),
we used ChEA3 [74]. ChEA3 is a database that performs
TFs enrichment analysis based on ChIP-seq
experiments.

Predicted immune cells

The murine spleen-specific expression matrix by
ImmuCC [75] was used for analysis. Raw RNA-seq read
counts were normalized and processed with CIBER-
SORT (https://github.com/jason-weirather/CIBERSORT)
[76] with no quantile normalization and 1000 permuta-
tions as parameters. All samples were run to quantify
the relative proportions of 7 immune cell types.
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The matrix of gene expressions of GSE53983 [77] was
used in CIBERSORT analysis (permutation = 1000) to es-
timate the relative fraction of proerythroblast, basophilic,
polychromatic, and orthochromatic erythroid cells in
terminal erythropoiesis stage.

FIMO motif analysis

Analysis was performed at the FIMO [78] website:
http://meme.nbcr.net/meme/tools/fimo. using a p-value
output threshold of 0.001 and motif (MA0004.1) infor-
mation was obtained from the JASPAR database (http://
jaspar.genereg.net/). The promotor sequences (about 2
kB region upstream of transcription start site) were
downloaded from NCBI genome browser.

gRT-PCR analysis

Total RNA was extracted with Trizol (Ambion, Austin,
TX, USA), according to the manufacturer’s instructions.
The ¢cDNAs were synthesized using Honor™ II 1st Strand
Cdna Synthesis SuperMix (Novogene, China). The qRT-
PCR analysis was performed using the ABI ViiA7 Real-
time PCR System (Applied Biosystems, Foster City, CA,
USA) and SYBR Green master mix (Genstar,
Guangzhou, China). The primer sequences are listed in
Additional Table 1. PCR conditions were: 15 min at
95 °C and 40 cycles of 95 °C for 20 s and 60 °C for 1 min.

Statistical analysis

Statistical analysis was performed using either by R pro-
ject or GraphPad Prism 8. Results are expressed as the
mean * standard deviation, unless otherwise indicated.
The Shapiro-Wilk normality test was used to analyze
whether the continuous variables conformed to a normal
distribution. Comparison between multiple groups (be-
tween the 5 Hy groups and the Nox group) was per-
formed by one-way ANOVA for data with normal
distribution and with Kruskal-Wallis or Wilcox tests for
data with non-normal distribution. A P value of less than
0.05 was considered significant. The correlation between
genes was calculated by using the Pearson correlation co-
efficient. Cor.full() function in “tinyarray” package (https://
github.com/xjsun1221/tinyarray) ~ was  used.  Data
visualization was performed using R version 4.0.2 and
packages: “ggplot2” (https://github.com/tidyverse/ggplot2)
[79], “ggsci” (https://CRAN.R-project.org/package=ggsci),
“ggpubr” (https://cran.r-project.org/web/packages/ggpubr/
index.htm), “ggsignif” (https://CRAN.R-project.org/
package=ggsignif), and “Pheatmap” (https://cran.r-project.
org/web/packages/pheatmap/index.html). Venn diagrams
were constructed with TBtools [80].

Abbreviations
WP: White pulp; RP: Red pulp; RBC: Red blood cell; HSCs: Hematopoietic
stem cells; EPO: Erythropoietin; BMP4: Bone morphogenetic protein 4;
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TFs: Transcription factors; Nox group: Normoxic group; Hy group: Hypoxic
group
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Additional file 1: Figure S1. (a) The density distribution map of
transcript per million (TPM). (b) The bubble chart showing the KEGG
pathways of 739 DEGs. (c) Venn diagram illustrating the overlapped KEGG
pathways. (d) KEGG pathway annotation of intersection and specific parts
in Figure S1c. (The color represented each comparison groups are same
with Figure S1c). Figure S2. (a) Power value for the adjacency matrix in
WGCNA, where the red line signals 0.85 on the vertical axis. (b) The mean
connectivity of WGCNA analysis. Figure S3. (a) Hierarchical cluster tree
showing coexpression modules identified by WGCNA. (b) Validation of
the transcriptome data by qRT-PCR. (r were calculated by Pearson correl-
ation). Figure S4. (a) The relative ratio of erythroid cells during terminal
erythropoiesis stage. (Kruskal-Wallis test was used and P value were cor-
rected by bonferroni) (b) Module-trait relationships plot. Each row corre-
sponds to a module, column to different cell types during terminal
erythropoiesis. () Heatmap of genes involved in the NF-kappa B signaling
pathway. Figure S5. The correlation between erythrocyte differentiation
related genes in turquoise module with HifTa.

Additional file 2: Additional Table 1. Specific primers of genes for
gRT-PCR. Additional Table 2. Summary of QC for the time-series RNA-
seq. Additional Table 3. Differentially expressed genes between D1 and
DO. Additional Table 4. Differentially expressed genes between D3 and
DO. Additional Table 5. Differentially expressed genes between D5 and
DO. Additional Table 6. Differentially expressed genes between D7 and
DO. Additional Table 7. Differentially expressed genes between D13
and DO. Additional Table 8. Results of KEGG pathway enrichment ana-
lysis for DEGs between D1 and DO. Additional Table 9. Results of KEGG
pathway enrichment analysis for DEGs between D3 and DO. Additional
Table 10. Results of KEGG pathway enrichment analysis for DEGs be-
tween D5 and DO. Additional Table 11. Results of KEGG pathway en-
richment analysis for DEGs between D7 and DO. Additional Table 12.
Results of KEGG pathway enrichment analysis for DEGs between D13 and
DO. Additional Table 13. The clusters of intersection DEGs (739 genes)
in Fig. 2b by Muffz analysis. (related to Fig. 2¢). Additional Table 14. GO
enrichment analysis results of 739 genes. (Red for unregulated genes,
blue for downregulated genes). Additional Table 15. Edge information
of key module regulating the stress erythropoiesis. (related to Fig. 3c).
Additional Table 16. GO enrichment analysis for intersection of tur-
quoise module and 739 DEGs. (related to Fig. 3b). Additional Table 17.
The clusters of genes in yellow module by Muffz analysis. (related to Fig.
5¢). Additional Table 18. Results of GSEA for DEGs between D3 and DO.
(related to Fig. 5e). Additional Table 19. The results of CIBERSORT ana-
lysis to estimate the relative fraction of cells during terminal erythropoi-
esis stage. (related to Fig. 4d). Additional Table 20. The results of
CIBERSORT analysis to estimate the relative fraction of immune cells. (re-
lated to Fig. 5f and Figure S4a). Additional Table 21. The correlation
between genes with Hifla (Absolute value of the correlation coefficient >
0.9). (related to Figure S5). Additional Table 22. The weight of erythro-
cyte differentiation related genes in turquoise module. (related to Figure
S5). Additional Table 23. Scanning for occurrences of Arnt motif in pro-
motor region of 5 genes.
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