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Abstract

Background: The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and
sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in
response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum.
While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and
associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to
explore and characterize the nucleic acids associated with sweat particles.

Results: We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual
samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we
identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly
represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with
some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other
genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with
those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat
RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to
unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,
5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed
EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7–
45%), with 50–60% of those reads mapping to unannotated region of the genome and 30–55% being tRNAs, and
lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA.

Conclusions: Our data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids,
including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for
biomarkers for specific health parameters.

Keywords: Extracellular vesicles (EV), Sweat, Genomics, Transcriptomics, Exercise, Microbiome, Metagenomics, Skin

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: seppo.vainio@oulu.fi
1Faculty of Biochemistry and Molecular Medicine, Disease Networks Research
Unit, Laboratory of Developmental Biology, Kvantum Institute, Infotech Oulu,
University of Oulu, 90014 University of Oulu, Oulu, Finland
Full list of author information is available at the end of the article

Bart et al. BMC Genomics          (2021) 22:425 
https://doi.org/10.1186/s12864-021-07733-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07733-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:seppo.vainio@oulu.fi


Background
Sweat is a biofluid continuously produced by skin glands
for secretion to the body surface. Unlike urine, which
accumulates in the bladder over time, and is flushed out
only when the bladder is emptied, sweat is released con-
tinuously, from less than 1 pL/minute in resting condi-
tions to several nL/minute per gland during exercise [1],
and could therefore be collected non-invasively for ana-
lysis. In addition to changes in the sweat release rate, the
composition of sweat is altered by physical activity and
presence of health conditions. Detection of specific
metabolites, ions, hormones, peptides, cytokines, and
glucose in sweat has potential diagnostic value. Glucose
levels in sweat reflect changes in the blood glucose level,
and this observation has led to development of non-
invasive glucose monitoring methods [2–4]. The sweat
proteome has been shown to be different between
healthy subjects and people with schizophrenia [5], and
between healthy people and patients with active tubercu-
losis [6]. The presence of viral particles in sweat has also
been reported, consisting mostly in infectious viruses
such as papilloma or polyoma virus and bacteriophages
[7], but other infective viruses like Hepatitis C virus have
also been detected [8]. Sweat analysis for forensic
purposes has also been reported [9, 10], but while saliva
is routinely used for genotyping, no genetic tests based
on sweat nucleic acids have been published beyond
finding specific markers to distinguish sweat from other
biofluids [11].
In addition to ions and macromolecules, biofluids

carry insoluble particles containing nucleic acids, includ-
ing lipid droplets [12], ribonucleoprotein complexes,
extracellular vesicles (EVs) and whole cells. Systematic
studies of sweat EV cargo are difficult, because of the
mixtures of environmental contaminants on the skin
surface, and because most of the collection methods
interfere with the normal sweating process [13]. Sweat
contains several types of EVs: apoptotic bodies from
holocrine secretion of sebaceous glands [14], large
membrane vesicles from axillary apocrine glands [15],
and 100-200 nm EVs with CD63, CD9 and CD81 tetra-
spanins [16, 17].
Sweat secretion is qualitatively and quantitatively af-

fected by stimuli such as heat, exercise, emotions, and
health status. We recently reported differential sweat EV
miRNA secretion in relation to specific exercise [17],
supporting the notion that exercise-induced sweat could
be used as a source of biomarkers for sport practice.
Both cell free DNA (cfDNA) and extracellular RNA

(exRNA) have shown great promise as biomarkers
(Reviewed in [18]), therefore our aim was to characterize
the nucleic acids associated with sweat EVs. Because our
study design was exploratory, our goal was to obtain
large quantities of starting material for inventory from

the study subjects, and we initially pooled sweat from 13
individuals for nucleic acid analysis. We subsequently
also extracted DNA and RNA from sweat of individual
collection for analysis. We found human DNA fragments
mapping to all chromosomes, but most of the DNA
originated from unannotated regions of the human gen-
ome. Non-human DNA was found to be derived from
skin microbiota, mainly bacteria, but also archaea and
viruses. EV-associated RNA species contained a high
proportion of tRNA, rRNA and miscRNA, and also
approximately 89 miRNA and more than 500 mRNA
species. In addition, our NGS data shows the presence
of RNA of microbial, fungal and viral origin.
To our knowledge, this is the first published study

characterizing EV-associated nucleic acids in exercise
induced human sweat.

Results
Sweat collection and processing
We collected sweat from people undergoing vigorous
biking exercise. We first collected 1,4 l of sweat from 13
volunteers of both gender aged from 26 to 56 years at
the time of collection, amounts of individual collections
were not recorded, the sweat was stored at − 20 °C and
mixed after thawing for processing to DNA and RNA
for sequencing (Fig. 1, left side). We collected sweat for
RNA from 25 individuals during a 30min biking
exercise, with the amount of sweat collected from each
individual ranging from 6 to 175 ml (Table 1), these
collections were processed individually to NGS (Fig. 1),
or EV characterization.

DNA isolation and NGS library preparation
We used DNA from the pooled sample and from three
individual collections for whole genome sequencing. The
total amount of double stranded DNA recovered was
small with a range of 3 to 11 ng total DNA. We chose to
make pair-ended libraries with a small genome library
kit from Illumina. We were able to get between 10 and
20M reads per sample. Alignment of the reads to the
human genome (GRch38) showed small coverage with
some clear hot spots where high number of reads from
all samples were detected (Fig. 2A). Coverage on each
chromosome (10–30%) appeared to be dependent of
sequencing depth, with the notable exception of the
mitochondrial chromosome, which was entirely covered
in all samples (Fig. 2B).

DNA sequencing analysis
The DNA sequencing reads could be assigned to three
categories: annotated, unannotated and unmapped. The
pooled sample produced the lowest number of reads
(Fig. 3A), consisting of 3 categories: annotated (3,8%),
unannotated and unmapped (10%) with the larger
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number aligning with unannotated regions of the human
genome (86,2%). Samples from individuals had very
similar distribution of reads: 2,3% of reads not aligning
to the human genome and 4,5% aligning to annotated
region of the human genome, while the largest category
(93,1%) corresponded to unannotated region of the hu-
man genome (Fig. 3A). The distribution of annotated
reads into different biotypes (Fig. 3B) was similar across
all 4 samples, the most abundant being protein coding
genes (73–75%), followed by LincRNA (6,5–8%), proc-
essed pseudogene (4,5-5,3%) and antisense RNA (4–4,
5%). The coverage of the protein coding genes was very

small, except for those encoded by the mitochondrial
chromosome.

Sweat particle characterization
The presence of high amount of mitochondrial DNA
suggested the presence of organelles in addition to EVs
in the samples. To determine if this was the case, thin
sections of filtered (0,8 μm before concentration, 0,
45 μm after) sweat pellets were made from individually
processed samples and analyzed by transmission elec-
tron microscopy (TEM) (Fig. 4A). We found vesicular
structures of varying sizes and appearances in the

Fig. 1 Workflow. Description of the workflow: left side preparation of EV-enriched sweat DNA. Middle preparation of EV-enriched Sweat RNA from
pool for small RNA-seq. Right preparation of EV-enriched sweat RNA from individuals
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individual samples, including some with clear double
membranes, indicating presence of EVs. Most vesicles
were in the 100 nm range, but some individual samples
were richer in smaller and/or larger EVs. We were un-
able to detect any recognizable mitochondria (Fig. 4A),
but bacteria were occasionally detected when 0,45 μm
filtration was omitted (data not shown).
We chose ExoRNEasy kit to directly purify RNA from

concentrated sweat to capture a more diverse selection
of EVs [19]. Concentrated individual sweat samples pre-
pared with ExoEasy had variable amounts of well-
defined double membrane EVs of 50 to 200 nm sizes
(Fig. 4B, Supplementary Figure 3). Image of negative
control (instead of sweat, glove was filled with PBS,
which was subsequently processed like volunteer sam-
ple) is also shown in Supplemental figure 3. NTA ana-
lysis of ExoEasy sweat samples showed 1 peak at around
100 nm and much smaller peaks for 200 and 300 nm
(Fig. 4C, supplementary Figure 4). Immuno- transmis-
sion electron microscopy detected the presence of typ-
ical EV markers: CD63 and CD9 in individual sweat EVs
and other markers like Glypican1 (Fig. 4D). Presence of
CD63 was confirmed by western blotting, while staining
for Argonaute 2 and GM130 were negative (Fig. 4E,
Supplementary Figure 5). No CD63 was detected in

flowthrough from ExoEasy columns and in negative
control from gloves (Supplementary Figure 5). Average
particle /ml of sweat was 475,000 but a wide range was
observed (35000–1 million particle /ml) with number of
particles per μg of protein being in the range of 0,3–
6*109 particles/μg protein (n = 4). We have submitted all
relevant data of our experiments to the EV-TRACK
knowledgebase (EV-TRACK ID: EV210083) [20].

EV-enriched sweat RNA analysis
We used the remaining ultracentrifugation pellets from
pooled sweat to extract RNA from EV-enriched sweat
fraction using ExoRNEasy kit (Fig. 1). Profiling of ex-
tracted RNA on bioanalyzer picoChip (Agilent) showed
only small RNA with sizes ranging from 20 to 200 bp
with no obvious 18 or 28 s ribosomal RNA (Fig. 5A),
subsequently Small RNA protocol was used for the se-
quencing on Ion Torrent PGM (Thermo Fisher Scien-
tific). A total of 652,280 trimmed reads were used for
alignment to the human genome using Bowtie 1. Reads
fell into 3 categories: annotated (44,6%, tRNA reads were
included in this category), unannotated 29,6% and
unmapped 24,7% (Fig. 5B). Over 70% of the annotated
human reads were identified as tRNA, 18,5% as mis-
cRNA, 5% mRNA and 1,85% miRNA (Fig. 5C).

Table 1 Sample Information. Gender, age, sweat volume, and library assignment for each sample
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miRNA from pooled EV-enriched sweat
66 miRNAs with read count 10 or higher were identified
(Table 2). miR26a-5p was the miRNA with the most
reads, followed by miR200c-3p, miRLet7A and miR148a-
3p (Fig. 6A). We selected 6 miRNAs for testing by qPCR
from most abundant (miR26a-5p/692 reads) to low
(miR320b/10 reads) on 14 individual samples of sweat
RNA (10 were subsequently used for RNA sequencing
and 4 additional ones were not, Table 1) and compared
their level relative to each other, inside each sample. All

the miRNAs were detected in all the samples except
one, where miR193–3p, was undetectable. In most cases
miR21 -5p and miR24-3p were the highest, not miR26a-
5p (Fig. 6B).

RNA-seq from individual volunteers
We then prepared RNA from individual sweat collec-
tions, from 6 females and 14 males (Table 1) replacing
ultracentrifugation by concentration with Centricon
Plus-70 columns (Millipore) with a 100 K kDa cut-off.

Fig. 2 DNA sequencing results. A: distribution of reads on each chromosome B: coverage for each chromosome. Individual sample indicated by color
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Bioanalyzer (Agilent) RNA profiles of all samples were
similar to each other but yields were highly variable
(supplementary Figure 1) and below what can be
accurately quantified. We selected higher size fragments
(145-200 bp) than recommended by the library kit
manufacturer (New England Biolab) to limit the number
of empty reads and characterize larger RNA species, in-
cluding protein coding RNA, as a result very few miRNA
reads were identified.
After quality trimming, number of reads per sample

ranged from 650,000 to 3,4 million (Fig. 7A) with a high
number of unmapped reads. As the number of anno-
tated reads per sample were low, we analyzed them
together. The distribution into biotypes showed over
50% identified as tRNA, 28% as rRNA and LincRNA,
miscRNA and protein coding between 8 and 3% (Fig. 7B).
Excluding tRNA and rRNA the top 10 genes identified

include 6 miscRNAs with RNY1, RNY4, and RNY4P10 be-
ing the most represented, 3 LincRNA, 1 non-coding RNA,
1 snoRNA (SNORD20) (Fig. 8A). As MIR6087 is no lon-
ger considered a miRNA, it was omitted from the figure.
Although the function of small nuclear RNA is to

participate in mRNA splicing in the nucleus, these
small RNA species are abundant in EV-enriched
sweat. In Fig. 8B the seven most abundant snRNAs
represent each between 12 and 15% of snRNAs iden-
tified, all seven represented in B are detected in at
least 19 samples (supplementary Table I) and they be-
long to U1 and U5 families.
The snoRNA’s main characterized role is the modifica-

tion of rRNA, 11 of them are found in significant
amounts in EV-enriched sweat, the most abundant type
found is box C/D, which guides the 2′-O-methylation of
rRNA SNORD20 represent over 40% of the total,

Fig. 3 DNA sequencing results. A: number of reads per category (annotated, unannotated, unmapped) B: percentage of read per biotype
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SNORD90 and SNORD69 (targeting 28 s rRNA) around
20%, SNORD63 and SNORD101 6%, SNORD100 4%
(Fig. 8C). SNORD20, SNORD69 and SNORD63 were
identified in at least 19 of the 20 samples (Supplemen-
tary Table I). Another type of RNA modifying small
RNA closely related to snoRNA and located in Cajal
bodies (small organelles of the nucleolus of proliferative
cells) has 2 well represented members in sweat:
scRNA11 and scaRNA4. RNY1 represent over 60% of
misc-RNA biotype’s reads, RNY4 represents 16%,
RNY4P10 14% and RNY4P7 2% (Fig. 8D).

Unprocessed pseudogenes (Fig. 8E) are created by du-
plication of existing genes and retain intron-exon struc-
ture, in this biotype, EIF1P5 is overrepresented with 53%
of the reads mapping to it, while GGTLC4P represent
11% and AP004607.5 8%, the remaining unprocessed
pseudogenes are mitochondrial genes inserted in nuclear
chromosomes and they represent less than 7% each.
Processed pseudogenes, which arise by retrotransposi-
tion and are therefore inserted in the genome without
intronic sequences were also identified. Top 1% of reads
from RNA-seq included 86 processed pseudogenes.
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Piwi-interacting RNA (piRNA) are small noncoding
RNA first identified in the germline. They are short: 24-
30 bp and their first identified function was to silence
transposons. They have since been also identified in
other cells and body fluids and may have potential as
biomarkers. Only a very small percentage of the reads of
each sample can be identified as piRNAs, but 5 piRNAs
were identified in all 20 samples, and 6 in 19 samples
(Supplementary Figure 2). Another 1000 piRNAs were
sporadically detected in 3 or less samples. Other non-
coding RNA usually associated with EVs like Vault RNA
were also identified in the majority of the samples
(Supplementary Table 1).

Sweat mRNA
The most abundant mRNAs in sweat are encoded by the
mitochondrial genome, followed by a mitochondrial
transcript encoded by a nuclear gene, MTRNR2L6
(Fig. 9A). Comparison with a recent report of the tran-
scriptome and proteome of human eccrine gland shows
that 85% of mRNAs found in EV-enriched sweat overlap

with mRNA from sweat eccrine gland, with only 14.4%
unique to EV-enriched sweat (Fig. 9B).
For enrichment analysis of GO annotation we selected

transcript with FPKM values bigger than 25, most of the
transcript encode either translation related proteins, nu-
cleic acid binding protein or focal adhesion protein. Bio-
logical Processes involve energy metabolism, protein
synthesis and nucleic acid binding (Fig. 9C), the most
represented cell components are ribosomal (Fig. 9D). In
addition to the abundant mRNA species (Table 3), 6675
additional gene products were detectable in 1–3 samples
with FPKM value bigger than 0.
Because the reads for mRNA could be detected on

several exons and alignment with STAR showed that
some of these reads were spliced, we checked the pres-
ence of spliced mRNA in EV-enriched sweat by RT-PCR
with primers designed for amplification across splice
junctions. The most abundant and largely distributed in
most of the samples was (ferritin light chain) FTL
mRNA, FTL gene has 4 exons, and using primers de-
signed to amplify mRNA of the last 2 exons (3 and 4),
we were able to amplify cDNA from several samples
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(Fig. 10A). YWHAE gene spans across 7 exons, on a
total DNA length of 55 kb, with a reverse PCR primer
spanning exon 6 and 7 together and forward primer
on exon 5 we amplified a fragment of the expected
size in 2 out of 3 samples (Fig. 10B, supplementary
Figure 7). We were able to amplify several other
mRNA at least across one splice junction indicating
that even if the RNA is fragmented it is processed
(supplementary figure 7).

Metagenomic nucleic acid
Microbial DNA and RNA
DNA-seq had 5–9% of unmapped reads, and to deter-
mine their origin, the reads were assembled and aligned
against the metagenome and the main taxonomical or-
ders were identified. In addition to bacterial DNA, there
was a small proportion of virus and archaeal DNA.
Dominant bacterial orders were Proteobacteria, Actino-
bacteria followed by equal proportion of Bacteroidetes
and Firmicutes (Fig. 11), a distribution typical of skin
microbiota.
RNA-seq produced much higher amounts of un-

mapped reads, and metagenomic analysis attributed the
highest proportion of them to bacteria, but fungi and

virus could also be identified. The distribution of the
main bacterial orders was relatively similar to what we
observe for DNA, except for a larger proportion of Fir-
micutes than Bacteroidetes (Fig. 11), again a distribution
consistent with the skin microbiome.
A fraction of the sequences identified corresponded to

microbial protein coding genes. We retrieved the protein
IDs with GO annotations from UniProt database, then
counted the GO annotations. The cell component anno-
tations showed mostly integral components of mem-
brane and cytoplasm for both DNA and RNA
sequencing. DNA sequencing included also at least 20
protein coding genes with annotations for cell, ribosome
and integral component of plasma membrane, while
RNA-seq included periplasmic space linked mRNA
(Fig. 12A). The molecular functions of protein coding
genes identified in both DNA-seq and RNA-seq were
predominantly ATP binding, DNA binding and metal
ion binding (Fig. 12B).

Viral DNA
We found 2 types of viral DNA, from human virus: pap-
illoma, polyoma, herpes virus and from bacteriophages
infecting the bacteria from the skin. Viral sequences

Table 2 Sweat miRNA pooled samples. miRNA with read count 10 or above
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represent 13% of the total identified, with papilloma se-
quences representing 24% of viral sequences, polyomavi-
rus represent 5% and herpes 2%. Only a portion of the
DNA identified encodes identified protein, but from
papillomavirus 6 protein coding genes can be identified
(out of a total of 8), capsid protein major L1 and Minor
L2, replication protein E1, regulatory protein E2, and
protein E4 and E6. From polyoma viruses, and Merkel
cell polyoma virus, Small T antigen and capsid protein
Vp1 (total encoded by viral genome: 5–9 protein) were
identified and from human Cytomegalovirus, only

uncharacterized protein UL126 (more than 165 protein
coding genes). The gene encoded are capsid protein,
regulatory and replication protein from papilloma virus
and capsid and small T antigen from polyomavirus
(Table 4).
Bacterial phages are represented by a variety of genes,

96 are uncharacterized, 274 genes encode phage struc-
tural protein and enzymes (Table 5), which molecular
functions include mainly DNA binding, helicase, hydro-
lase and endonuclease. Most components of the phage
genome are represented (Table 5).

Fig. 6 EV-enriched sweat /associated miRNA. A: most represented miRNA (minimum read count > 100) in pooled sweat sample. B: Comparison
of specific miRNA level in individual samples. Last 4 samples were not sequenced
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Discussion
The skin is usually considered a hostile environment for
nucleic acids, particularly RNA, because of the presence
of nucleases, but inside EVs or other types of complexes,
nucleic acids are likely to be protected. EVs have now
been found in most biofluids, including sweat [16, 17],
but proper inventory of sweat nucleic acids is still
needed to determine the potential usefulness of sweat
for nucleic acid biomarker discovery.
The most covered DNA and the most represented

mRNA in the sweat samples were from mitochondrial
origin. Mitochondria have been shown to be released by
cells during oxidative stress [21], and to be transported
in EVs [22], but we could not detect any intact mito-
chondria by TEM in our preparations. Mitochondrial
protein have been reported in melanoma EVs [23] so we
can speculate that the mitochondrial DNA in our sam-
ples was a result of mitophagy, which is a normal part of
the skin’s aging process [24, 25]; Alternatively, in context
of the skin, mitochondria may also be transported out of

melanocyte during melanosome release, as the two or-
ganelles are tightly bound during melanogenesis [26].
On the other hand, total nuclear DNA is more sparsely

represented with very few counts from coding genes
while some unannotated regions are highly over-
represented in all four samples, indicating that these se-
quences may not be randomly secreted. DNA as EV
cargo is still controversial [27], as in most cases it is not
protected from DNAse and might be just sticking to the
EV surface, although there are exceptions like giant
oncosomes [28], or physiological process to protect cells
from activation of DNA-damage-response and cell cycle
arrest or apoptosis [29] and parasite like plasmodium
use DNA-loaded EVs to prime host cells for infection [30].
It is unclear how the characterized sweat DNA is asso-

ciated with sweat EVs, but it is very likely that some of it
is associated with apoptotic bodies resulting from sebum
secretion collected by the flow of sweat during exercise,
which is consistent with the presence of nucleic acids
from bacteria typical of the sebaceous glands, such as

Fig. 7 RNA-seq from individual EV-enriched sweat sample. A: Distribution of reads from each library in categories, B: distribution of annotated
reads in biotypes (average from all 20 samples)
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Propionibacterium (Cutibacterium) acnes and their asso-
ciated bacteriophages.
Small RNA sequencing with small sample quantity is

challenging, resulting in a large proportion of unmapped
reads. EVs have been shown to have RNA both on their
surfaces and inside, but most reports show that the
larger RNA species (larger than 200 bp) are absent
altogether. Best studied EV-associated RNAs are miR-
NAs. Even though we did not use RNAse, obtaining de-
tectable amount of RNA proved challenging. Even with
a small RNA protocol, our samples were mostly tRNAs

and miscRNA with a small representation of miRNAs.
We were nevertheless able to confirm the presence of
even the lowest represented miRNA in most samples
tested using qPCR. Based on our list of miRNA we were
able to identify miR21-5p and miR26a-5p as regulated
by exercise [17].
Using an unbiased sequencing approach with individ-

ual samples confirmed the predominance of tRNA,
rRNA and miscRNA observed in many other EV RNA
studies [31]. It was more surprising to identify more
than 500 protein coding RNA detectable in at least 9

Fig. 8 Distribution of RNA biotypes (pooled data). A: Data were pooled for analysis most abundant RNAs (tRNA and rRNA we removed from
analysis), B: most abundant SnRNA subtypes, C: most abundant SnoRNAs, D: most abundant misc_RNA, E: most abundant
unprocessed pseudogenes
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samples and to find that some of them are spanning sev-
eral spliced introns. Previously published reports point
to several explanations for the presence of mRNA. The
mRNA exist in co-purified protein complexes [31] or
bound to secreted ribosomes [32], which partly protect
the mRNA from degradation. It was also interesting to
see that a large proportion of the EV-enriched sweat
mRNAs are common to the transcriptome of the human
eccrine gland [33]. GO analysis mostly shows enrich-
ment in ribosomal components and translation but no
clear cellular origin as most of the mRNAs identified

tend to be ubiquitously expressed. While it is possible
that EV-enriched sweat indeed contain full length func-
tional mRNAs it is more likely reflecting the functional
status of the cells that release EVs to sweat, without any
particular function of its own.
Of further interest is the presence of microbiome de-

rived particles. The most abundant phyla identified by
NGS analysis were Proteobacteria, Actinobacteria, Firmi-
cutes and Bacteroidetes, which are usually found on hu-
man arms, hands, and axilla. Proteobacteria are
dominant on face and torso [34]. City scale

AA

B

C mRNA biological processes D mRNA cellular components

EV-enriched
Sweat mRNA

Eccrine gland
transcriptome

Fig. 9 EV-enriched Sweat mRNA (pooled data). A: most represented mRNA, B: overlap between human eccrine gland transcriptome and EV-
enriched sweat mRNA, C: enriched biological processes in EV-enriched sweat mRNA, D: enriched cellular components, based on GO annotations,
colors represent log10 p-value representation using Revigo
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metagenomics studies like the one performed in New
York city underground system revealed a lot of informa-
tion about underground users and their skin microbiome
and highlighted that each individual sheds genetic infor-
mation from their skin, both from their own genome
and from their own microbiome, which can be retrieved
for analysis [35]. Our data is consistent with that large-
scale study result, and the conclusion that the human
DNA collected in these metagenomics studies is most
likely derived from human sweat.

Further studies are needed to determine if any of the
RNAs found in our study are of clinical value, SNPs in
some mRNA identified are associated with known dis-
eases and could be further studied. For example,
CALM2, which mRNA was identified in all the samples,
has SNPs associated with cardiac arrhythmia and sudden
death of young people after exercise [36]. Larger scale
studies could determine if it is possible to identify clinic-
ally associated variants from sweat RNA. Other abun-
dant misc. RNAs such as RNY1,3 and 4 are also

Table 3 mRNA with highest FPKM IN RNA-SEQ (pooled data from individual). mRNA, including mitochondrial mRNA most
represented in sweat, with chromosome location and ensemble gene ID
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considered to have diagnostic potential for inflammatory
diseases [37] and cancer [38].

Study limitations
Sweat as a biofluid presents many challenges, and the
most important ones in the frame of this study are that
the human skin is exposed to the environment, and it is
an ecosystem where many organisms live. Skin secre-
tions, including sweat, are metabolised by skin microbes,
and the skin microbes secrete their own products,
including outer membrane vesicles. The non-human
nucleic acids we identified originated primarily from the
skin microbiota, but also possibly from clothing and
working surfaces, or from the collection material. Distin-
guishing contaminant nucleic acids in human sweat is

especially challenging, since contaminants introduced in
the process of sample handling are also mainly derived
from human skin secretions. RNA extraction columns
have been shown to contain contaminant RNA, and a
small RNA sequencing data set available from data re-
pository also show the presence of these contaminating
RNAs [39]. Capturing total EVs from biofluids is still
not possible by standard methods, and the choice of
approach taken here therefore represents a trade-off
between quantity/diversity and purity. The ExoRNEasy
kit captures EVs on a filter and then proceeds directly to
on-filter lysis for RNA isolation. For a biofluid like sweat,
in which the EV quantity depends on individual factors
and also ambient temperature, hydration status and
length and intensity of exercise, capturing particles

Fig. 10 spliced mRNA are detectable in EV-enriched sweat. A: Ferritin Light Chain Gene, PCR primers localization (arrows) with RT-PCR amplified DNA
visualized on 2% agarose gel, B: 14–3-3 Protein Epsilon gene with PCR primers spanning exon5,6 and 7, below product on agarose gels showing
amplification across the 3 exons in 2 out of 3 tested samples. The full size gels with region selected marked are shown in supplemental Fig. 7
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appeared to be a good choice for comparing heavy and
light sweat producers. But as humans are constantly se-
creting a small quantity of eccrine sweat, alternative
methods of collection might be more appropriate for
biomarker development, including for sport-associated
studies.
In line with MISEV2018 recommendations [40] and

because we are aware that our type of preparation is not
of high purity, we have used the term sweat particles, or
EV-enriched preparation in this report. We are describ-
ing preparation methods in detail in the method section
and have submitted the study to EV-track (EV-TRACK
ID: EV210083), EV-metric 14% for the DNA preparation
and 50% for the RNA study.

Conclusions
Our data shows that that sweat particles are a good
source of nucleic acid as has been reported for other
biofluids. As the skin surface offers a site for non-
invasive and real-time sample collection our study opens
the path for future sweat EV biomarkers discovery.

Methods
Volunteers
Adult volunteers were recruited among persons of dif-
ferent ethnic background residing in Northern Finland
in Oulu area (Table 1). Volunteers were given informa-
tion about the study and provided limited health and fit-
ness self-assessment in a form and informed consent.
Ethical permission (EETTMK:110/2015) was granted by
the ethical committee of Oulu University medical School
according to the Finnish Medical Research Act (488/

1999). Volunteers were asked to avoid using soap and
perfume for 24 h before the exercise and to shower with
water only for 15 min immediately before exercise to re-
move dust and other environmental contaminant resi-
dues from the skin. These studies were performed
according to the Declaration of Helsinki on research in-
volving humans. The study protocol named RUBY was
approved by the Ethical Committee at the Northern
Ostrobothnia Hospital District in Oulu under Study
Diary Number 110/2015. Participants in the study were
given information about the study and signed informed
consent forms approved by the ethics committee.

Pooled sweat processing and nucleic acid analysis
We first collected large amount of sweat from 13 people
of both genders aged 26 to 56 years, during a 40min bik-
ing exercise (Fig. 1). Collected sweat was kept at -20 de-
grees until processing. After thawing, pooled sweat was
filtered on 0,45 μm Milipore PES filters, then centrifuged
for 2 h at 108000 x g in an Avanti J-30I centrifuge (Beck-
man) using JA30–50 rotor. Pellets were resuspended in
1 ml PBS without CaCl2 and MgCl2 pH 7, and 200 μl
were used for DNA extraction (corresponding to ap-
proximately 80 ml of sweat) with QIAamp blood DNA
mini-kit by Qiagen [41], (Fig. 1 left) remaining sample
was used for RNA extraction. Concentration was mea-
sured using Qubits DNA HS assay kit (ThermoFisher).
For buffer exchange and concentration Zymo DNA &
Clean-5 columns (Zymo Research) were used with modi-
fied protocol (5 volume of binding buffer and elution
with 56 °C pre-heated H2O). Samples from 3 individual
donors (Table 1 top panel) were prepared in similar way.

Fig. 11 Sweat Metagenomics. Most represented bacterial orders in RNA sequencing (outer circle) and DNA sequencing (inner circle)
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One ng of DNA was used for PE library construction
using Nextera XT library preparation kit (Illumina) ac-
cording to manufacturer instructions. Libraries were run
on NextSeq550 sequencer (Illumina) with 151 cycles in
Biocenter Oulu sequencing core facility.
The remaining sample corresponding to 80% of the

original sweat volume were used for RNA extraction
with an ExoRNeasy kit (Qiagen) according to manufac-
turer’s instructions.

Total RNA concentration was measured with
Qubits RNA HS and profiled on Bioanalyzer 6000
Pico chips (Agilent). Pooled EV-enriched sweat
RNA-seq RNA library was made using Ion Total
RNA-Seq Kit v2 (Thermo Scientific) following in-
structions for small RNA libraries. In this case, puri-
fication beads were included in kit and used to
remove adapter dimers. Final libraries were checked
on a Bioanalyzer with High Sensitivity DNA kit

Fig. 12 bacterial GO annotations. Most represented GO annotation in bacterial genes identified A: most represented cell component. B: most
represented molecular function with total count number indicated
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Table 4 Human virus genes identified in sweat DNA

Protein names Gene names Organism Length

Major capsid protein L1 L1 Gammapapillomavirus 9 521

Major capsid protein L1 L1 gp7 Human papillomavirus type 209 507

Major capsid protein L1 L1 Human papillomavirus 514

Major capsid protein L1 L1 Gammapapillomavirus 9 513

Major capsid protein L1 L1 Human papillomavirus 204 508

Major capsid protein L1 L1 Human papillomavirus 202 528

Major capsid protein L1 L1 Human papillomavirus type 200 514

Major capsid protein L1 L1 Human papillomavirus type 49 509

Major capsid protein L1 L1 Gammapapillomavirus 22 517

Major capsid protein L1 L1 Gammapapillomavirus 12 507

Major capsid protein L1 L1 Human papillomavirus type 94 532

Major capsid protein L1 L1 Human papillomavirus type 8 514

Major capsid protein L1 L1 Human papillomavirus type 48 513

Major capsid protein L1 L1 Human papillomavirus 110 506

Major capsid protein L1 L1 Betapapillomavirus 2 508

Major capsid protein L1 L1 Human papillomavirus 174 507

Major capsid protein L1 L1 Human papillomavirus type 168 523

Major capsid protein L1 L1 Gammapapillomavirus 16 516

Major capsid protein L1 L1 Human papillomavirus type 137 516

Major capsid protein L1 L1 Gammapapillomavirus sp. 517

Major capsid protein L1 L1 Human papillomavirus 138 514

Major capsid protein L1 L1 Human papillomavirus type 37 507

Major capsid protein L1 L1 Human papillomavirus type 94 532

Minor capsid protein L2 L2 Human papillomavirus 120 519

Minor capsid protein L2 L2 Betapapillomavirus 1 520

Minor capsid protein L2 L2 Human papillomavirus type 168 520

Minor capsid protein L2 L2 Gammapapillomavirus 16 507

Minor capsid protein L2 L2 Human papillomavirus 202 498

Minor capsid protein L2 L2 Human papillomavirus type 94 459

Minor capsid protein L2 L2 Betapapillomavirus 2 522

Minor capsid protein L2 L2 Human papillomavirus type 195 516

Minor capsid protein L2 L2 Human papillomavirus type 37 534

Minor capsid protein L2 L2 Gammapapillomavirus sp. 518

Minor capsid protein L2 L2 Gammapapillomavirus 24 525

Minor capsid protein L2 L2 Human papillomavirus 204 503

Minor capsid protein L2 L2 uncultured Papillomavirus 521

Minor capsid protein L2 L2 Gammapapillomavirus 12 521

Minor capsid protein L2 L2 Gammapapillomavirus 22 517

Minor capsid protein L2 L2 Human papillomavirus 510

Minor capsid protein L2 L2 Human papillomavirus type 200 502

Minor capsid protein L2 L2 Betapapillomavirus 2 529

Minor capsid protein L2 L2 Human papillomavirus type 48 502

Minor capsid protein L2 L2 Human papillomavirus 110 537

Minor capsid protein L2 L2 gp6 Human papillomavirus type 209 519
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Table 4 Human virus genes identified in sweat DNA (Continued)

Protein names Gene names Organism Length

Minor capsid protein L2 L2 Gammapapillomavirus 9 506

Minor capsid protein L2 L2 Human papillomavirus type 8 518

Protein E6 E6 Human papillomavirus type 94 148

Protein E6 E6 Human papillomavirus type 168 139

Protein E6 E6 Human papillomavirus type 8 155

Protein E6 E6 Human papillomavirus 202 143

Protein E6 E6 Human papillomavirus 140

Protein E6 E6 Betapapillomavirus 2 141

Protein E6 E6 Human papillomavirus type 94 148

Protein E6 E6 Human papillomavirus type 137 142

Regulatory protein E2 E2 Human papillomavirus 157 400

Regulatory protein E2 E2 HpV115gp4 Human papillomavirus type 115 481

Regulatory protein E2 E2 Human papillomavirus type 94 378

Regulatory protein E2 E2 Human papillomavirus 204 388

Regulatory protein E2 E2 Human papillomavirus KC5 395

Regulatory protein E2 E2 Human papillomavirus 110 454

Regulatory protein E2 E2 Betapapillomavirus 2 459

Regulatory protein E2 E2 Human papillomavirus type 200 401

Regulatory protein E2 E2 Human papillomavirus 398

Regulatory protein E2 E2 Human papillomavirus type 48 396

E4 E4 Human papillomavirus type 168 160

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 202 605

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Gammapapillomavirus 22 601

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 157 601

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Betapapillomavirus 1 620

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 94 681

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Gammapapillomavirus 9 600

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Gammapapillomavirus sp. 610

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Gammapapillomavirus sp. 604

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Betapapillomavirus 2 605

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 48 593

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 200 598

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 23 607

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 138 616

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 204 615

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Betapapillomavirus 2 605

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 601

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 22 608

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 168 600

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 116 602

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 gp3 Human papillomavirus type 209 607

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 137 610

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 600

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 49 609
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(Agilent). Sequencing of libraries was done with Ion
PGM Hi-Q OT2 Template (200 bp protocol), Ion
PGM Hi-Q Sequencing Kit and Ion PGM 318 chip
kits (Thermo Scientific).

Individual sweat collection and processing for nucleic
acid processing and analysis
Sweat was collected from the upper body, arms and
torso using plastic raincoat (Transpen Oy, Kerava,
FI) and disposable gloves VETbasic (15,364, Kerbl,
Buchbach, Germany). If volunteers sweated heavily
from their head, dripping sweat was collected in the
head cover of the coat and pooled with the rest.
Volunteers used exercise bike (ProSpinner spinning
bike, Karhu) indoors for 30 min (Fig. 1 right). After
exercise sweat was collected by cutting tip of gloves
and cutting insert in ventral area to pipet fluid with
sterile disposable pipet. Sweat was passed through
40 μm strainer, then through 0,8 μm filter (Millipore). If
not immediately processed for nucleic acid extraction,
filtered sweat was stored at -20oC in sterile Falcon
tubes.
Filtered sweat was concentrated on Centricon Plus-70

centrifugal filter (100 k cut-off), according to instructions
by manufacturer. Concentrated sweat RNA was ex-
tracted using exoRNeasy kit (Qiagen).
RNA-seq libraries were made using NEBNext Small

RNA kit (New England Biolabs). After 16 cycles of PCR
amplification, Libraries were checked with Bioanalyzer
using DNA 1000 chips (Agilent). Before size selection
on pippin blue (Thermo Fisher) libraries were mixed
in 2 pools according to DNA yield. Size selection was
set to collect fragment from 145 bp–200 bp. Size
selected Pools were amplified an additional 5 cycles,
purified wit PCR clean-up kit (Qiagen) and quantified
by KAPA PCR kit (Roche). After dilution adjusting for
library number in each pool, they were loaded on
NextSeq550 (Illumina) and run 51 cycles.

Bioinformatics analysis
DNA
DNA fastQ files were checked with FastQC [42],
merged using PEAR [43], merged and unmerged reads
were aligned with BWA [44] against human genome
HG38. Ensembl 94 annotation was used to intersect
reads with functional elements. Coverage percentages
for each chromosome was calculated as length of
mapped reads per chromosome divided by length of
chromosome.

RNA
Reads from different lanes were first merged into single
fastq files and a QC was performed [42]. Then, low qual-
ity bases and adapter sequences were trimmed with
trimmomatic [45] followed by another QC with FastQC.
Trimmed reads were then mapped with Bowtie [46]
against GtRNAdb high confidence tRNA sequences [47]
and reads that map against tRNA sequences were also
filtered out. The remaining reads were then mapped
again with Bowtie against the human genome HG38,
and further processed wit Cufflinks [48] and Cuffmerge
to prepare a joint annotation file that contains then both
known and novel genes. This annotation file as well as
an annotation file for miRNAs from miRBase [49, 50]
and Human piRNA sequence v2.0 from piRBase [51]
was then used to quantify the expression with cufflinks
and featureCounts [52]. For quantification, only exonic
counts were taken into account. Alignment with STAR
(Spliced Transcripts Alignment to a Reference ([53]) was
done using Chipster at https://chipster.csc.fi/ [54].
Reads that could not be mapped against the HG38

genome were then de-novo assembled to contig level
using MEGAHIT [55]. These contigs were then blasted
against the NR database with DIAMOND [56], and for
the identified proteins the corresponding IDs were
extracted. Further, with Kraken [57] a taxonomic identi-
fication for the unmapped reads was performed and the
results were visualized using Krona [58].

Table 4 Human virus genes identified in sweat DNA (Continued)

Protein names Gene names Organism Length

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus type 37 609

Replication protein E1 (EC 3.6.4.12) (ATP-dependent helicase E1) E1 Human papillomavirus 610

Small T antigen MW polyomavirus 206

Small T antigen Merkel cell polyomavirus 186

ST (Small T antigen) Human polyomavirus 7 193

Capsid protein VP1 VP1 MW polyomavirus 403

VP1 VP1 Human polyomavirus 7 380

Uncharacterized protein UL126 UL126 Human cytomegalovirus (strain AD169)
(HHV-5) (Human herpesvirus 5)

134
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Table 5 Bacteriophages identified in sweat DNA

Protein names Gene names Organism Length

aGPT-Pplase2 domain-containing protein 3 ZEMANAR_3 Mycobacterium phage Zemanar 324

Amidase ami Propionibacterium phage PAS10 287

AP2/ERF domain-containing protein AB9_137 Acinetobacter phage vB_AbaM_B9 262

ATP-dependent helicase 71 SEA_CATERPILLAR_71 Arthrobacter phage Caterpillar 411

ATP-dependent RNA helicase Pseudoalteromonas phage H103 599

ATPase_AAA_core domain-containing protein BCP78_0083 Bacillus phage BCP78 358

Baseplate J-like protein 39 SEA_COLUCCI_39 Arthrobacter phage Colucci 373

Beta_helix domain-containing protein Eldridge_088 Bacillus phage Eldridge 510

Capsid & capsid maturation protease 13 SEA_CATERPILLAR_13 Arthrobacter phage Caterpillar 717

Capsid and capsid maturation protease 13 SEA_MEDIUMFRY_13 Arthrobacter phage MediumFry 717

Capsid and scaffold protein Propionibacterium phage PA1–14 186

Capsid maturation protease 5 SEA_COLUCCI_5 Arthrobacter phage Colucci 649

Capsid maturation protease SEA_C3PO_14 Corynebacterium phage C3PO 442

Capsid protein Staphylococcus phage phiIPLA-C1C 291

Cas4 family exonuclease SEA_NATOSALEDA_55 Rhodococcus phage Natosaleda 268

CMP deaminase SEA_WEASELS2_199 Rhodococcus phage Weasels2 118

Collagen-like protein PHL308M00_19 Propionibacterium phage PHL308M00 268

Collagen-like protein PHL150M00_19 Propionibacterium phage PHL150M00 268

DNA encapsidation protein P9AB12kb_p002 Pectobacterium phage DU_PP_III 363

DNA helicase 52 SEA_HOTFRIES_52 Streptomyces phage HotFries 390

DNA helicase 93 PBI_COUNT_93 Microbacterium phage Count 435

DNA helicase SEA_LUCKYBARNES_64 Brevibacterium phage LuckyBarnes 445

DNA helicase SEA_MEAK_33 Propionibacterium phage MEAK 317

DNA methylase 65 SEA_MOOMOO_65 Mycobacterium phage MooMoo 542

DNA methylase 61 SEA_NERUJAY_61 Mycobacterium phage Nerujay 365

DNA methylase SLPG_00003 Salicola phage CGphi29 328

DNA methylase FLORINDA_85 Mycobacterium phage Florinda 482

DNA methylase 43 GALAXY_43 Arthrobacter phage Galaxy 439

DNA methylase SEA_YASSJOHNNY_96 Mycobacterium phage YassJohnny 187

DNA methylase SEA_MURICA_102 Mycobacterium phage Murica 602

DNA methylase 61 PBI_SMEAGOL_61 Mycobacterium phage Smeagol 356

DNA methylase 60 PBI_MUSEUM_60 Mycobacterium virus Museum 465

DNA polymerae/primase NIKTSON_56 Arthrobacter phage Niktson 1314

DNA polymerase P9AB12kb_p001 Pectobacterium phage DU_PP_III 690

DNA polymerase I SEA_LUCKYBARNES_45 Brevibacterium phage LuckyBarnes 621

DNA polymerase III alpha subunit SEA_DARWIN_47 Corynebacterium phage Darwin 1097

DNA polymerase III alpha subunit SEA_C3PO_43 Corynebacterium phage C3PO 1097

DNA polymerase/primase 54 SEA_CATERPILLAR_54 Arthrobacter phage Caterpillar 1309

DNA primase SEA_LUCKYBARNES_63 Brevibacterium phage LuckyBarnes 804

DNA primase 31 P141_31 Propionibacterium phage P14 133

DNA primase Salvo_71 Xylella phage Salvo 833

DNA primase Iz_58 Brucella phage Iz 496

DNA primase/polymerase SEA_C3PO_38 Corynebacterium phage C3PO 847

DNA primase/polymerase 58 SEA_NIGHTMARE_58 Arthrobacter phage Nightmare 1312
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Table 5 Bacteriophages identified in sweat DNA (Continued)

Protein names Gene names Organism Length

DNA single strand annealing protein Erf uvFWCGRAMDCOMC203_065 Freshwater phage uvFW-CGR-AMD-COM-C203 226

Endolysin 20 P11_20 Propionibacterium phage P1.1 284

Endonuclease 45 SEA_THESTRAL_45 Streptomyces phage Thestral 400

Endonuclease VII 18 SEA_PHISTORY_18 Gordonia phage Phistory 342

Exonuclease WIZZO_26 Propionibacterium phage Wizzo 348

Exonuclease MRAK_36 Propionibacterium phage MrAK 313

Exonuclease Pseudoalteromonas phage H103 292

Gp008 Pepy6gene008 Rhodococcus phage ReqiPepy6 118

Gp067 Pepy6gene067 Rhodococcus phage ReqiPepy6 226

Gp069 Poco6gene069 Rhodococcus phage ReqiPoco6 297

Gp077 Pepy6gene077 Rhodococcus phage ReqiPepy6 193

Gp14 PaP-PAS50_gp14 Propionibacterium phage PAS50 921

Gp16 Propionibacterium phage PA6 385

Gp48 PaP-PAD20_gp48 Propionibacterium phage PAD20 100

H_lectin domain-containing protein PHL055N00_17 Propionibacterium phage PHL055N00 276

Head protein Actinomyces virus Av1 455

Head-to-tail adaptor 14 SEA_KYKAR_14 Mycobacterium phage Kykar 125

Head-to-tail connector 12 BARRETLEMON_12 Arthrobacter phage BarretLemon 155

Head-to-tail connector protein SEA_LILBANDIT_8 Propionibacterium phage LilBandit 115

Helix-turn-helix DNA binding domain protein 132 PBI_COUNT_132 Microbacterium phage Count 927

Helix-turn-helix DNA binding domain protein 78 SEA_LIBERTYBELL_78 Streptomyces phage LibertyBell 910

Helix-turn-helix DNA binding domain protein PROCRASS1_25 Propionibacterium phage Procrass1 106

Helix-turn-helix DNA binding domain protein 76 PBI_CAMILLE_76 Microbacterium phage Camille 925

Helix-turn-helix DNA binding domain protein 90 SEA_RAINYDAI_90 Streptomyces phage Rainydai 891

Helix-turn-helix DNA binding protein 94 SEA_KEANEYLIN_94 Arthrobacter phage KeaneyLin 891

HNH endonuclease SEA_SCAP1_2 Streptomyces phage Scap1 135

HNH endonuclease SEA_ATTOOMI_53 Streptomyces phage Attoomi 101

HNH endonuclease SKKY_47 Propionibacterium phage SKKY 100

HNH endonuclease 65 SEA_PHAYONCE_65 Mycobacterium phage Phayonce 196

HNH endonuclease Rhodococcus phage RRH1 91

HNH homing endonuclease Staphylococcus phage phiIPLA-C1C 269

Holin MRAK_21 Propionibacterium phage MrAK 133

Homing HNH endonuclase endo IDF_12 Enterococcus phage Idefix 167

HTH DNA binding protein 58 SEA_BARTHOLOMEW_58 Mycobacterium phage Bartholomew 331

J domain-containing protein 75 SEA_FINCH_75 Rhodococcus phage Finch 194

Lower collar protein Staphylococcus phage St 134 282

LysM domain protein 18 JAWNSKI_18 Arthrobacter phage Jawnski 221

Major capsid protein 9 MARTHA_9 Arthrobacter phage Martha 295

Major capsid protein gp79 E3_0790 Rhodococcus phage E3 333

Major capsid subunit 8 JAWNSKI_8 Arthrobacter phage Jawnski 297

Major head protein PHL141N00_06 Propionibacterium phage PHL141N00 315

Major head protein mjh Propionibacterium phage PAD21 314

Major head protein PHL082M00_06 Propionibacterium phage PHL082M00 323

Major tail protein 16 GORDON_16 Arthrobacter phage Gordon 290
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Table 5 Bacteriophages identified in sweat DNA (Continued)

Protein names Gene names Organism Length

Major tail protein SEA_DRPARKER_11 Propionibacterium phage DrParker 213

Major tail protein 14 SEA_RAINYDAI_14 Streptomyces phage Rainydai 294

Major tail protein LAUCHELLY_11 Propionibacterium phage Lauchelly 212

Major tail protein SEA_C3PO_23 Corynebacterium phage C3PO 220

Major tail sheath 18 PRINCESSTRINA_18 Arthrobacter phage PrincessTrina 482

MazG-like nucleotide pyrophosphohydrolase 41 PBI_PAJAZA_41 Microbacterium phage Pajaza 249

Membrane protein 7 PBI_HYPERION_7 Microbacterium phage Hyperion 238

Membrane protein 26 PBI_POUSHOU_26 Corynebacterium phage Poushou 152

Minor tail protein SEA_SUPERNOVA_15 Propionibacterium phage Supernova 313

Minor tail protein SEA_FRANZY_22 Arthrobacter phage Franzy 618

Minor tail protein SEA_TIMINATOR_21 Arthrobacter phage Timinator 446

Minor tail protein SEA_AQUARIUS_17 Propionibacterium phage Aquarius 272

Minor tail protein MRAK_17 Propionibacterium phage MrAK 272

Minor tail protein SEA_QUEENBEY_16 Propionibacterium phage QueenBey 385

Minor tail subunit PHL301M00_15 Propionibacterium phage PHL301M00 322

N-acetylmuramoyl-L-alanine amidase
domain-containing protein

Propionibacterium phage pa33 286

N-acetylmuramoyl-L-alanine amidase
domain-containing protein

Propionibacterium phage pa28 285

Nuclease SEA_LUCKYBARNES_47 Brevibacterium phage LuckyBarnes 400

p55.1 Xanthomonas virus Xop411 189

PDDEXK_1 domain-containing protein GMA2_62 Gordonia phage GMA2 331

PDDEXK_1 domain-containing protein 36 P101A_36 Propionibacterium phage P101A 315

Pentapeptide repeat protein SEP1_136 Staphylococcus phage phiIBB-SEP1 209

Peptidoglycan hydrolase SEA_BRENT_19 Arthrobacter phage Brent 448

phage terminase, large subunit g04 Yersinia phage fEV-1 462

POLAc domain-containing protein GMA2_66 Gordonia phage GMA2 594

Portal 3 P141_3 Propionibacterium phage P14 441

Portal protein SEA_DRGREY_12 Streptomyces phage DrGrey 450

Portal protein 4 SEA_COLUCCI_4 Arthrobacter phage Colucci 476

Portal protein KEIKI_3 Propionibacterium phage Keiki 441

Portal protein SEA_DRPARKER_3 Propionibacterium phage DrParker 441

Portal protein PHL092M00_03 Propionibacterium phage PHL092M00 441

Portal protein ArV1_002 Arthrobacter phage vB_ArtM-ArV1 476

Prim-Pol domain-containing protein Pseudoalteromonas phage H103 761

Putative amidase PHL060L00_20 Propionibacterium phage PHL060L00 288

Putative bifunctional DNA primase/polymerase M22_064 Idiomarinaceae phage Phi1M2–2 754

Putative bifunctional DNA primase/polymerase S708_57 Brucella phage S708 780

Putative capsid 6 P1001_6 Propionibacterium phage P100_1 314

Putative dCTP deaminase PhAPEC7_24 Escherichia phage vB_EcoP_PhAPEC7 168

Putative DNA helicase GMA2_64 Gordonia phage GMA2 654

Putative DNA helicase PHL111M01_33 Propionibacterium phage PHL111M01 317

Putative DNA helicase PAC5_34 Propionibacterium phage PAC5 287

Putative DNA methyltransferase 55 BRUJITA_55 Mycobacterium virus Brujita 216

Putative DNA primase Propionibacterium phage PacnesP1 241
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Table 5 Bacteriophages identified in sweat DNA (Continued)

Protein names Gene names Organism Length

Putative DNA primase PHL111M01_30 Propionibacterium phage PHL111M01 223

Putative DNA primase PHL085N00_30 Propionibacterium phage PHL085N00 241

Putative DNA primase PHL111M01_31 Propionibacterium phage PHL111M01 133

Putative endolysin PHL179M00_20 Propionibacterium phage PHL179M00 296

Putative exonuclease 7S3_41 uncultured Caudovirales phage 281

Putative helicase Tb_ORF45 Brucella phage Tb 577

Putative major head protein PHL037M02_06 Propionibacterium phage PHL037M02 316

Putative major tail protein GMA2_25 Gordonia phage GMA2 139

Putative membrane protein Twillingate_011 Staphylococcus phage Twillingate 41

Putative phosphoribosyl-ATP
pyrophosphohydrolase

SmphiM6_41 Sinorhizobium phage phiM6 129

Putative portal 3 P100D_3 Propionibacterium phage P100D 441

Putative portal protein PAC4_3 Propionibacterium phage PAC4 406

Putative protease PHL025M00_16 Propionibacterium phage PHL025M00 385

Putative protease PHL082M03_16 Propionibacterium phage PHL082M03 385

Putative recA-like NTPase vBEcoSSa179w3YLVW_00039 Escherichia phage vB_EcoS Sa179lw 274

Putative recA-like NTPase Sf11_gp7 Shigella phage Sf11 SMD-2017 276

Putative sigma factor PHL082M03_23 Propionibacterium phage PHL082M03 130

Putative structural protein GMA2_16 Gordonia phage GMA2 554

Putative structural protein GMA2_9 Gordonia phage GMA2 584

Putative tape measure 14 P104A_14 Propionibacterium phage P104A 921

Putative tape measure 14 ATCC29399BT_14 Propionibacterium phage ATCC29399B_T 921

Putative tape measure protein PHL112N00_14 Propionibacterium phage PHL112N00 921

Putative terminase GMA2_1 Gordonia phage GMA2 559

Putative terminase PHL111M01_02 Propionibacterium phage PHL111M01 503

Putative terminase large subunit 2 P104A_2 Propionibacterium phage P104A 503

Putative terminase large subunit ABP12_00064 Acinetobacter phage WCHABP12 433

Putative type III restriction endonuclease p11sa141_49 Brucella phage 11sa_141 141

Putative VRR-DNA nuclease M22_057 Idiomarinaceae phage Phi1M2–2 136

Twillingate_149 Staphylococcus phage Twillingate 409

Ribonucleoside-diphosphate reductase large
subunit (EC 1.17.4.1)

vBPaeSS218_00016 Pseudomonas phage vB_PaeS_S218 607

Ribonucleotide reductase SEA_C3PO_3 Corynebacterium phage C3PO 171

Ribonucleotide reductase SEA_DARWIN_74 Corynebacterium phage Darwin 648

Ribonucleotide reductase large subunit phiAbaA1_082 Acinetobacter phage vB_AbaM_phiAbaA1 968

Ribonucleotide reductase large subunit
(EC 1.17.4.1)

SEP1_061 Staphylococcus phage phiIBB-SEP1 705

RIIA-like protein 153 SEA_ANNADREAMY_153 Streptomyces phage Annadreamy 639

RIIB-like protein 164 SEA_COMRADE_164 Streptomyces phage Comrade 336

RIIB-like protein SEA_MILDRED21_228 Streptomyces phage Mildred21 326

RNA-binding protein Streptomyces phage BRock 523

Scaffold protein PHL179M00_05 Propionibacterium phage PHL179M00 184

Scaffolding protein SEA_LILBANDIT_5 Propionibacterium phage LilBandit 184

Scaffolding protein MOYASHI_5 Propionibacterium phage Moyashi 184

Secreted transglycosylase Quidividi_034 Staphylococcus phage Quidividi 220
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Table 5 Bacteriophages identified in sweat DNA (Continued)

Protein names Gene names Organism Length

SF4 helicase domain-containing protein Propionibacterium phage pa28 287

Structural protein Pepy6gene012 Rhodococcus phage ReqiPepy6 115

Structural protein AB9_053 Acinetobacter phage vB_AbaM_B9 178

Tail assembly chaperone SEA_C3PO_27 Corynebacterium phage C3PO 273

Tail assembly chaperone AB9_056 Acinetobacter phage vB_AbaM_B9 131

Tail assembly chaperone SEA_LEVIOSA_13 Propionibacterium phage Leviosa 227

Tail length tape-measure protein Propionibacterium phage pa33 921

Tail length tape-measure protein Propionibacterium phage pa63 921

Tail lysin SEP1_028 Staphylococcus phage phiIBB-SEP1 1401

Tail lysozyme 30 TAEYOUNG_30 Arthrobacter phage TaeYoung 110

Tail protein 32 BARRETLEMON_32 Arthrobacter phage BarretLemon 427

Tail protein 19 JAWNSKI_19 Arthrobacter phage Jawnski 448

Tail protein Moraxella phage Mcat20 1460

Tail protein Staphylococcus phage phiIPLA-C1C 1151

Tail protein 27 PRINCESSTRINA_27 Arthrobacter phage PrincessTrina 645

Tail protein 35 KELLEZIO_35 Arthrobacter phage KellEzio 1704

Tail protein vB_RpoS-V16_51 Ruegeria phage vB_RpoS-V16 1614

Tail protein Actinomyces virus Av1 731

Tail sheath 14 JAWNSKI_14 Arthrobacter phage Jawnski 482

Tail sheath 15 MARTHA_15 Arthrobacter phage Martha 482

Tail sheath protein AB9_051 Acinetobacter phage vB_AbaM_B9 381

Tail sheath protein SEA_CHOCOLAT_18 Arthrobacter phage Chocolat 482

Tail spike protein CPT_Mater149 Bacillus phage Mater 663

Tail spike protein Eldridge_087 Bacillus phage Eldridge 663

Tail-like protein Shpa_19 Paracoccus phage Shpa 1072

Tape measure protein PHL141N00_14 Propionibacterium phage PHL141N00 921

Tape measure protein PHL067M09_14 Propionibacterium phage PHL067M09 921

Tape measure protein SEA_LUCY_14 Arthrobacter phage Lucy 853

Tape measure protein PROCRASS1_14 Propionibacterium phage Procrass1 921

Tape measure protein NIKTSON_26 Arthrobacter phage Niktson 1529

Tape measure protein AB9_058 Acinetobacter phage vB_AbaM_B9 681

Tape measure protein 22 SEA_CHEESY_22 Arthrobacter phage Cheesy 1492

Tape measure protein Gsput1_18 Gordonia phage Gsput1 1431

Tape measure protein PHL082M02_14 Propionibacterium phage PHL082M02 921

Tape measure protein KEIKI_14 Propionibacterium phage Keiki 921

Tape measure protein 17 SEA_FROKOSTDAME_17 Gordonia phage Frokostdame 1824

Tapemeasure protein SEA_AQUARIUS_14 Propionibacterium phage Aquarius 921

Terminase PHL009M11_02 Propionibacterium phage PHL009M11 503

Terminase large subunit 6 SEA_HOTFRIES_6 Streptomyces phage HotFries 581

Terminase large subunit SEA_TIMINATOR_2 Arthrobacter phage Timinator 489

Terminase large subunit BiPBO1_02 Brucella phage BiPBO1 562

Terminase large subunit KEIKI_2 Propionibacterium phage Keiki 503

Terminase large subunit 8 CIRCUM_8 Arthrobacter phage Circum 584

Terminase large subunit MRAK_2 Propionibacterium phage MrAK 503
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GO analysis
List of genes with FPKM values 25 or over were put
into geneontology.org for enrichment analysis ( [59],
the gene ontology consortium 2019) using Fisher’s
exact test with Bonferroni correction for multiple testing
and GO annotation with enrichment value 4 or over were
visualized using REVIGO [60], dispensable GO terms
were omitted.

miRNA QPCR
1,5 ng of RNA was used for cDNA synthesis using miR-
CURY LNA RT-PCR kit (Qiagen).
Following LNA primers were used for QPCR using

SYBR Green III master mix (Agilent) miRCURY LNA
miRNA QPCR Assay: miR24-3p (YP00204260), miR99a-
5p (YP00204521), miR193 (YP00204226), miR-21-5p
(MS00009079), miR-26a-5p (MS00029239), miR320b
(MIMAT0005792), U6 snRNA (X59362).

RT-PCR
cDNA was made from 5 ng of RNA using VILO or Max-
ima H- first strand cDNA synthesis kit with DS DNAse
(Thermo Fisher). After 1/2 dilution cDNA was amplified
using AmpliTaq Gold and specific primers:

Gene forward primer reverse primer

14–3-3 Protein Epsilon
(YWHAE)

ACAGAACTTCCACCAA
CGCA

ATTCTGCTCTTCACCG
TCACC

Ferritin Light Chain
(FTL)

GGACCCCCATCTCT
GTGACT

AGTCGTGCTTGAGA
GTGAGC

PCR conditions: 95oC 5min, 60oC 20s,72oC 20s,
95oC20s, 40 cycles. Products were analyzed on 2%
agarose gel, stained with midori green and photographed.
PCR products were purified using Qiagen minElute

columns (Qiagen) and sequenced in Biocenter Oulu
sequencing core facility using capillary sequencing with
BigDyeTERminator v1.1 cycle sequencing (ABI) and
ABI3500xL Genetic Analyzer.

Electron microscopy
The immunoelectron microscopy was performed using
biotinylated anti-CD9 antibody as a primary antibody at
a 1:10 dilution. Vesicles were deposited on a Formvar
carbonated grid (glow-discharged). The grids were
incubated in blocking serum (1% BSA (bovine serum
albumin) in PBS). Afterwards, the grids were incubated
for 20 mins with the primary anti-CD9 antibody
(Miltenyi Biotec), followed by the secondary anti-biotin
antibody for 20 min and finally the protein A-gold com-
plex (PAG 10 nm) for 20 min. Samples after immunone-
gative staining as well as after negative staining with 2%
uranyl acetate were examined using a Tecnai G2 Spirit
transmission electron microscope (FEI, Eindhoven, The
Netherlands) and images were captured with a charge-
coupled device camera (Quemesa, Olympus Soft Im-
aging Solutions GMBH, Münster, Germany). Anti-CD63
antibody for immuno-TEM was used at dilution 1:50
(Abcam ab193349) and polyclonal anti-Glypican 1 anti-
body (PA5–28055, ThermoFisher) at dilution 1:100.
For preparing plastic sections concentrated sweat was

filtered on 0.45 um Minisart filter (Sartorius), then sweat
EVs were stained with CellVue Claret Far Fluorescent
Cell Linker Midi Kit (MIDCLARET-1KT) according to
manufacturer’s instructions. After staining, samples were
centrifuged for 4–6 h at 120 K rpm k-factor = 16 at 4 °C
Beckman TLA 120.2). Supernatants were removed,
pellets fixed and plastic embedded in Biocenter Oulu
electron microscopy core facility. Thin sections were
observed with Tecnai G2 Spirit electron microscope.

Table 5 Bacteriophages identified in sweat DNA (Continued)

Protein names Gene names Organism Length

Terminase small subunit BiPBO1_01 Brucella phage BiPBO1 133

Terminase small subunit 3 SEA_MEMENTOMORI_3 Microbacterium phage MementoMori 194

Terminase small subunit SEA_C3PO_1 Corynebacterium phage C3PO 174

Thioredoxin SEA_DARWIN_54 Corynebacterium phage Darwin 98

Thymidylate synthase SEA_ZION_9 Corynebacterium phage Zion 257

Thymidylate synthase SEA_LUCKYBARNES_41 Brevibacterium phage LuckyBarnes 517

Thymidylate synthase CB7_206 Pectobacterium phage vB_PatM_CB7 226

Thymidylate synthase 109 PBI_COUNT_109 Microbacterium phage Count 232

Toprim domain-containing protein 30 P100D_30 Propionibacterium phage P100D 223

Transposase SEP1_056 Staphylococcus phage phiIBB-SEP1 369

Tryptophan synthase beta
superfamily protein

2 SEA_ALANGRANT_2 Mycobacterium phage AlanGrant 289
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Western blotting
EV samples were diluted in 5 X Laemmli loading buffer
and proteins were separated on 10% SDS PAGE gel,
then transferred to nitrocellulose membrane. Anti-CD63
(Abcam Ab193349; 1:500 and Santa Cruz H-193, sc-15,
362; 1:1000 dilutions), GM130 (Cell Signaling Technol-
ogy, #12480; 1:1000) and Ago2 (Abcam ab32381; 1:1000)
antibodies were used for detection.

Nanoparticle tracking analysis
Nanoparticle tracking analysis (NTA) was performed
using a NanoSight NS300 (NanoSight Ltd., Amesbury,
UK) equipped with a 405 nm laser. At least three 40 s
videos were recorded of each sample with camera level
and detection threshold set up at 13. Temperature was
monitored throughout the measurements. Videos recorded
for each sample were analyzed with NTA software version
3.1. (build 3.1.46) to determine the concentration and size
of measured particles with corresponding standard error.
For analysis, auto settings were used for blur, minimum
track length and minimum expected particle size. Double
distilled H2O was used to dilute the starting material.

Abbreviations
EV: Extracellular vesicle; NGS: Next-generation sequencing; TEM: Transmission
electron microscopy; FPKM: Fragments per kilobase per million reads
mapped; STAR: Spliced Transcripts Alignment to a Reference; RT-PCR: Reverse
transcription polymerase reaction; qPCR: quantitative polymerase chain
reaction
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