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Abstract

Background: The global emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)
has seen the dominance of specific clones in different regions around the world with the PVL-positive ST93-IV as
the predominant CA-MRSA clone in Australia. In this study we applied a genome-wide association study (GWAS)
approach on a collection of Australian ST93-IV MRSA genomes to screen for genetic traits that might have assisted
the ongoing transmission of ST93-IV in Australia. We also compared the genomes of ST93-IV bacteraemia and non-
bacteraemia isolates to search for potential virulence genes associated with bacteraemia.

Results: Based on single nucleotide polymorphism phylogenetics we revealed two distinct ST93-IV clades
circulating concurrently in Australia. One of the clades contained isolates primarily isolated in the northern regions
of Australia whilst isolates in the second clade were distributed across the country. Analyses of the ST93-IV genome
plasticity over a 15-year period (2002-2017) revealed an observed gain in accessory genes amongst the clone’s
population. GWAS analysis on the bacteraemia isolates identified two gene candidates that have previously been
associated to this kind of infection.

Conclusions: Although this hypothesis was not tested here, it is possible that the emergence of a ST93-IV clade containing
additional virulence genes might be related to the high prevalence of ST93-IV infections amongst the indigenous population
living in the northern regions of Australia. More importantly, our data also demonstrated that GWAS can reveal candidate
genes for further investigations on the pathogenesis and evolution of MRSA strains within a same lineage.

Keywords: Staphylococcus aureus, GWAS, Bacteraemia, Phylogenomics, Australia

Background

Over the last three decades, community-associated
methicillin-resistant Staphylococcus aureus (CA-MRSA)
has emerged globally. Although polyclonal, a small num-
ber of CA-MRSA clones are dominant in different re-
gions of the world such as multilocus sequence type
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(ST) 8-1V (USA300) in North America, ST80-IV in Eur-
ope and Northern Africa, ST59-IV/V in Asia, ST772-V
and ST22-IV in the Indian subcontinent, and ST30-1V
in the West Pacific region [1]. Transmission of the dom-
inant clones in other regions has occurred, and charac-
teristically they harbour the [ukS/F-PV genes that
encode the Panton-Valentine leukocidin (PVL) toxin [2].

In Australia, the dominant CA-MRSA clone is PVL-
positive ST93-IV[3]. Colloquially known as the “Queens-
land CA-MRSA clone”, ST93-IV was first described in
the early 2000 s. Although known to cause severe
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infections including necrotizing pneumonia, ST93-1V is
typically associated with skin and soft tissue infections
[4]. Reported across Australia, the clone is frequently
isolated in the indigenous Australian population where
its dominance is believed to be linked to overcrowding
[5], poor hygiene and healthcare [6]. Using whole gen-
ome sequencing (WGS) and temporal and geographical
analysis, ST93 has been shown to be an early diverging
and recombinant lineage genetically related to ST59/
ST121 and to an unknown S. aureus lineage that
emerged in the 1970 s in the North Western region of
Australia [5]. Although earlier studies into the genetic
diversity of ST93 showed multiple rearrangements of the
spa sequence, the core regions of the genome were very
stable [2]. However in 2014, Stinear et al. suggested
ST93 clone was under pressure for adaptive change due
to a reduction in both exotoxin expression and oxacillin
minimum inhibitory concentration [7].

To screen for potential association between gene con-
tent and disease, genome-wide association studies
(GWAS) can be performed by analysing single nucleo-
tide polymorphisms (SNPs), and the accessory genes
provided by WGS data. For example, GWAS performed
on isolates from children with acute S. aureus osteomye-
litis selected a number of virulence gene candidates po-
tentially associated to the severity of disease [8]. In
contrast, when applied to S. aureus bacteraemia isolates,
no obvious associations in the number of virulence
genes present in isolates from patients with and without
S. aureus infective endocarditis were identified [9].
GWAS can also be used to examine the evolution of a
bacterial clone. For example recent GWAS performed
on livestock-associated CC398 MRSA, showed the clone
frequently lost antimicrobial resistance genes and ac-
quired human specific virulence genes in relation to the
origin of the host [10].

In this study, we performed GWAS on a collection of
Australian ST93 MRSA bacteraemia isolates collected
over a three-year period (2015-2017) and a collection of
previously published ST93 MRSA genomes (2002—-2012).
Phylogenetic analysis of the genomes was performed by
examining SNPs in the core genome and investigating
the absence/presence of accessory genes. To screen for
potential genetic traits that may have assisted the on-
going transmission of ST93-IV in Australia we corre-
lated the absence and presence of accessory genes in the
ST93-IV genomes to time, location and whether they
originated from a bloodstream infection.

Results

The 423 ST93-1V were isolated across Australia from
the following states and mainland territories: Northern
Territory (n=141), Queensland (n=98), New South
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Wales (n = 64), Western Australia (n = 54), Victoria (n =
43), South Australia (n =19), Australia Capital Territory
(n=3) and Tasmania (n=1). Overall, there were 302
bacteraemia and 121 non-bacteraemia isolates. The non-
bacteraemia isolates were limited to four geographical
regions: New South Wales, Victoria, Western Australia
and Northern Territory.

Based on core genome SNPs, the rooted phylogeny
based on 1383 SNPs depicted the ST93 population to
cluster primarily in two main clades (Fig. 1). Clade 1
contained 111 bacteraemia isolates predominantly from
northern Australia whilst clade 2 contained 185 bacter-
aemia and 119 non-bacteraemia isolates collected across
Australia.

Comparison between Principal Component Analysis (PCA)
and Phylogenetic Clustering

By examining the presence and absence of accessory
genes, PCA identified two distinct clusters (Fig. 2). Iso-
lates in the two PCA clusters correlated with isolates in
the two SNP derived phylogenetic clades.

GWAS Comparison between Bacteraemia and Non-
bacteraemia ST93 Isolates

GWAS revealed nine accessory genes correlated with
the bacteremia isolates (p <0.001 and odds ratio > 1)
(Table 1). However, seven of these genes were clade 1
specific and were not considered bacteraemia factors
(Supplementary Table 2).

Because the majority of clade 1 genomes were
bacteremia isolates, GWAS was repeated without clade 1
genomes to remove a possible selection bias. The results
for both GWAS showed that the two genes that corre-
lated with bacteraemia were hsdM (type I restriction en-
zyme EcoKI M protein) and cl/fA (clumping factor A)
(Supplementary Table 3). Overall, of the 302 bacter-
aemia isolates, 76 % (n=230) carried both genes; 16 %
(n =49) carried one of the genes, and the remaining 7 %
(n=23) carried neither gene. Only 43 and 45 % of the
non-bacteraemia isolates carried the clfA and hsdM
genes respectively.

The seven clade 1 specific accessory genes were ohrR
(organic hydroperoxide resistance transcriptional regula-
tor), acul (putative acrylyl-Coa reductase), ypuA (hypo-
thetical protein), hutl 2 (hypothetical protein), entE
(enterotoxin E), soj (chromosome-partitioning ATPase)
and entA_2 (enterotoxin A) (Fig. 1). Approximately 88 %
(n=98/111) of the clade 1 genomes harboured all seven
genes, with seven isolates containing none of the seven
genes. The seven genes were located on five different
contigs, with entE and acul co-located with soj and ohR
respectively.
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Fig. 1 Rooted Phylogenetic tree of 423 ST93 S. aureus bacteraemia and non-bacteraemia genomes represented as red and white respectively
(outer ring). Location is represented by the abbreviation of Australian states and territories: Australian Capital Territory (ACT), New South Wales
(NSW), Northern Territory (NT), Queensland (Qld), South Australia (SA), Western Australia (WA), Victoria (Vic) and Tasmania (Tas). Genes present

(black) and absence (grey) that correlate with bacteraemia are listed in the order (outer to inner); clfA, hsdM_

1, ohrR, acul, ypuA, hutl_2, entE, soj

Genomic diversity of ST93 over Time and Location
No significant differences in the presence or absence of
accessory genes over time or location were identified.

Recombination/rearrangement of the ST93 genome
When we analysed conserved gene neighbourhoods, we
observed two genes affected by re-arrangements correl-
ating to bacteraemia, sdrF (serine-aspartate repeat-
containing protein F) and pls (surface protein) (Supple-
mentary Table 4). Analysis of the genes show that inver-
sions occurred in regions containing sdrF and pls
(Supplementary Figure 1).

Discussion

In the current study we have identified two distinct
ST93-1V clades circulating concurrently in Australia.
The identification of the two clades by SNP analysis of
the core region was supported by the PCA based on the
absence and presence of genes matrix. The clade 1 iso-
lates were primarily isolated in the northern regions of
Australia spread over three states/territories (Western
Australia, Northern Territory and Queensland) whilst

the clade 2 isolates were distributed across the country.
Based on genomic data of the van Hal et al. [5] historic
ST93-1V isolates that were located at the root of the
phylogenetic tree, we believe the two clades recently di-
verged from a common ancestor.

Clade 1 isolates differed from the clade 2 isolates by
having acquired up to seven additional accessory genes.
The known biological significance of these accessory
genes varies. The entA and entE genes, encode the
superantigen enterotoxins A and E respectively and play
an important role in serious staphylococcal infections by
triggering an overexpression of inflammatory mediators
[11]. The ohrR gene, which has previously been identi-
fied in Pseudomonas aeruginosa [12] and Bacillus subti-
lis [13], is known to increase an organism’s resistance to
oxidative stress. The ability to resist peroxide provides
the organism a growth advantage and increases its sur-
vival in host cells [14]. The soj gene, a parA homologue
involved in chromosome segregation during DNA repli-
cation, is not normally found in S. aureus [15]. Typically,
chromosome segregation in S. aureus is performed by
the parB homologue spo0J, which was identified in all
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Fig. 2 Principal Component Analysis of pan-genome gene matrix of ST93-1V isolates. The teal coloured dots represent isolates in clade
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ST93-1V genomes. In Bacillus subtilis, soj and spo0] are
present and work together to prevent premature midcell
Z ring assembly [16]. By having acquired soj, clade 1 iso-
lates might have an advantage over non-clade 1 isolates
as represented by a more efficient DNA replication sys-
tem. The roles of the three remaining accessory genes,
acul (a putative protein), and ypuA and hutl (both hypo-
thetical proteins) are not known. The acquisition of the
seven accessory genes, which are likely to have origi-
nated on mobile genetic elements, may explain the high

rates of ST93-IV skin infections amongst indigenous
children living in the northern regions of Australia [17].
Further studies are required to determine if clade 1 has
become the predominant ST93-IV strain in the region’s
indigenous communities and the role of these additional
genes in the expansion and fitness of this pathogen.
Based on the variability of the ST93-IV accessory
genes over time and location we attempted to identify
clade 1 or 2 specific subclades. Despite minor accessory
gene variations occurred in a small number of isolates

Table 1 GWAS showing genes significantly correlating to bacteraemia using the presence (+) and absence (-) of each gene in 423

isolates (Bonferroni p value < 0.001 and a odds ratio > 1), *

genes specific to Clade 1

Gene Function Bacteraemia Non Bacteraemia
Isolates Isolates
N (%) N (%)

clfA Clumping factor A 240 (79.4) 53 (43.8)

hsdM_1 Type | restriction enzyme EcoKl M protein 269 (89) 55 (45)

ohrR Organic hydroperoxide resistance transcriptional regulator* 103 (34.1) 0

acul Putative acrylyl-CoA reductase Acul* 2 (33.7) 0

YPUA Hypothetical protein* 5 (34.7) 1(0.7)

hutl_2 Hypothetical protein* 1(334) 1(0.7)

entE Enterotoxin type E* 1 (334) 0

sof Chromosome partitioning ATPase* 1(334) 1(0.7)

entA_2 Enterotoxin type A* 99 (32.7) 0
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(for example, four isolates contained gacA [antiseptic re-
sistance protein], gacR [HTH-type transcriptional regu-
lator] and tnsB [transposon] which were all located on
the same contig), no important difference in the absence
or presence of accessory genes related to specific sub-
clades were observed.

GWAS for Bacteraemia vs. Non-bacteraemia MRSA
In 2017 a GWAS performed by Lilje and colleagues was
not able to identify genetic differences between S. aureus
bacteraemia and non-bacteraemia genomes [9]. Their re-
sults however may have been influenced by studying a
variety of S. aureus lineages and clonal complexes. To
identify if specific genetic factors are harboured by S.
aureus bacteraemia genomes our study was limited to a
single S. aureus lineage. After accounting for a possible
clade 1 selection bias GWAS identified two genes associ-
ated with the ST93-IV bacteraemia isolates. The hsdM
gene has recently been shown to be a hotspot for
chromosome rearrangements in staphylococcus which
cause phenotype switching associated with persistent in-
fections [18]. The clfA gene, which mediates staphylo-
coccal binding to fibrin-coated surfaces has previously
shown to be highly expressed during rat models in in-
fective endocarditis [19], while cI[fA mutants developed
milder systemic inflammation in mice models [20].
Chromosome rearrangements of genes may lead to al-
tered gene expression [21]. The 23 bacteraemic genomes
that did not harbor ssdM and cIfA all carried rearrange-
ments of the pls and sdrF, genes. The pls and sdrF genes
encode surface proteins. Pls, which mediates bacterial
aggregation and binding to glycolipids and human epi-
thelial cells [22, 23], has been shown in mice models to
be an important factor in causing sepsis [24]. SdrF,
which is a microbial surface components recognising ad-
hesive matrix molecule (MSCRAMM), allows staphylo-
coccus to attach to and colonise host cells [25]. Among
the sdr gene detected amongst the different S. aureus
clones, the sdr gene in the ST93 strain JKD6159 is the
most diverse suggesting sdr acquisition by horizontal
gene transfer. In the Huping et al. study the sdr in the
ST93 genome was classified as sdrC [26]. However, an
updated annotation database has identified the gene as
sdrF which had previously only been reported in S. epi-
dermidis. SArF adheres to human keratinocytes and epi-
thelial cells facilitating S. epidermidis colonisation of the
skin [27].

Conclusions

GWAS is a powerful tool to screen for potential associa-
tions using large datasets. However, other factors related
to bacterium-host evolution may also pressure for gen-
etic diversification. For example, patient’s age and prior
medical condition, which are factors associated with
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MRSA bacteraemia. In the current study we selected
accessory genes and gene rearrangements that show sig-
nificant statistical associations with ST93-IV bacter-
aemia. However, to validate the scientific impact of these
findings future ex vivo and in vivo investigations using
gene-knockouts and expression clones are required. Fur-
thermore, to determine if these genes are bacteraemia
determinants other S. aureus lineages should be exam-
ined. Finally, phylogenetic analysis has shown ST93-IV
has recently gained accessory virulence genes which
might be contributing to the clone’s persistence in the
Australian indigenous communities.

Methods

Bacterial Strains and Genome Assembly

A total of 300 ST93 MRSA bacteraemia isolates were
identified in the 2015 [28], 2016 [29] and 2017 [30] Aus-
tralian Group on Antimicrobial Resistance (AGAR) Aus-
tralian Staphylococcus aureus Sepsis Outcome Programs
(ASSOPs). All isolates collected were from patients with
systemic infections. As part of ASSOP, MRSA isolates
were referred to a central reference laboratory where
genomic libraries were prepared using the Illumina Nex-
tera’ XT DNA Library Prep Kit (Illumina, United States)
according to the manufacturer’s protocol. WGS was per-
formed on the Miseq or Nextseq platforms using the
Miseq Reagent Kit V3 (600 cycle) and the Nextseq 500/
550 Mid Output Kit V2.5 (300 cycles), respectively. The
raw sequence reads were assembled de movo using
SPAdes V3.12 [31]. Sequencing quality control was de-
termined based on average sequencing depth. Thirty-one
had genomes less with than 40x coverage and therefore
were excluded. The MLST profiles of the remaining 269
genomes were determined using the mlst tool described
by Seeman et al. [32].

In addition to the 269 ASSOP ST93 MRSA, whole
genome sequences for 154 ST93 MRSA collected be-
tween 2002 and 2012 from Van Hal et al. study [5] were
included (Supplementary Table 1).

All sequence data obtained from this study were de-
posited to the NCBI Sequence Read Archive under Bio-
Project ID PRJNA644215.

Phylogenetic Analysis

Using the chromosome of S. aureus CC398 reference
strain SO395 (GenBank accession ID AM990992) as the
reference genome, the bacterial variant calling tool
snippy V4.1.0 [33] was used to extract and align SNPs
from the core genome. The 423 ST93 genomes were
used to generate a rooted maximum parsimony phylo-
genetic tree using MEGA V10.1.7 [34] with the following
parameters; bootstrap value: 1000, nucleotide substitu-
tion model and the SPR model for the MP search
method. Phylogenetic clades were defined as a cluster of
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isolates sharing multiple common SNP mutations. The
iTOL V3 web service was used to visualise the phylogen-
etic tree and the corresponding metadata [35].

Genome-Wide Association Study (GWAS)

Genes from the 423 assembled S. aureus genome se-
quences were annotated with Prokka V1.13 [36] using
default parameters and the pan-genome was extracted
by Roary V3.12.0 [37] using the -s option of no paralog
splitting. The pan-genome matrix from Roary containing
of gene presence or absence for each genome was used
as input for Scoary V1.6.16 [38] with the following traits;
SNP phylogeny clades, location (states and territories),
year of isolation, clade specific genes and whether the
isolate was from a bloodstream infection. Adapting the
method described by Arnoud H. M. van Vliet [39], genes
returning a Bonferroni corrected p value <10 > and
odds ratio >1 were further investigated. In addition to
Scoary analysis, principal component analysis (PCA) of
binomial variables on the pan-genome matrix was per-
formed for determination of association with the statis-
tical package R version 3.5.1 [40] and ggplot2 V3.2.1 to
confirm relationships between genes identified in Scoary
and traits.

Detecting gene rearrangements

The pan-genome matrix was compared with and without
the -s option. Scoary was used on both pan-genome
matrices using bacteremia as phenotype. Identification
of genes correlating to bacteremia were compared be-
tween both sets of data. Genes associated to bacteremia
were extracted along with neighbouring genes and
aligned against the ST93 genome JDK6159 using Arte-
mis comparison tool [41] to visualise the rearrangement
structure.
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