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Abstract

Background: The sequence content of the 3′ UTRs of many mRNA transcripts is regulated through alternative
polyadenylation (APA). The study of this process using RNAseq data, though, has been historically challenging.

Results: To combat this problem, we developed LABRAT, an APA isoform quantification method. LABRAT takes
advantage of newly developed transcriptome quantification techniques to accurately determine relative APA site
usage and how it varies across conditions. Using LABRAT, we found consistent relationships between gene-distal
APA and subcellular RNA localization in multiple cell types. We also observed connections between transcription
speed and APA site choice as well as tumor-specific transcriptome-wide shifts in APA isoform abundance in
hundreds of patient-derived tumor samples that were associated with patient prognosis. We investigated the
effects of APA on transcript expression and found a weak overall relationship, although many individual genes
showed strong correlations between relative APA isoform abundance and overall gene expression. We interrogated
the roles of 191 RNA-binding proteins in the regulation of APA isoforms, finding that dozens promote broad,
directional shifts in relative APA isoform abundance both in vitro and in patient-derived samples. Finally, we find
that APA site shifts in the two classes of APA, tandem UTRs and alternative last exons, are strongly correlated across
many contexts, suggesting that they are coregulated.

Conclusions: We conclude that LABRAT has the ability to accurately quantify APA isoform ratios from RNAseq data
across a variety of sample types. Further, LABRAT is able to derive biologically meaningful insights that connect APA
isoform regulation to cellular and molecular phenotypes.

Background
During the co-transcriptional processing of a pre-mRNA,
the 3′ end of the transcript is cleaved and a polyadenine

tail is added that promotes the stability and translation of
the resulting message [1, 2]. The site where this cleavage
occurs determines the sequence content of the 3′ UTR of
the transcript. Regulatory cis-element sequences can
therefore be either included or excluded from the 3′ UTR
of the transcript through modulation of where the cleav-
age and polyadenylation event happens. This regulation of
transcript sequence content through alternative polyade-
nylation (APA) occurs in the majority of genes in yeast,
plant, and mammalian genomes [3–6].
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The cleavage and polyadenylation reaction is per-
formed by the core CSTF and CPSF complexes and
CFIm which associate with RNA polymerase II (Pol II)
transcription complexes [7, 8] and together recognize
specific sequence elements within 3′ UTRs to determine
sites of 3′ end processing [9]. The abundance of these
general CPA factors as well as several other RBPs have
been found to regulate the relative usage of alternative
polyadenylation sites within a transcript [10–15].
Regulation by these factors results in the large vari-

ation in 3′ UTR content seen across tissues and develop-
mental stages [16]. Specific tissues, most notably
neuronal tissues, are associated with preferential use of
gene-distal or downstream APA sites [17]. Similarly, the
broad use of gene-proximal or distal APA sites can be
developmentally regulated. Undifferentiated, proliferat-
ing cells generally display enriched usage of proximal
APA sites while more differentiated cells show shifts to-
wards increased usage of distal APA sites [18, 19]. This
phenomenon has also been connected to cancer progres-
sion where increased usage of proximal APA sites in key
oncogenes was associated with elevated cell proliferation
and oncogenic transformation [18, 20].
Alternative polyadenylation exists in two structurally

distinct forms. The first, which we will refer to as “tan-
dem UTRs”, occurs when multiple APA sites are found
within the same terminal exon (Fig. 1B, top). The sec-
ond, which we will refer to as “alternative last exons” or
“ALEs”, occurs when multiple APA sites are found
within different terminal exons (Fig. 1B, bottom). Regu-
lation of the choice between alternative tandem UTRs
can be viewed as a competition between a proximal up-
stream poly(A) site that is transcribed first with a distal
downstream site that is transcribed second. Similarly the
choice between ALE’s can be viewed as a competition
between recognition of a proximal 5′ splice site and a
distal poly(A) site [21]. It is not known whether the two
forms of APA are subject to common regulatory mecha-
nisms but in this regard it is interesting to note that
transcription speed has been reported to influence the
competition between alternative splice sites and tandem
poly(A) sites [22, 23].
The majority of published high-throughput RNA se-

quencing data has been produced using libraries in
which the entire transcript is represented. Although
these libraries are informative for the regulation of pro-
cesses like alternative splicing, they are not ideally suited
for the quantification of APA isoforms. Alternative li-
brary preparation strategies that specifically profile the
3′ ends of transcripts, including 3′ end sequencing and
3′ READS [24, 25], likely provide more accurate quanti-
fication of polyadenylation site usage. How well whole-
transcript RNAseq data compares in its ability to quan-
tify APA isoforms is generally unknown.

The study of APA using high-throughput RNA se-
quencing has been facilitated through a handful of soft-
ware packages aimed at quantifying changes in relative
APA site usage across conditions [26–29]. However,
quantifying APA from transcriptomic alignments can be
difficult. Due to their shared isoform structure, different
APA isoforms often contain a considerable amount of
sequence in common. If the APA isoform quantification
software relies on these transcriptomic alignments [27,
28], this can make assigning reads to a specific isoform
challenging. Newer transcriptome quantification tech-
niques that assign reads to transcripts by comparing
their sequence contents are better equipped to handle
this problem [26, 30, 31]..
To take advantage of this advance in isoform quantifi-

cation and apply it to the analysis of APA isoforms, we
developed LABRAT (Lightweight Alignment-Based
Reckoning of Alternative Three-prime ends). A particu-
lar advantage of our approach is that it permits rapid
analysis of large numbers of publically available RNA-
seq data sets including patient samples. Here, we applied
this approach to tens of thousands of RNAseq samples
to study processes and factors that regulate relative APA
isoform abundance as well as the consequences of APA
site choice on transcript fate.

Results
Quantification of alternative polyadenylation with
LABRAT
To quantify relative alternative polyadenylation site
usage from RNAseq data, LABRAT takes a genome an-
notation file and first searches the annotation for tags
that define transcripts with ill-defined 3′ ends in order
to filter and remove them from further analysis (Fig.
1A). Because annotations are isoform-based, they are
often rigid in their explicit connection of upstream alter-
native splicing events to downstream APA sites, even
though this connection may not be accurate. Therefore,
to exclude spurious contributions of upstream alterna-
tive splicing events to APA site quantification, we ex-
tracted the final two exons of every transcript and the
expression of these transcript “terminal fragments” was
quantified using Salmon [30].
For each gene, alternative polyadenylation sites are

then defined using terminal fragments. Terminal frag-
ments with 3′ ends within 25 nt of other 3′ ends are
grouped together to define a single polyadenylation site,
and the sites are ordered from most gene-proximal to
most gene-distal. Each APA site within a gene is
assigned a value, m, which is defined as its position
within this proximal-to-distal ordering, beginning with
0. Each gene is assigned a value, n, which is defined as
the number of distinct APA sites that it contains. The
expression (TPM) of every terminal fragment belonging
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Fig. 1 Quantifying changes in alternative polyadenylation with LABRAT. (A) LABRAT computational pipeline. (B) Explanation of ψ as a metric of
polyadenylation site choice. Genes that exclusively use upstream or gene-proximal sites have ψ values of 0 while those that exclusively use
downstream or gene-distal sites have ψ values of 1. The two transcript structures associated with alternative polyadenylation, tandem UTRs and
alternative last exons, are diagrammed. (C) Comparison of ψ values in mouse brain and liver RNA for genes whose ψ value was significantly
different between these tissues. (D) RNA coverage profiles of a gene with differential polyadenylation site usage in mouse brain and liver tissues.
Dots represent ψ values calculated in each of 8 replicates. (E) RNA coverage profile of a gene with differential polyadenylation site usage in
control PBMCs and those treated with poly dI:dC. RNA from these cells was profiled using 3′ end sequencing. Dots represent ψ values calculated
in each of 3 replicates. (F) Comparison of ψ values between RNA samples profiled using standard RNAseq libraries (purple) and 3′ end sequencing
libraries (orange). RNAseq samples were quantified by supplying ‘RNAseq’ as the ‘librarytype’ parameter for LABRAT while 3′ end sequencing
libraries were quantified by supplying ‘3pseq’ as the ‘librarytype’ parameter. (G) Benchmarking of LABRAT performance against other widely used
software package for quantification of alternative polyadenylation from RNAseq data
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to a given APA site is then summed to define the ex-
pression level of the APA site, and this process is re-
peated for every APA site within a gene. The expression
level of each APA site is then scaled according to the
following formula:

TPMscaled ¼ TPMunscaled
m
n−1

� �

To quantify a gene’s relative APA site usage, we de-
fined a term, ψ. Scaled and unscaled TPM values are
summed across all APA sites within a gene, and ψ is de-
fined as the ratio between these summed values:

ψ ¼
P

TPMscaledP
TPMunscaled

With this strategy, genes that show exclusive usage
of the most gene-proximal APA site will be assigned
a ψ value of 0, while those that show exclusive usage
of the most gene-distal APA site will be assigned a ψ
value of 1 (Fig. 1B). Usage of both sites will result in
a ψ value between 0 and 1 depending on the relative
usage of the sites. Importantly, this strategy also ap-
plies to genes with more than 2 APA sites. In these
cases, one ψ value is assigned to the entire gene with-
out the need to do multiple pairwise comparisons be-
tween APA sites.
After calculating ψ values for genes in all samples,

LABRAT compares ψ values of experimental replicates
across experimental conditions to identify genes with
statistically significantly different ψ values between con-
ditions. This is done using a mixed linear effects model
that tests the relationship between ψ values and experi-
mental condition. A null model is also created in which
the term denoting the experimental condition has been
removed. A likelihood ratio test compares the goodness
of fit of these two models to the observed data and as-
signs a p value for the probability that the real model is
a better fit than the null model. In simple comparisons
between two conditions, this approach mimics a t-test.
However, this technique has the advantage of being able
to easily incorporate covariates into significance testing.
After performing this test on all genes, the raw p values
are corrected for multiple hypothesis testing using a
Benjamini-Hochsberg correction [32].
In addition, LABRAT determines whether a gene’s

APA sites conform to either the tandem UTR or ALE
structures (Fig. 1B) and designates the gene accordingly.
For genes with more than 2 APA sites, it is possible to
contain both tandem UTR and ALE structures. These
genes are designated as having a “mixed” APA structure.

Identifying tissue-specific differences in APA isoform
abundance with LABRAT
To demonstrate the ability of LABRAT to identify and
quantify differences in APA isoform abundance, we ana-
lyzed RNAseq data from mouse brain and liver tissues
[33]. Because neuronal tissues are known to be highly
enriched for the use of distal APA sites [17], we rea-
soned that comparison of these two tissues might pro-
vide a positive control for LABRAT’s ability to identify
differential APA isoform abundance.
We found 470 genes that displayed differential relative

APA isoform abundance between the tissues (FDR <
0.05) (Fig. 1C). As expected, 68% of these genes showed
increased usage of distal APA sites in brain, indicating a
significant enrichment for the use of downstream APA
sites in this tissue (binomial p = 3.2e-15). To further ex-
plore changes in ψ value for specific genes, we plotted
read coverages over two genes that showed significantly
more downstream APA site usage in brain tissue:
Slc16a7 and Elavl1 (Fig. 1D, S1A). For both genes, we
observed significantly lower read coverages correspond-
ing to usage of the distal APA site in the liver samples
relative to the brain samples. Accordingly, LABRAT
assigned these genes to have low ψ values in the liver
samples, and high ψ values in the brain samples, indicat-
ing that LABRAT can accurately quantify APA.
To perform similar analyses in human samples, we ana-

lyzed over 5000 RNAseq samples from over 30 different
human tissues produced as part of the Genotype-Tissue Ex-
pression (GTEx) project [34]. We quantified APA isoform
abundance in these samples and observed relationships be-
tween tissue APA using PCA analysis (Figure S1B). In this
analysis, brain and testis samples were clear outliers. Inter-
estingly, performing the PCA analysis using only tandem
UTR (Figure S1C) or ALE (Figure S1D) genes produced
very similar results, suggesting that these two forms of APA
are broadly coregulated across many tissues.
To understand more about APA in human brain and

testis, we compared their APA profiles to those observed in
human liver samples. As expected, we observed that brain
samples exhibited a significant bias for the use of down-
stream APA sites (p < 2.2e-16) (Figure S1E). Conversely,
testis samples exhibited a similar bias for the use of up-
stream APA sites (p < 2.2e-16) (Figure S1F). The propen-
sity of testis to use upstream APA sites has been previously
observed [35–37] and is likely a key feature of spermato-
genesis [38]. Overall, these results demonstrate the ability
of LABRAT to recapitulate previously reported observa-
tions and gave us confidence in its results moving forward.

Quantifying APA isoform abundance with 3′ end
sequencing data using LABRAT
Although the plethora of available RNAseq datasets
make it possible to observe APA trends in a variety of
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contexts, RNAseq is not perfectly suited to APA quanti-
fication. Library preparations that enrich for reads near
cleavage and polyadenylation sites provide a more direct,
and potentially more accurate, quantification of APA
isoforms [24, 25].
To allow LABRAT to quantify APA isoforms in 3′

end sequencing data, we included the ‘librarytype’ par-
ameter. If this parameter is designated as ‘3pseq’,
LABRAT uses the counts of reads assigned to polyA
sites for quantification rather than the length-
normalized TPM metric. Because 3′ end data is pro-
duced using oligo-dT anchors, length normalization is
not necessary and if utilized would unfairly penalize
long transcripts.
To assess the accuracy of APA isoform quantification

with LABRAT from 3′ end data, we used a dataset in
which the authors prepared 3′ end libraries from RNA
isolated from human peripheral blood mononuclear cells
(PBMCs) with and without treatment with poly dI:dC
[39]. Salmon, the transcript quantification tool utilized
by LABRAT, has been shown to accurately quantify
transcript abundances using 3′ end data [39]. We calcu-
lated ψ values from this data using LABRAT (Fig. 1E,
S1G) and compared them to values produced by the
more classical approach of simply counting the aligned
reads associated with each APA site (see Methods). We
found that the ψ values produced by LABRAT were in
strong agreement with those produced by alignment-
dependent method (R ~ 0.92) (Figure S1H). It is import-
ant to note here that the deviation from perfect agree-
ment is possibly due to the greater ability of Salmon
(and therefore LABRAT) to accurately assign reads that
could be consistent with multiple polyadenylation sites.
An open question in the field of APA quantification

is the extent to which APA isoforms can be accur-
ately quantified using RNAseq as opposed to 3′ end
sequencing. To address this question, we took advan-
tage of the fact that in the PBMC study, the authors
prepared RNAseq and 3′ end sequencing libraries
from the same RNA samples [39]. We used LABRAT
to calculate ψ values from the RNAseq and 3′ end
data using ‘RNAseq’ and ‘3pseq’ librarytype parame-
ters, respectively. We found that ψ values from the
two library preparation methods were reasonably and
reproducibly correlated (R ~ 0.67) while ψ values from
samples produced using the same highly correlated
(R ~ 0.97) (Fig. 1F). RNAseq is therefore able to quan-
tify APA isoform abundance with generally acceptable
accuracy. Further, both methods accurately segregated
samples into treatment and control groups using ψ
values (Fig. 1F), giving confidence in the ability of
RNAseq libraries to accurately reflect APA status and
opening up tens of thousands of RNAseq datasets for
quantification.

Comparison of LABRAT to similar methods of APA
isoform quantification
To compare LABRAT with other APA analysis tools, we
generated a synthetic RNAseq dataset containing 50 mil-
lion reads in which 1250 genes displayed increased
distal APA site usage, 1250 genes displayed increased
proximal APA site usage, and 2500 genes displayed
no change in APA site usage [40]. We used the soft-
ware packages QAPA [26], DaPars [27], and Roar [28]
in addition to LABRAT to quantify APA isoforms in
these data.
QAPA, like LABRAT, uses lightweight alignments to

quantify APA. Reassuringly, we found that ψ values cal-
culated by LABRAT were highly correlated to the analo-
gous metric used by QAPA, PPAU (R = 0.81) (Figure
S1I). In comparing the four methods, LABRAT was the
best suited to accurately identify differential APA in the
simulated data (Fig. 1G). We further found that the ac-
curacy of LABRAT was not noticeably affected by read
depth down to one million reads (Figure S1J).

Alternative polyadenylation isoforms are differentially
localized in cell bodies and projections
Multiple studies have found that alternative polyadenyla-
tion decisions made during nuclear processing can influ-
ence the subcellular localization of the resulting transcript,
particularly in neuronal cells [41–43]. However, it has
been unclear how widespread this effect is and whether it
was driven primarily by tandem UTRs or ALEs. To ad-
dress this, we used LABRAT to analyze the relative APA
status of 26 paired transcriptomic datasets from cell body
and projection samples from neuronal cells, NIH 3 T3
cells, and MDA-MB231 cells [41, 42, 44–50].
For all samples, we identified genes whose ψ value was

significantly different between subcellular compartments
(FDR < 0.05), finding between 10 and 740 genes that fit
this criterion in each sample (Fig. 2A). Many of these
genes were shared across multiple samples (Figure
S2A). For these genes, we then compared their ψ values
across compartments by subtracting the ψ value in the
cell body from the ψ in the projection to define Δψ.
Genes with positive Δψ values therefore had their distal
APA isoform enriched in projections while those with
negative Δψ values had their proximal APA isoform
enriched in projections.
We found that for 19 of these 26 samples, over 50% of

significant genes had positive? Δψ values, indicating a
broad connection between the use of distal APA sites
and localization of the resulting transcript to cell projec-
tions (Fig. 2A), consistent with previous reports [41, 42].
Further, we observed a relationship between the amount
of time that the projection had been allowed to grow
and the fraction of genes with positive Δψ values. Of the
samples in which the projections had grown for 2 days
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Fig. 2 (See legend on next page.)
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or less, 15 out of 20 showed a significant bias for the as-
sociation of distal APA sites with projections. Con-
versely, of the samples in which the projections had
grown for 6 days or more, 0 out of 6 showed a signifi-
cant bias for the association of distal APA sites with pro-
jections. This suggests that distal APA transcripts may
play a role in early projection outgrowth but may be less
important in mature projections.
Given the conflicting reports about the relative contri-

butions of distal APA produced by tandem UTR and
ALEs to the transcriptomes of cell projections [41–43],
we analyzed these two classes of APA isoforms separ-
ately. Across the 26 subcellular comparisons, we found a
strong, significant correlation (R = 0.58, p = 0.0024) be-
tween the fraction of ALE genes with positive Δψ values
and the fraction of tandem UTR genes with positive Δψ
values (Fig. 2B). This indicates that both classes of genes
are preferentially contributing their distal APA isoforms
to projections and suggests that these two classes of al-
ternative poly(A) site selection may be regulated by a
common mechanism.

Alternative polyadenylation isoforms are differentially
localized in biochemically defined cytosolic and
membrane fractions
To further explore connections between APA and RNA
localization beyond cell projections, we used LABRAT to
analyze RNAseq data from a biochemical fractionation of
3 cell types, Drosophila DM-D17-C3 (D17) cells, human
HepG2 cells, and human K562 cells [51]. In these data,
cells were fractionated into nuclear, cytosolic, membrane-
associated and insoluble fractions. RNA was isolated from
each of these fractions and prepared for high-throughput
sequencing using either polyA-selection-based or riboso-
mal RNA-depletion-based library preparation. For each
fraction, two replicates of each library preparation method
were sequenced.

As with the projection data, we compared ψ values for
genes across cellular compartments. Hierarchical clus-
tering of samples based on ψ values revealed that sam-
ples from the same fraction generally clustered with
each other, indicating the high quality of the data (Fig-
ure S2B-D). To minimize the effect of library prepar-
ation on the identification of genes with significantly
different ψ values across compartments, we included the
library preparation method as a covariate in LABRAT’s
linear model. This allowed us to pool all of the samples
for a given compartment in order to identify genes with
significantly different ψ values between compartments
regardless of library preparation method.
We first identified genes with significantly different ψ

values across any pairwise comparison between cyto-
solic, membrane-associated, and insoluble fractions
(FDR < 0.05). Based on our observations relating distal
APA and RNA localization to projections, we then asked
if any of these fractions were associated with higher ψ
values than the other two. We visualized these compari-
sons using simplex plots (Fig. 2C). In these plots, each
dot represents a gene, and its position is determined by
the relative ψ values in each fraction. A gene with a ψ
value of 1 in a fraction and ψ values of 0 in the other
two would be placed at that fraction’s vertex while a
gene with equal ψ values in all 3 fractions would be
placed equidistant from each vertex at the intersection
of the dotted lines. We found that genes tended to have
higher ψ values in the membrane fraction (Fig. 2C, S2E,
F), indicating a preferential association of downstream
APA isoforms with that fraction.
Because of the apparent bias toward distal APA site

use among membrane-associated transcripts, we next fo-
cused on comparing the cytosolic and membrane frac-
tions. When comparing the cytosolic and membrane
fractions of HepG2 cells, we identified 552 genes that
had significantly different ψ values between the fractions
(FDR < 0.01). Of these, 492 (89%) had a ψ value that was

(See figure on previous page.)
Fig. 2 Alternative polyadenylation is associated with RNA localization in a variety of cell types. (A) Comparison of ψ values for RNA isolated from cell
projections and cell bodies. ψ values for all genes were calculated using RNA collected from cell projection and cell body compartments, and genes
with significantly different ψ values across compartments were identified (FDR < 0.05). Δψ values (cell projection - cell body) for these genes are
indicated by boxplots. P values in blue represent binomial p values for deviations from the expected 50% chance for a gene to have a positive Δψ
value. Samples were also separated according to the amount of time that projections were allowed to grow before their RNA content was analyzed.
This is represented by the long (at least 6 days) and short (2 days or less) categories colored in red. (B) As in A, ψ values for all genes were calculated
using RNA collected from cell projection and cell body compartments, and genes with significantly different ψ values across compartments were
identified (FDR < 0.05). The fraction of significant tandem UTR and ALE genes with positive Δψ values were plotted on the x and y axes, respectively.
(C) Simplex plot indicating ψ values calculated from RNA isolated from biochemically defined cytosolic, membrane-associated, and insoluble fractions
of HepG2 cells. Genes with equal ψ values in all three fractions are represented by dots equidistant from each vertex (at the intersection of the dotted
lines). Genes that displayed higher ψ values in a given fraction than the others are represented by dots placed closer to that fraction’s vertex. Red lines
indicate the density of dots. (D) Comparison of ψ values in HepG2 cytosolic and membrane fractions for genes whose ψ value was significantly
different between these compartments (FDR < 0.01). (E) Correlation of Δψ values (membrane - cytosol) for all genes expressed in both HepG2 and
K562 cells. (F) Fraction of genes with nonsignificant Δψ values (membrane vs. cytosol, gray) and those with significant Δψ values (red) that encode
peptides that have ER signal sequences as defined by SignalP. Distributions of this fraction were created through bootstrapping in which 40% of the
genes were sampled 100 times. P values were calculated using a Wilcoxon rank sum test
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higher in the membrane fraction than the cytosolic frac-
tion, indicating a broad association between transcripts
produced using distal APA sites and the membrane frac-
tion (Fig. 2D). We observed highly similar results when
comparing the cytosolic and membrane fractions from
K562 cells and D17 cells (Figure S2G, H).
We then queried whether the same genes had dif-

ferential APA isoform associations with the cytosolic
and membrane fractions in the HepG2 and K562
samples. To test this, we calculated Δψvalues (mem-
brane - cytosol) for all genes expressed in both cell
lines. We observed a strong correlation (R = 0.73) be-
tween Δψ values in the two cell lines (Fig. 2E), sug-
gesting that the effects of APA on transcript
membrane association are shared between cell lines
and are therefore likely transcript-specific with a con-
served mechanistic basis.
The ER comprises a large fraction of cellular mem-

branes, and RNA localization to the ER is important for
cotranslational access to the secretory pathway. We
therefore asked whether transcripts with significant
membrane vs. cytosol Δψ values were more or less likely
than expected to encode the peptide-based signal se-
quences required for RNA transport to the ER through
cotranslational targeting. We identified ER signal se-
quences using SignalP [52]. Interestingly, we found that
in both the HepG2 and K562 samples, genes that had
significant membrane vs. cytosol Δψ values were signifi-
cantly less likely to contain an ER signal sequence than
other genes (Fig. 2F). This observation therefore suggests
two alternative modes of RNA localization to the ER:
one for transcripts that encode signal peptides and an-
other for those that do not. Specifically, mRNAs that are
not cotranslationally targeted by signal peptide recogni-
tion appear to be targeted by a mechanism involving dis-
tal APA use.

The transcription speed of RNA polymerase II regulates
alternative polyadenylation site choice
The speed of transcription by RNA Polymerase II (Pol
II) regulates multiple co-transcriptional processes, in-
cluding alternative splicing, and termination that is
coupled to poly(A) site cleavage [23, 53–56]. To assess
how changes in Pol II speed can affect APA, we used
LABRAT to analyze RNAseq samples from HEK293
cells that expressed either wildtype or slow Pol II [55].
The slow Pol II mutant used in these studies is a single
amino acid substitution in the funnel domain of the Pol
II large subunit Rpb1 (R749H).
During transcription, a gene-proximal APA site is

necessarily transcribed before a gene-distal APA site.
There exists a time, therefore, during which the prox-
imal site is the only APA site that exists on the tran-
script. Reducing the speed of Pol II transcription

would increase this time in which the proximal site is
free from competition with the distal site. We hy-
pothesized that this would lead to an increase in
usage of the proximal APA site (Fig. 3A). Indeed, we
found that for many genes, proximal APA site usage
was increased in slow Pol II samples (Fig. 3B), and
that overall there was a shift towards increased usage
of the proximal site (Fig. 3C).
If the shift in APA was related to the amount of time

during which the proximal site was exclusive, then the
shift should be most pronounced in genes in which the
distance between proximal and distal sites is large. Con-
sistent with this hypothesis, we found that this “inter-
polyA distance” for genes that displayed increased prox-
imal APA was significantly longer than expected (Fig.
3D), further suggesting that changes in Pol II kinetics
can predictably alter APA.
We found no correlation between a gene’s inter-polyA

distance and its ψ value from the wildtype Pol II sample
alone (R = 0.01). However, in this analysis across genes,
other factors that influence APA (e.g. the relative
strengths of upstream and downstream polyadenylation
sites) can dominate. Comparing within genes but across
conditions, as done above using Δψ, alleviates this
concern.
If alternative polyadenylation of tandem UTRs and

ALEs were generally coregulated, then it would be ex-
pected that changes in Pol II speed would affect both
classes of genes. To test this, we examined the increase
in proximal APA site usage caused by slow transcription
in the context of tandem UTR and ALE genes separately.
We found that proximal APA usage was increased for
both tandem UTR and ALE genes (Fig. 3E, F), indicating
that the two classes of genes are similarly affected by
changes in Pol II speed and consistent with the idea that
they are coregulated by a common mechanism.

Dozens of RNA-binding proteins (RBPs) regulate relative
APA isoform abundance across many genes
To investigate the contributions that individual RBPs
can have to the regulation of APA isoform abun-
dance, we analyzed the ENCODE RBP knockdown
RNAseq datasets with LABRAT [57, 58]. This re-
source contains 523 shRNA-mediated RBP knock-
down RNAseq experiments spread across human
HepG2 and K562 cell lines. We compared ψ values
for all expressed genes between RBP knockdown and
control knockdown samples for 191 RBPs that were
expressed in both cell lines. To identify genes that
had significantly different ψ values (FDR < 0.05) be-
tween RBP knockdown and control knockdown sam-
ples, we incorporated the cell line of the experiment
as a covariate in LABRAT’s linear model.
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We began by assessing the reproducibility of changes
in APA isoform abundance upon RBP knockdown be-
tween the two cell lines. To do this, we correlated Δψ
values (control knockdown - RBP knockdown) for all
expressed genes in a given RBP knockdown in HepG2
cells with their Δψ values upon knockdown of the same
RBP in K562 cells. We therefore end up with one correl-
ation coefficient per RBP knockdown. As a control, we
compared these values to correlations of Δψ values

where the RBP that was knocked down was different be-
tween the cell lines (Fig. 4A). Reassuringly, we found
that correlations between experiments in which the ex-
pression of the same RBP was knockdown were signifi-
cantly higher than those in which the expression
different RBPs were knocked down (p = 1.5e-19, Wil-
coxon ranksum test). When we restricted the compari-
son to genes that had significantly different ψ values
between RBP and control knockdowns (FDR < 0.05), we

Fig. 3 The speed of RNA polymerase II influences APA. (A) Model for how polymerase speed can affect alternative polyadenylation. During the time between
transcription of proximal and distal polyadenylation sites, the proximal site can be recognized and used but the proximal site cannot. Increasing this time of
proximal site exclusivity by decreasing the speed of RNA polymerase may increase the likelihood of the proximal site being used. (B) Read coverage and ψ
values for the gene PAFAH1B1 in cells expressing wildtype (orange) and slow (purple) RNA polymerase II. (C) Comparison of ψ values in cells expressing
wildtype and slow RNA polymerase II for genes whose ψ value was significantly different between these samples (FDR< 0.05). (D) Distance between alternative
polyadenylation sites for genes that displayed increased upstream APA (orange), increased downstream APA (purple), or whose APA did not change (gray) in
cells expressing a slow RNA polymerase II compared to cells expressing wildtype RNA polymerase II. (E-F) As in D, comparison of ψ values in cells expressing
wildtype and slow RNA polymerase II for tandem UTR (E) and ALE (F) genes whose ψ value was significantly different between these samples (FDR< 0.05)
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observed a much higher correlation of Δψ values be-
tween cell lines (Fig. 4A). These results gave us confi-
dence that we could accurately quantify APA isoform
abundance in the ENCODE datasets.
For each RBP knockdown experiment, we then took

the genes with significantly different ψ values between
RBP and control knockdowns and analyzed the distribu-
tion of their Δψ values (control knockdown - RBP
knockdown) (Fig. 4B, Table S1, S2). We observed that
many RBP had distributions of Δψ values that were
skewed towards being mostly positive or mostly nega-
tive. We defined a term, α, as the fraction of these
genes with positive Δψ values. RBPs with α values
greater than 0.5 therefore were broadly associated
with increased distal APA isoform abundance while
those with α values less than 0.5 were associated with
increased proximal APA isoform abundance. 94 RBPs
had α values that were significantly skewed from the
expected value of 0.5 (binomial p < 0.01), and of these
52 had α values of greater than 0.5 while 42 had α
values less than 0.5 (Fig. 4C).
The effects of specific RBPs on APA isoform abun-

dance have been reported for a handful of RBPs. CPSF6
has been found to promote distal APA isoforms [11, 13],
and LABRAT analysis of the ENCODE RBP knockdown
data agreed with this finding (α = 0.86, p = 5e-20). Fip1
has been found to promote proximal APA isoforms [11].
While Fip1 was not present in the ENCODE data, a re-
lated protein, Fip1l1 was present, and LABRAT analysis
also found that it promotes proximal APA isoforms (α =
0.39, p = 0.007). Similarly, CSTF2 has been noted to pro-
mote proximal APA isoforms [27]. While CSTF2 was
not present in the ENCODE data, its related protein
CSTF2T was, and LABRAT analysis also found that it
promotes proximal isoforms (α = 0.31, p = 0.0001).
These LABRAT analyses reflecting prior literature on
specific RBPs gave us increased confidence in the ability

of LABRAT to probe RBP-specific effects on APA iso-
form abundance.
For each RBP knockdown experiment we then calcu-

lated α values for tandem UTR and ALE genes separ-
ately. α values for these two APA types were highly
correlated (R = 0.62), further indicating that these two
mechanisms of APA regulation are not independent and
share elements in common (Fig. 4D, Figure S3A).
If changes in APA isoform abundance upon RNAi

were directly due to loss of the RBP, then we would ex-
pect that the RBP would directly bind the 3′ UTRs of
the genes whose APA isoform abundance it regulates.
To test this, we analyzed RBP/RNA interactions as mea-
sured by the eCLIP experiments performed as part of
the ENCODE project [59]. We observed that some RBPs
displayed highly promiscuous 3′ UTR binding while
others bound very few 3′ UTRs (Figures S3B, C).
In HepG2 cells, 84 RBPs had both RNAseq data from

RNAi experiments and eCLIP data. For each RBP, we
calculated how many of the genes with significant
changes in ψ value upon RBP knockdown also contained
an eCLIP peak for that RBP in their 3′ UTR. We then
calculated whether this overlap of RBP binding and
function was statistically significant (binomial p < 0.05).
For 21 of these RBPs, we observed a significant overlap
between the RBPs functional APA isoform regulatory
targets and the 3′ UTRs it bound (Fig. 4E). To assess
whether this was more or less than the number of ex-
pected significant RBPs, we shuffled the relationships be-
tween RBPs and their lists of APA targets and bound 3′
UTRs and again calculated the number of RBPs that
showed significant overlap between APA and eCLIP
data. Repeating this process 1000 times gave us a null
distribution of the expected number of RBPs with sig-
nificant overlaps and indicated that the observed
number of overlaps was significant in HepG2 cells (p =
0.006).

(See figure on previous page.)
Fig. 4 Many RBPs promote proximal or distal APA isoform abundance in hundreds of genes. (A) Correlation of all ψ values across HepG2 and K562 cell lines for
all ENCODE RBP-knockdown RNAseq experiments. In gray, correlation coefficients for comparisons of different RBP knockdowns are shown (e.g. RBP X in HepG2
vs. RBP Y in K562). In yellow, correlation coefficients for comparisons of the same RBP knockdown are shown (e.g. RBP X in HepG2 vs RBP X in K562). In red, this
comparison is restricted to only those genes whose ψ value significantly differed between the RBP knockdown and control knockdown samples (e.g. RBP X in
HepG2 vs RBP X in K562, significant Δψ genes only). In identification of these significant genes, the cell line was included as a covariate. (B) Comparison of ψ
values in RBP knockdown and control samples for genes whose ψ value was significantly different between these samples (FDR<0.05). The number of genes
with significant Δψ values in each comparison is indicated by the bar graph. A term, α, was defined as the fraction of these genes that displayed higher ψ values
in the high RBP state (control knockdown) versus the low RBP state (RBP knockdown). (C) For each RBP knockdown, the number of genes with significant Δψ
values (FDR<0.05) is indicated on the y axis while the fraction of these genes with positive Δψ values (control knockdown - RBP knockdown) is indicated on the
x axis. Knockdowns whose fraction of genes with positive Δψ values significantly differs from the expected 50% are indicated with red circles. (D) α values for
each RBP knockdown in HepG2 cells were calculated using tandem UTR and ALE genes independently. These were then plotted and correlated. Each dot in this
plot represents one RBP knockdown experiment. (E) Among 84 RBPs expressed in HepG2 cells, overlaps between the genes whose APA was sensitive to RBP
knockdown and the genes whose 3′ UTRs were bound by the RBP in eCLIP experiments were calculated. The significance of this overlap was calculated using a
binomial test. 21 RBPs bound the 3′ UTRs of their APA targets more often than expected (binomial p<0.05). To assess whether this was more than the expected
number of significant RBPs, relationships between RBPs and their lists of APA and eCLIP targets were shuffled 1000 times, and the analysis was repeated after
each shuffle to create a null distribution (pink)
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Although we did not observe a similar significant relation-
ship between APA and eCLIP data in K562 cells (p= 0.4)
(Figure S3D), overall, these results indicate that many of the

RBPs tested are modulating relative APA isoform abundance
through direct interactions. We then repeated the analysis,
but looked for eCLIP peak overlaps throughout the gene

Fig. 5 Misregulation of alternative polyadenylation in primary tumors. (A) Comparison of ψ values in matched patient tumor and control samples for genes
whose ψ value was significantly different between these samples (FDR<0.05). The number of genes with significant Δψ values in each comparison is indicated
by the bar graph. (B) As in A, ψ values for all genes were calculated in matched patient tumor and normal tissue samples, and genes with significantly different ψ
values across samples within a cancer type were identified (FDR<0.05). The fraction of significant tandem UTR and ALE genes with positive Δψ values were
plotted on the x and y axes, respectively. Each dot represents one patient sample pair. (C) Genes with significantly different ψ values across samples within a
cancer type (FDR<0.05) are colored according to their Δψ value (tumor - control). Columns represent matched patient samples while rows represent genes. Black
ticks (right) represent whether or not the gene displayed a significantly different ψ value (FDR<0.05) between biochemically defined cytosolic and membrane-
associated fractions in HepG2 and K562 cells (Fig. 2D). Genes were further separated into classes of those with increased ψ values in KIRC and THCA
tumor samples (red ticks, right) and those with decreased ψ values in BRCA, LUAD and LUSC tumor samples (blue ticks, right). (D-E) Survival
analysis for APA misregulation in head and neck squamous cell carcinoma and kidney renal clear cell carcinoma, respectively. Patients were
grouped into extreme quartiles by ranked median ψ values for misregulated genes as defined in Fig. 5A for the respective tumors. In Fig. 5A,
HNSC tumors were associated with decreased ψ values. Here, lower ψ values are associated with poor prognosis. Conversely, in Fig. 5A KIRC
tumors were associated with increased ψ values, and here, increased ψ values are associated with poor prognosis
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bodies of APA targets (Figure S3E,F). In this analysis, we
did not observe that RBPs were preferentially bound to their
APA isoform regulatory targets. Taken together with the re-
sults of the 3′ UTR-centric analysis, these results indicate
that RBPs that regulate relative APA isoform abundance
likely do so through binding the 3′ UTRs of their targets.

Misregulation of alternative polyadenylation is cancer
type specific and correlates with patient survival
Changes APA have long been known to be associated
with cancer [60, 61]. Most often, APA is thought to con-
tribute to cancer phenotypes through a general increased
usage of proximal APA sites, which are thought to be as-
sociated with increased expression of oncogenes and
proliferation of cell lines [18, 20]. To further explore this
phenomenon, we used LABRAT and data from The
Cancer Genome Atlas (TCGA) [62] to examine changes
in APA isoform abundance between matched tumor and
normal samples from 671 patients across 21 different
cancers.
For each cancer, we identified between 130 and 3043

genes that displayed significant differences in ψ values
(FDR < 0.05) between tumor and normal samples. We
then defined Δψ values (tumor - normal) to ask whether
proximal or distal sites showed increased usage in tumor
samples. For some cancers, including Lung Squamous
Cell Carcinoma (LUSC), Urothelial Bladder Carcinoma
(BLCA) and Lung Adenocarcinoma (LUAD), tumors
displayed the expected pattern of increased proximal
APA in tumors (Fig. 5A). Conversely, Thyroid Cancer
(THCA) and Kidney Renal Clear Cell Carcinoma (KIRC)
showed strong biases in the opposite direction with in-
creased distal APA in tumors. Mechanisms that drive
APA dysregulation are therefore likely specific to differ-
ent cancer types, and it is not true that increased prox-
imal APA is a general feature of cancer cells.
We then compared ψ values in the TCGA data for

tandem UTR genes and ALE genes separately. For each
pair of tumor and normal samples, we calculated the
fraction of genes with significantly different ψ values
across conditions (FDR < 0.05) in which the ψ value was
greater in the tumor sample than the normal sample.
Put another way, for each patient, we calculated the
fraction of significant tandem UTR and ALE genes with
positive Δψ (tumor - normal) values (Fig. 5B). The tan-
dem UTR- and ALE-derived fractions were strongly cor-
related with each other (R = 0.74), again suggesting that
these two modes of APA may be coregulated.
We wondered if APA was misregulated in the same

genes across many different cancer types or whether the
set of genes with misregulated APA was cancer type spe-
cific. Although many APA misregulated genes were spe-
cific to certain cancers, we did observe that hundreds of
genes repeatedly showed misregulation across multiple

cancers (Fig. 5C). We defined a set of genes that repeat-
edly showed increased proximal APA usage in BLCA,
LUAD, and LUSC tumors. Using gene ontology analysis,
we found that these genes were significantly enriched for
those encoding single-stranded RNA binding proteins
[63]. Similarly, we defined a set of genes that repeatedly
showed increased distal APA usage in THCA and KIRC.
These genes were enriched for being involved in pro-
grammed cell death and responses to stress.
We enquired whether transcripts we identified whose

APA status correlates with membrane association (Fig.
2C, D) are among those subject to misregulation in tu-
mors. Many of these membrane-associated mRNAs
showed significantly different ψ values between tumor
and normal samples, suggesting that the subcellular
localization of these transcripts may be altered in can-
cerous cells.
To determine if the degree of APA misregulation was

related to patient prognosis, we performed survival ana-
lyses for patients from the TCGA dataset. In Fig. 5A, we
defined genes with tumor-specific APA misregulation by
comparing ψ values in tumor and matched normal
patient samples. For each tumor, we then calculated a
median ψ value across these genes in thousands of
tumor RNAseq samples. Using this median ψ of misre-
gulated genes, we ranked patients and separated them
into quartiles. The extreme quartiles (patients with the
highest and lowest ψ values for misregulated genes) for
each cancer were compared. We found that for head
and neck squamous cell carcinoma (HNSC), a cancer
that typically exhibits increased proximal APA, patients
with lower ψ values in misregulated genes had poorer
prognoses (p = 0.0069) compared to patients with higher
ψ values for the same genes (Fig. 5D). Conversely, for
kidney renal clear cell carcinoma (KIRC), a cancer that
typically exhibits increased distal APA, we found the op-
posite. Patients with lower ψ values in misregulated
genes had better outcomes compared to patients with
higher ψ values (p < 0.0001) (Fig. 5E). Therefore, the dir-
ection of APA misregulation is cancer-specific, and both
increased proximal and distal APA are associated with
poor patient prognosis, depending on the cancer type.

Usage of distal APA sites is broadly but weakly associated
with decreased RNA expression
Some of the original studies on the relationship between
APA and RNA expression reported that distal APA is as-
sociated with a decrease in RNA levels [20] while more
recent genome-wide studies have reported that the rela-
tionship is less clear [64, 65]. To comprehensively exam-
ine the relationship between APA and gene expression,
we compared changes in ψ and changes in RNA levels
across the 191 ENCODE RBP knockdown sample pairs
and the 671 TCGA tumor/normal sample pairs. To do
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Fig. 6 (See legend on next page.)

Goering et al. BMC Genomics          (2021) 22:476 Page 14 of 27



so, we defined a term, rho (ρ), as the correlation between
changes in ψ and changes in gene expression across two
samples (Fig. 6A). Sample comparisons where Δψ and
gene expression changes are positively correlated indi-
cate that distal APA and increased RNA levels were
associated, and these comparisons will have positive ρ
values. Conversely, sample comparisons where Δψ and
gene expression changes are negatively correlated indi-
cate that distal APA and decreased RNA levels were as-
sociated, and these comparisons will have negative
values.
We calculated ρ values across all genes for each RBP

knockdown in the ENCODE data. In both the HepG2
and K562 samples, these ρ values overwhelmingly
tended to be negative, but weakly so (Fig. 6B). We simi-
larly calculated ρ values across all genes for every
patient-derived tumor/normal pair in the TCGA data
(Fig. 6C). Again, these ρ values were consistently but
weakly negative. These results indicate that although dis-
tal APA is generally associated with decreased gene ex-
pression, its contribution to changes in RNA levels is
modest when comparing all genes in aggregate.
It could be the case, though, that for specific genes,

APA and gene expression may be more strongly linked.
To explore this, we calculated ρ values for each gene in-
dividually across all of the ENCODE and TCGA sample
pairs (Fig. 6D, E). The median genes again had weakly
negative values (− 0.12 in the ENCODE data, − 0.20
in the TCGA data). ENCODE- and TCGA-derived ρ
values for genes were correlated with each other (Fig.

6F, Table S3). Tandem UTR genes and ALE genes dis-
played similar distributions of ρ values, indicating that
relationships between gene expression and APA are of
approximately equal strength in these two APA classes
(Figure S4A-D). Relaxing the transcript expression
threshold used by LABRAT from 5 TPM to 1 TPM had
a minimal effect on these results as the median ρ value
remained negative (− 0.10 in the ENCODE data, − 0.14
in the TCGA data).
The tails of the ρ value distributions were long, indi-

cating that there were genes whose changes in ψ value
and changes in expression were highly correlated across
conditions. We selected three of these, RPLP1, NOLC1,
and UBE2G1, for further analysis. Given that each of
these genes had strong negative ρ values in both the EN-
CODE and TCGA data (Fig. 6G), we reasoned that there
may be elements in their distal UTRs downstream of the
proximal APA site that confer reduced steady-state RNA
levels. To test this experimentally, we fused the proximal
and distal UTRs of each of these genes to the coding
region of Firefly luciferase. Each construct was then site-
specifically incorporated into the genome of HeLa cells
through Cre-mediated recombination [66]. The Firefly
luciferase transcripts were coexpressed from a bidirec-
tional tet-On promoter with unmodified Renilla lucifer-
ase. The RNA level of each Firefly-UTR fusion was
measured using Taqman qRT-PCR with the Renilla lu-
ciferase transcript as a normalizing control. For all three
tested genes, fusion of the distal UTR to Firefly lucifer-
ase significantly reduced the steady-state level of the

(See figure on previous page.)
Fig. 6 Comprehensive analyses of connections between alternative polyadenylation and transcript expression. (A) Diagram of correlation between APA and
transcript expression. Rho (ρ) is defined as the correlation between changes in gene expression and changes in ψ value across two conditions. In the scenario
described in the top row, the overall RNA expression level for the gene is high in sample A but low in sample B while the gene’s ψ value is low in sample A
and high in sample B. Changes in gene expression and Δψ are therefore negatively correlated, giving ρ a negative value. Conversely, in the scenario described
in the bottom row, changes in gene expression and ψ are positively correlated. (B) P values across all expressed genes within a comparison for the ENCODE
RBP knockdown data. Each dot represents a single comparison (RBP knockdown vs control knockdown). P values for the correlation between gene expression
and APA are indicated by dot shape and color. (C) P values across all expressed genes with a comparison for the TCGA paired tumor/control sample data. Each
dot represents a single patient’s tumor and control samples. P values for the correlation between gene expression and APA are indicated by dot shape and
color. (D) Gene-level ρ values across all ENCODE RBP knockdown experiments. (E) Gene-level ρ values across all TCGA tumor/control sample pairs. (F)
Correlation of gene-level ρ values derived from the ENCODE and TCGA datasets (D and E). Red lines indicate the density of points, and the locations of three
genes selected for further study are indicated by labels. (G) Correlation between gene expression changes and Δψ for three genes. Orange dots represent
ENCODE sample pairs (RBP knockdown vs. control knockdown) while purple dots represent TCGA sample pairs (tumor vs. control samples). (H) Top: illustration
of the UTR fragments fused to the Firefly luciferase gene. Bottom: RT-qPCR-derived relative levels of firefly luciferase mRNA expression when the proximal and
distal UTR fragments of the indicated genes were fused. Values indicate ratios between the abundances of Firefly and Renilla luciferase mRNAs with this ratio in
the proximal UTR comparison set to 1. P values were calculated using a Wilcoxon ranksum test. (I) Correlation between gene expression changes and Δψ was
used to define positively correlated, negatively correlated and control genes with two APA isoforms. Correlations are calculated for ENCODE and TCGA
separately. (J) Distal UTR lengths of each gene set. P values were calculated using a Wilcoxon ranksum test. (K) Distal UTR GC content of each gene set. P values
were calculated using a Wilcoxon ranksum test. (L) Five-mer enrichments in the distal 3′ UTRs of positively and negatively correlated gene sets vs control. Five-
mers are significantly enriched (BH-adjusted p< 0.05, Fisher’s exact test) in either both comparisons, one comparison or neither and are represented by a circle
plus, open circle or closed dot respectively. Five-mers are colored by their AU content as ranked 0–5. Canonical AU rich element (ARE) “AUUUA” is highlighted
as enriched in negatively correlated distal UTRs. (M) RBP motif enrichments in the distal 3′ UTRs of positively and negatively correlated gene sets vs control. RBP
motifs are significantly enriched (BH-adjusted p< 0.05, Fisher’s exact test) in either both comparisons, one comparison or neither and are represented by a
green circle plus, blue open circle or purple dot respectively. Canonical ARE binding protein motifs are highlighted as enriched in negatively correlated distal
UTRs. (N) Distal UTR AREScores of each gene set as calculated by AREScore software. P values were calculated using a Wilcoxon ranksum test
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RNA relative to a fusion with the proximal UTR, indi-
cating that sequence elements downstream of the prox-
imal APA sites likely have a role in reducing RNA
expression (Fig. 6H). We conclude that by comparing
changes in gene expression and APA, we can identify
functional elements within 3′ UTRs that regulate mRNA
abundance.

Features enriched in UTRs associated with gene
expression changes
To better understand sequence elements downstream of
proximal APA sites that may reduce RNA expression, we
used the ρ values calculated for individual genes using EN-
CODE and TCGA sample sets to assign genes to posi-
tively correlated, negatively correlated or not correlated
(control) gene sets (Fig. 6I, Figure S4E). These gene sets
behave differently: positively correlated genes are more
highly expressed when downstream PAS are used (in-
creased ψ) while negatively correlated genes become less
expressed as they utilize more downstream PAS.
This analysis was simplified by only considering genes

with two APA isoforms such that RNA expression could
be explained by proximal or distal UTR usage. The ana-
lyzed UTR sequences were unique, meaning that tandem
UTRs were separated into proximal and distal UTRs
such that distal UTRs lacked their shared 5′ sequence
(Fig. 6H). This allowed us to identify sequence charac-
teristics of distal UTRs that explain the differences in
RNA expression of the positively correlated and nega-
tively correlated gene sets.
Negatively correlated genes were found to have longer dis-

tal UTRs with lower GC content than expected (Fig. 6J, K).
This increased 3′ UTR length may make these isoforms
more susceptible to NMD, partially explaining their de-
creased expression [67, 68]. Additionally, negatively corre-
lated genes were generally enriched for AU rich five-mers
including the canonical AU rich element (ARE) “AUUUA”
(Fig. 6L, Figure S4F). Conversely the distal UTRs of posi-
tively correlated genes were depleted for AU-rich five-mers
(Figure S4G). Unsurprisingly given their AU-richness, nega-
tively correlated genes were enriched for ARE binding pro-
tein motifs in their distal UTRs and contained more AREs as
scored by AREScore [69] (Fig. 6M, N). AREs are destabilizing
RNA elements bound by several ARE binding proteins that
facilitate RNA degradation. The presence of AREs in distal
UTRs of negatively correlated genes is consistent with lower
RNA expression when downstream PAS are utilized. It is im-
portant to note that the distal UTRs of positively correlated
genes are depleted for AREs consistent with their higher ex-
pression. These results suggest that APA can regulate gene
expression through the inclusion of destabilizing AREs in a
transcript’s 3′ UTR. Further, given how these results mirror
previously observed effects of 3′ UTR AREs [18, 70, 71], they
lend further confidence to the ability of LABRAT to

accurately quantify relative APA isoform abundance and de-
rive insights regarding its regulation.

Regulatory effects of RBPs on APA isoform abundance
inferred from ENCODE data can be observed in TCGA
data
The relation between RBP expression and the wide-
spread misregulation of APA in cancer cells is poorly
understood. We investigated this problem by examining
expression in patient samples of the 191 RBPs that po-
tentially influence APA isoform abundance revealed by
our analysis of ENCODE knockdown RNAseq results
(Fig. 4B, C). Based on the ENCODE RBP knockdown
data, we defined α values for RBPs where values of
greater than 0.5 indicated an RBP that promoted distal
APA isoform abundance while values of less than 0.5 in-
dicated an RBP that promoted proximal APA isoform
abundance. To compare α values to RBP effects on APA
isoform abundance observed in the TCGA data, we de-
fined another term, β, as the correlation between the
change in RNA expression of an RBP between tumor
and matched normal TCGA samples and the median Δψ
of genes with significantly different APA between the
samples (FDR < 0.05) (Fig. 7A). RBPs with positive β
values are therefore associated with increased distal APA
isoform abundance in patient samples while those with
negative β values are associated with increased proximal
APA isoform abundance.
If ENCODE-derived effects of RBPs on APA isoform

abundance were recapitulated in the TCGA data, we
would expect to see a positive correlation between the α
and β values for RBPs. We restricted this comparison to
the 94 RBPs that had α values significantly different from
the expected value of 0.5 (p < 0.01, binomial test). For
these RBPs, α and β values were positively correlated (R =
0.23, p = 0.03). RBPs with α values greater than 0.5 had
significantly higher β values than those with α values less
than 0.5 (Fig. 7B). Further, when we correlated α and β
values across all RBPs for all sample pairs within a cancer
type, we observed positive correlations in all 12 cancers
tested (Fig. 7C). These results further suggest that dozens
of RBPs have the ability to regulate relative APA isoform
abundance of many genes in a coordinated, directional
manner and that the misregulation of APA seen in many
cancers may be due to altered expression of specific RBPs.

Discussion
Alternative polyadenylation is a key step in control of
mRNA function, and its misregulation can have large
effects on cellular and even organismal phenotype in-
cluding major effects on the transcriptome of diseased
cells including tumors [9, 20, 72–76]. Advances in RNA
sequencing and methods of profiling APA from high-
throughput data have illuminated the prevalence of APA
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and its regulation across many cell types and physio-
logical conditions [26, 27]. Still, the broad effects of APA
on mRNA metabolism, especially beyond changes in
mRNA abundance, are not very well understood.
Further, the contribution of individual RBPs to the regu-
lation of this process is similarly poorly defined.
To address these challenges, we developed software to

accurately quantify alternative polyadenylation and

changes in its regulation across conditions from stand-
ard RNAseq data. LABRAT builds upon advances in
transcriptome quantification using lightweight align-
ments [30] to determine the relative usage of APA sites
within genes. This strategy of using fast, accurate,
isoform-level quantification has previously been success-
fully used to study differential isoform regulation [26,
77]. Here, we have used LABRAT to explore the

Fig. 7 APA is regulated by RBP expression in ENCODE and TCGA data. (A) Diagram depicting connections between changes in RBP expression between
condition and widespread, global in changes in ψ. Left: In Fig. 4, RBPs were assigned a value, α, based on the effect that their knockdown had on the Δψ values
for all genes. α was defined as the fraction of genes that displayed increased ψ values in control knockdown samples compared to RBP knockdown samples.
The expression of RBPs with high α values was therefore associated with increased ψ values transcriptome-wide (top) while expression of RBPs with low α
values was correlated with decreased ψ values transcriptome-wide (bottom). Similar RBP effects were calculated in TCGA data (right) by comparing the change
in RBP expression between two matched samples with transcriptome-wide changes in values. A value, β, was defined as the correlation between changes in
RBP expression and the median Δψ across all genes with significant Δψ values (FDR< 0.05). α and β are therefore comparable in relating RBP expression and
transcriptome wide changes in with the former designed for ENCODE RBP knockdown data and the latter designed for TCGA paired sample data. (B) β values
for RBPs with low α values (α <0.5, blue) and high α values (a > 0.5, red). Here, an RBP’s β value considers the correlation between its expression and global ψ
across all TCGA sample pairs. The p value was calculated using a Wilcoxon ranksum test. (C) Correlation between α and β values across all RBPs for all TCGA
sample pairs, separated by cancer type. The p value was calculated using a binomial test for deviation from the expected 0.5 probability that a cancer’s
correlation between α and β would be positive
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regulation and consequences of APA in a variety of con-
texts using thousands of data sets.
Previous APA quantification software packages, not-

ably DaPars [27], use explicitly mapped read alignments,
which may have difficulty in being assigned to a single
APA isoform. Further, DaPars does not consider strand
information, even when given stranded RNAseq librar-
ies. Neighboring genes on opposite strands can have
overlapping 3′ UTRs. Without strand information, reads
from this overlapped region can be naively and errone-
ously assigned.
LABRAT is similar in its approach to a previously de-

veloped APA quantification method, QAPA [26]. How-
ever, it exceeds the capabilities of QAPA in four areas:
(1) LABRAT explicitly classifies genes as having a tan-
dem UTR or ALE structure, allowing comparison of the
two groups; (2) LABRAT has a quantification mode ded-
icated to 3′ end sequencing data; (3) LABRAT employs
a statistical test to identify genes whose APA status
changes across conditions; and (4) this statistical test can
incorporate the use of covariates and complicated ex-
perimental designs. Importantly, it must be noted that
LABRAT and all currently available APA software quan-
tify the relative abundance of APA isoforms in a sample,
not rates of cleavage and polyadenylation.
The subcellular localization of specific transcripts has

been known to be regulated by APA. For example, the
dendritic localization of BDNF mRNA depends on the
content of the transcript’s 3′UTR as determined by
APA [78]. More recent transcriptome-wide studies have
shown that this phenomenon is widespread, as hun-
dreds of genes display differential enrichments of APA
isoforms across cell body and projection compartments
[41–43]. Still, there has been confusion as to the rela-
tive contributions of tandem UTR- and ALE-mediated
APA to this effect, perhaps due to inefficiencies in
studying APA with software that uses genomic align-
ments. LABRAT is the only currently available APA
software that explicitly separates and labels these two
classes of genes. We took advantage of this to quantify
the distribution of tandem UTR and ALE isoforms
across subcellular compartments and found that both
classes of APA contribute approximately equally to dif-
ferences in RNA localization. We further found that
differential APA isoform localization is most prevalent
in young cellular projections that are less than 3 days
old, suggesting that this effect may be important for the
initiation of projection outgrowth but less significant
for the maintenance of established projections. How-
ever, it must be noted that there are differences in cell
types among the analyzed samples with young and
older projections, potentially confounding the conclu-
sion that projection growth time is related to differen-
tial APA isoform localization.

Although RNA localization is most heavily studied in
polarized cell types like neurons, transcripts are asym-
metrically distributed in essentially all cells. LABRAT
identified hundreds of genes with differential APA iso-
form enrichment between biochemically defined cyto-
solic and membrane fractions in nonpolarized D17,
HepG2, and K562 cells. These results indicate that APA
may play a broad role in subcellular localization to
membranes in multiple cell types. The consequences of
this localization remain unknown, but given that a
large fraction of cellular membrane belongs to the
ER, modulation of membrane association may be a
way to tune the ER association and therefore transla-
tion status of a transcript. Further, given the broad
misregulation of APA in many cancers, this may
mean that the membrane association of many tran-
scripts changes upon transformation. We further
found that genes whose APA isoforms are differen-
tially associated with membranes are less likely to
encode ER-targeting signal peptides, suggesting that
RNA localization to the ER can occur using mecha-
nisms that are independent of the cotranslational tar-
geting. This phenomenon and its misregulation in
specific contexts like cancer needs more study.
The abundance of several CPSF and CstF subunits can

have important effects on alternative polyA site choice
[1, 79–81]. Other RBPs, including CFIm25, have also
been shown to strongly directionally regulate APA
through activation or repression of specific cleavage
events [10, 15]. Using RBP knockdown followed by high-
throughput RNA sequencing experiments performed by
the ENCODE consortium [57, 58] we interrogated the
regulatory effects of 191 RBPs on APA isoform abun-
dance. In this analysis, the knockdown of dozens of
RBPs promoted widespread, coordinated directional
shifts in relative APA isoform abundance for hundreds
to thousands of genes, suggesting that the repertoire of
RBPs that can differentially regulate APA isoforms is
quite large. It is important to note, though, that many of
these RBPs may not be directly regulating APA. For ex-
ample, many may be differentially regulating stability of
3′ UTR isoforms.
The CPA apparatus processes nascent Pol II tran-

scripts at the ends of genes in the context of complexes
with Pol II. According to the “window of opportunity”
model [82], the decision between alternative polyA sites
can be influenced by the delay between synthesis of up-
stream and downstream sites which is determined by
the speed of transcription. Consistent with this model,
we found using LABRAT that slow transcription caused
by a mutation in the Pol II large subunit causes a signifi-
cant shift in favor of upstream polyA sites and that this
effect is true for both the ALE and tandem 3′ UTR clas-
ses of APA. Moreover, as predicted by the “window of
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opportunity” model the mRNAs with the greatest up-
stream shift in APA correspond to those with the great-
est distance between alternative tandem 3’UTR sites
(Fig. 3D). In summary, these results show that Pol II
speed can significantly modulate alternative polyA site
choice. They further suggest the possibility that regula-
tion of transcription elongation could contribute to
changes in APA under normal and pathological
conditions.
Connections between APA and cancer have been well

established [10, 27, 60]. Generally, conclusions regarding
this relationship have been focused on the idea of in-
creased proximal APA in cancerous samples [10, 20, 27]
with the idea that proximal APA of oncogenic tran-
scripts particular removes repressive regulatory elements
in the distal UTR that might otherwise keep the expres-
sion of these genes low. However, our results using
LABRAT to assess APA changes in 671 paired tumor
and normal samples indicate that broad, directional
shifts in APA are specific to the type of cancer being
studied. Some cancers, including lung cancers and head-
neck squamous cell carcinoma, display the canonical in-
creased use of proximal APA sites, while others, includ-
ing kidney renal clear cell carcinoma and thyroid
cancers, show strong shifts in the opposite direction to-
ward distal APA sites. Further, increased proximal and
distal APA is associated with poor patient prognosis in
head-neck squamous cell carcinoma (HNSC) and kidney
renal clear cell carcinoma (KIRC), respectively. Critically,
this indicates that increased proximal APA is not a gen-
eral signature of cancer, but rather that the direction of
APA misregulation is cancer-specific.
Relationships between APA and gene expression have

also been well documented [18, 20]. Early studies of this
connection indicated that distal APA was generally asso-
ciated with a decrease in gene expression. Later studies,
though, indicated that this relationship was less clear
[65]. To investigate how APA affects gene expression,
we compared changes in ψ values and changes in gene
expression for all genes in over 1000 pairs of RNAseq
samples. We found that within a sample, correlations be-
tween gene expression and APA were weak, but were
consistently in the canonical, expected direction where
distal APA leads to lower expression. Reorienting the
analysis to interrogate the relationship within single
genes but across samples again revealed that the average
gene has only a very weak connection between APA and
gene expression. Still, some genes had remarkable corre-
lations (R ~ 0.7–0.8) between these two measurements,
indicating that changes in their expression across diverse
samples are controlled in large part by modulation of
APA site choice.
Across over a thousand pairs of samples, we observed

strong correlations between APA changes in genes with

tandem UTRs and those with ALEs. If a particular con-
dition promoted increased distal APA in tandem UTR
genes, it overwhelmingly also promoted increased distal
APA in ALE genes and vice versa. This strongly indi-
cates that the two may be regulated by similar mecha-
nisms, and hints of this connection have been observed
before [29]. Tandem UTRs are regulated solely at the
level of cleavage/polyadenylation. The simplest interpret-
ation of our results is therefore that the contribution of
regulated splicing to ALE control is minor compared to
that of regulated cleavage/polyadenylation, perhaps be-
cause splicing kinetics are slower. For ALEs, proximal
cleavage events obviate potential regulation of the ALE
by splicing since the distal ALE is removed from the
transcript. If recognition of the proximal APA site by the
cleavage and polyadenylation machinery is inhibited, this
may provide time for splicing to distal ALEs to occur,
and this decision could be affected by the speed of tran-
scription. In this model, splicing acts on ALEs only if
given the chance to do so through inhibition of kinetic-
ally favored cleavage events.
Overall, the results presented here shed light on the

molecular consequences of APA and make predictions
about the proteins and mechanisms involved in its regu-
lation. Further experimental studies are needed to fully
understand these processes. We envision LABRAT as an
important tool in deriving meaningful insights from
those experiments.

Methods
General LABRAT usage
LABRAT is freely available for download here: https://
github.com/TaliaferroLab/LABRAT/. LABRAT searches
for specific tags (mRNA_end_NF) in the annotation as-
sociated with transcripts with ill-defined 3′ ends. Op-
tionally, LABRAT may also filter out transcripts that are
not protein-coding (by looking for the ‘protein_coding’
tag. This may help remove transcripts that are not fully
processed and therefore still nuclear. These tags are
present in Gencode (www.gencodegenes.org) gff annota-
tions but may not be present in annotations from other
sources. For this reason, we strongly suggest using Gen-
code annotations for use with LABRAT. For analysis of
Drosophila data, we modified LABRAT to perform simi-
lar filtering on Ensembl annotations for the dm6 Dros-
ophila genome build. However, in principle, LABRAT
can work with any annotation, including those that make
use of 3′ end sequencing data to identify polyadenyla-
tion sites, so long as the polyadenylation sites are incor-
porated into a transcript model. This version of
LABRAT is also available at the above GitHub address.
Genes that did not pass an expression filter (TPM ≥ 5)

were removed from further analysis. This gene expres-
sion was defined as the sum of the expression values for
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all valid, filter-passing transcripts for the gene. LABRAT
reports these genes as having a ψ value of NA.
Identification of genes with significantly different ψ

values across conditions was done using a linear mixed
effects model with the Python package statsmodels [83].
For simple comparisons involving two conditions, a sim-
ple model relating conditions and ψ values was used (ψ
values ~ condition). For analysis of the CeFra and EN-
CODE data, slightly more complex models were used. In
the CeFra data, the method of library preparation,
polyA-enrichment or ribosomal RNA depletion, was
added as a covariate (ψ values ~ condition + libprep). In
the ENCODE data, the cell line, K562 or HepG2, was
added as a covariate (ψ values ~ condition + cell line).
These models were then compared to null models where
the effect of the condition was removed. For simple com-
parisons, the null models were specified as (ψ values ~ 1).
For the CeFra and ENCODE comparisons, these were spe-
cified as (ψ values ~ libprep) and (ψ values ~ cell line), re-
spectively. A likelihood ratio test was then used to
evaluate the relative fit between the experimental and
null models. P values were derived from the likeli-
hood ratio test and then corrected for multiple
hypothesis testing using a Benjamini-Hochberg cor-
rection [32]. Δψ values are defined as differences in
mean ψ across conditions.
To define tandem UTR and ALE structures, LABRAT

observes the isoform structures at the 3′ end of a gene.
If all APA sites are contained within the same exon, then
the structure in tandem UTR. If all APA sites are con-
tained within different exons, then the structure is ALE.
If a gene has only two APA sites, then its structure must
be either tandem UTR or ALE. If a gene has more than
two APA sites, it is possible for the gene to fit into nei-
ther classification. For example, in a gene with three
APA sites, it is possible to have two of them contained
within one exon and the third by itself in another exon.
In these cases, LABRAT assigns the gene to have a
“mixed” structure.

LABRAT running time
If LABRAT is encountering a gff genome annotation file
for the first time, it indexes this file using gffutils
(https://github.com/daler/gffutils/). This process can
take a few hours, depending on the size of the annota-
tion. However, it only needs to be completed once. All
future runs will automatically make use of a database file
written after the indexing completes. Importantly, if
indexing is interrupted, this file will still be written, and
LABRAT will attempt to use this truncated file in the
next run. This will cause problems. To prevent this, if
indexing is interrupted, be sure to delete the resulting
database file. It can be found at the location of the gff
annotation, and ends with ‘.db’.

To test the runtime requirement of LABRAT, we fo-
cused on the analysis of RNA polymerase II mutants pre-
sented in Fig. 3. This analysis considered two conditions
with two replicates per condition. Each sample contained
approximately 25 million paired end reads. Using a mod-
ern Intel Mac laptop running OSX 10.15 with 12 cores,
LABRAT analysis of this data took approximately 25min.
This does not include the time taken to index the genome
annotation as described above.

Comparison of APA in mouse brain and liver tissues
RNAseq data for mouse brain and liver tissues was
downloaded from (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA375882) [33]. Each tissue sam-
ple contained 8 replicates. Genes with significantly dif-
ferent ψ values were identified as those with an FDR of
less than 0.05.

Analysis of APA in GTEx RNAseq data
RNAseq data from the Genotype-Tissue Expression
(GTEx) project (BioProject PRJNA75899) were down-
loaded from the NCBI Sequence Read Archive (SRA) via
dbGaP-authenticated access and quantified using salmon
[30] as described elsewhere in this manuscript. ψ values
were calculated for each gene in each sample using LAB-
RAT. LABRAT employs an expression level cutoff,
returning a ψ value of NA if the sum of expression of all
isoforms for a gene is not at least 5 TPM. There were
many genes in this analysis of tissue-specific RNAseq
that therefore had ψ values of NA in at least one sample.
To facilitate PCA analysis, these missing ψ values were
imputed using the R package missMDA [84].
The data used for the analyses described in this manu-

script were obtained from dbGaP accession number
phs000424.vN.pN between 07/16/2020 and 08/31/2020.

Calculation of ψ values from 3′ end sequencing data
To quantify ψ values from 3′ end sequencing data, we
first trimmed 12 nucleotides from the 3′ of the reads as
suggested by the authors that produced the data [39]. To
calculate ψ values from this data using LABRAT, we
added the ‘librarytype’ parameter. If this value is set to
‘3pseq’, LABRAT will use Salmon-quantified counts for
APA abundance estimation instead of length-normalized
TPM values.
These 3′ end sequencing libraries were produced

using the Quantseq FWD strategy (Lexogen). The single
end reads produced by this approach correspond to the
end of the fragment opposite of the oligo dT anchor.
The beginning of this read is therefore one fragment
length away (approximately 200–300 nt) from the polyA
tail. Because of this library design, the majority of reads
associated with a polyA site in 3′ end sequencing data
should lie within 300 nt of the polyA site. Therefore, in
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contrast to the LABRAT RNAseq approach where the
final two exons of every transcript are used for quantifi-
cation, the LABRAT 3pseq approach quantifies the last
300 nt of every transcript.
To calculate ψ values from 3′ end sequencing data

using counts of aligned reads, we first trimmed 12 nu-
cleotides from the 3′ of the reads as suggested by the
authors that produced the data [39] and then aligned
reads to the human transcriptome (Gencode 28) using
STAR [85].
We then wrote a custom Python script (available at

https://github.com/TaliaferroLab/LABRAT/blob/master/
countfrombam.py) to count the number of aligned reads
associated with each polyA site. This was defined as the
number of reads in the 300 nt preceding the polyA site.
From these counts, ψ values were calculated by combin-
ing reads across all of the transcripts with a common
polyA site, scaling the counts according to the position
of the polyA site within the gene, and computing the ra-
tio of scaled counts to unscaled counts.

APA analysis of simulated RNAseq data
To compare the performance of LABRAT to QAPA
[26], DaPars [27] and Roar [28], we generated a synthetic
RNAseq dataset. In this dataset, 5000 genes with only
two alternative polyadenylation sites were analyzed. 1250
were randomly assigned to have positive Δψ values, 1250
were assigned to have negative Δψ values, and 2500 were
assigned to have no significant change in ψ between
conditions. Each gene was then randomly assigned a
TPM expression value using a Dirichlet distribution with
numpy.random.dirichlet with the alpha parameter set to
1 for every gene.
The simulation was performed by comparing three rep-

licates each from two conditions. For the positive Δψ
genes, the minimum ψ from condition B was required to
be at least 0.1 greater than the maximum ψ from condi-
tion A. Conversely, for the negative Δψ genes, the max-
imum ψ from condition B was required to be at least 0.1
less than the minimum ψ from condition A. For control
genes, the difference between any two ψ values both
within and across conditions was required to be less than
0.25. This was performed by randomly sampling ψ values
for each gene until the conditions outlined above were
met. We found that the varying these ψ value thresholds
had minimal effect on the ability of LABRAT to identify
differentially regulated genes in the simulated data.
Given a gene’s overall expression and its ψ value, TPM

values were then relatively split between polyadenylation
sites such that the desired ψ value was achieved. TPM
values for individual transcripts within polyadenylation
sites were then assigned. If a polyadenylation site was
only supported by a single transcript, that transcript was
given the site’s entire TPM value. If a polyadenylation

site was supported by multiple transcripts, the site’s
TPM allotment was randomly distributed among the
transcripts.
Given a transcript’s assigned TPM value and its length,

the desired number of counts for each transcript was
then computed by multiplying the TPM value by the
length of the transcript. Code for defining expression
values, ψ values, and RNAseq count values for the simu-
lation can be found at https://github.com/TaliaferroLab/
LABRAT/blob/master/LABRATsimulation.py.
The sequence of each transcript and the desired num-

ber of counts were then given to the R package polyester
[40] to create the desired number of synthetic, 100 nu-
cleotide, paired-end RNAseq reads.
In analyzing the reads with each package, gene assign-

ments (positive Δψ, negative Δψ, or control) made by
the software were compared to the assignments made
during preparation of the synthetic dataset. For analysis
of these reads with LABRAT, genes with FDR values of
less than 0.05 were called as affected genes (either posi-
tive or negative Δψ depending on the reported Δψ value)
while those with values of 0.05 or greater were called as
control genes. For analysis with QAPA, genes with
differences in PPAU values of at least 10 were called as
affected genes while those with differences in PPAU
values of less than 10 were called as control genes. For
analysis with DaPars, genes with adjusted p values of less
than 0.05 were called as affected genes while those with
adjusted p values of 0.05 or greater were called as con-
trol genes. For analysis with Roar, genes with p values
less than 0.05 and roar values greater than 1.1 were
called as positive Δψ genes, genes with p values less than
0.05 and roar values less than 0.9 were called as negative
Δψ genes, while genes with p values of 0.05 or greater
were called as control genes.

Analysis of differential APA isoform enrichment across
subcellular compartments
ψ values for each subcellular compartment were quanti-
fied using LABRAT, and genes with significant changes
in ψ values across compartments were identified using
an FDR cutoff of 0.05. The fraction of these significant
genes with greater ψ values in the projections than cell
bodies was calculated. Binomial p values were calculated
for deviations from the expected fraction of 50%. Times
of projection growth were manually curated from the
methods description of each study.

Analysis of differential APA isoform enrichment across
biochemically defined subcellular fractions
ψ values for each subcellular fraction were quantified
using LABRAT, and genes with significant changes in ψ
values across compartments were identified using an
FDR cutoff of 0.05. FDRs were calculated using a linear
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model that incorporated the method of library prepar-
ation (polyA-enrichment or ribosomal RNA depletion)
as a covariate.

Quantification of ER signal sequence abundance
For each gene, the translation of its longest CDS se-
quence was given to the signal sequence prediction pro-
gram SignalP [52]. For a set of genes, the fraction of
genes within the set that contained at least one SignalP-
defined ER signal sequence was calculated. For compar-
ing these fractions across sets of genes, a distribution of
fractions was created by bootstrapping where 40% of the
genes were sampled 100 times.

Analysis of APA changes induced by changes in RNA
polymerase II speed
RNAseq data from HEK293 cells expressing slow
(R749H) and wildtype RNA polymerase II [55] were
downloaded from the Gene Expression Omnibus (fpol).
Using an FDR cutoff of 0.1, genes with significantly dif-
ferent ψ values between wildtype and R749H samples
were identified using LABRAT.

Analysis of ENCODE RBP RNAi knockdown RNAseq
samples
In this dataset, each RBP was associated with two RBP
RNAi samples and two control RNAi samples. We lim-
ited analyses to RBPs that had knockdown samples in
both K562 and HepG2 cell lines. ψ values were calcu-
lated comparing RBP knockdown and control knock-
down samples, and genes with significant ψ differences
between RBP RNAi and control RNAi samples were
identified using an FDR cutoff of 0.05. FDRs were calcu-
lated using a linear model that incorporated the cell line
(HepG2 or K562) as a covariate.
For each RBP, the fraction of these significant genes

with greater ψ values in the control RNAi than RBP
RNAi was calculated. These fractions were defined as a
value, α, where α ranged from 0 to 1. α values greater
than 0.5 were therefore associated with larger ψ values
(and therefore more distal APA) in the control RNAi
sample. Conversely, α values less than 0.5 were therefore
associated with smaller ψ values (and therefore more
proximal APA) in the control RNAi sample. Each RBP
was therefore assigned one α value from the ENCODE
data. Binomial p values were calculated for deviations
from the expected fraction of 50%.

Comparison of ENCODE RBP RNAi knockdowns and eCLIP
RBP binding data
The eCLIP narrowpeak bed files for isogenic replicates
aligned to GRCh38 for each RBP measured in both
HepG2 (103 RBPs) and K562 (120 RBPs) were down-
loaded from www.encodeproject.org. Analyses were

restricted for within each line and not combined. For
each individual RBP data set, overlapping peaks were
merged using bedtools v2.29.2 [86]. These peaks were
then intersected with the longest 3’UTR of genes whose
polyA sites were both affected and unaffected by RBP
knockdown (as measured by LABRAT described above).
RBP occupancy was scored for each 3’UTR as either
present or not. The statistical significance of a given
RBPs occupancy within the subset of genes whose polyA
site choice was affected by knockdown of any RBP was
determined using a binomial test.
The number of RBPs that were ‘self significant’, i.e. the

occupancy of a specific RBP was significant for the genes
whose polyA site choice was affected by knockdown of
that same RBP, was determined for both HepG2 and
K562. To determine if that number was greater than
what was expected by chance, relationships between
RBPs and the genes they bind were shuffled, and the
analysis was repeated to identify the number of ‘self
significant’ RBPs. This process was repeated 1000 times
to generate a null distribution of the number of ‘self sig-
nificant’ RBPs. The number of actual ‘self significant’
RBPs was then compared to the null distribution and an
empirical p value was calculated.

Analysis of APA in TCGA matched tumor/normal tissue
samples
In this dataset, each patient is associated with a pair of
samples, one from a tumor and another from matched
normal tissue. ψ values were calculated for each sample,
and genes with significant ψ differences between all
tumor samples and all normal samples within a cancer
type were identified using an FDR cutoff of 0.05.
Using the TCGA data, the effect of an RBP’s expression

on ψ was inferred by correlating changes in the RBP’s ex-
pression across samples with changes in ψ values of genes
that passed the FDR cutoff of 0.05. For each tumor/nor-
mal pair, the change in RBP expression was calculated by
comparing TPM expression values, and changes in ψ were
calculated by finding the median Δψ value across genes
with significant changes in ψ. The spearman correlation
coefficient of this comparison across all tumor/normal
pairs was defined as β. Each RBP was therefore assigned
one β value from the TCGA data.

Analysis of survival data in TCGA samples
Using the tumor and matched normal tissue samples
from the TCGA dataset, genes with significant ψ differ-
ences (FDR < 0.05) were identified for each tumor
type as misregulated genes. The median ψ of misregu-
lated genes was then calculated for each patient in
samples without matched normal tissue controls. Pa-
tients were then ranked by their median ψ of misre-
gulated genes and separated into quartiles. Only
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patients within the most extreme quartiles were plot-
ted for each tumor type.
Clinical data for each patient was obtained from cbioportal

[87]. Survival analysis and plotting was performed with R
packages survival (version = 3.1–8) [88] and survminer (ver-
sion = 0.4.8) [89]. Log-rank tests for significance were calcu-
lated to compare extreme quartiles for each tumor type and
were considered significant if less than 0.05.

Analysis of relationship between APA and RNA
expression
For every pair of samples (Control and RBP RNAi in
ENCODE and tumor/normal samples in TCGA), the
change in RNA expression and ψ value for every gene
was calculated. Gene expression filters (TPM ≥ 5) were
applied, but FDR cutoffs for Δψ were not. These two
values were then compared to each other, and the result-
ing Spearman correlation coefficient was defined as rho
(ρ). If distal APA (i.e. increases in ψ) was associated with
decreases in RNA expression, the resulting ρ value
would be negative.
ρ was calculated in two different ways. In the first way,

changes in expression and ψ for all genes within a sam-
ple were correlated. In this comparison, each sample pair
ends up with a single ρ value. In the second way,
changes in expression and ψ for a single gene across all
sample pairs were correlated. In this comparison, each
gene ends up with a single ρ value in each sample set
(ENCODE and TCGA).
The second ρ calculations were used to categorize

genes as being either positively or negatively correlated.
To achieve similar numbers of genes in each category, a
positive ρ in either sample set was considered as posi-
tively correlated while a ρ less than − 0.15 in either sam-
ple set was considered negatively correlated. Genes
behaving inconsistently between sample sets were re-
moved from these categories and placed in the control
gene category (25% of positively correlated and 14% or
negatively correlated). For simplicity, genes with only
two APA isoforms were considered during this
categorization resulting in 316 positively correlated
genes, 313 negatively correlated genes and 1466 control
genes used in UTR sequence analysis.

Quantifying effects on RNA expression due to UTR
content with qRT-PCR
Proximal and distal UTR regions were cloned onto
the coding sequence of Firefly luciferase. In this
plasmid, Firefly luciferase is driven by a bidirectional
tet-On promoter. This promoter also drives Renilla
luciferase, which served as a control in these experi-
ments. The resulting plasmids were transfected into
HeLa cells using Lipofectamine 2000 (Life Technolo-
gies). These cells were engineered to contain a single

loxP-flanked cassette within their genome [66]. The
plasmid was site-specifically integrated into the gen-
ome of the HeLa cells by cotransfecting it with a
plasmid expressing Cre recombinase. Recombinants
were then selected using 1 μg / mL puromycin for 2
weeks.
The expression of Firefly and Renilla luciferase tran-

scripts was induced by incubating cells with 1 μg / mL
doxycycline for 48 h. Total RNA was then isolated using
a Quick RNA Isolation Mini Kit (Zymo Research). 1 μg
of total RNA was reverse transcribed using iScript Re-
verse Transcriptase Supermix (BioRad). The relative
levels of Firefly and Renilla luciferase transcripts in the
sample were then quantified using Taqman qPCR. For
each gene, the ratio of Firefly to Renilla luciferase in the
case where the proximal UTR was fused to Firefly lucif-
erase was set to 1.

Identifying features enriched in UTRs associated with
gene expression changes
For each gene considered in this analysis (positively cor-
related, negatively correlated and control genes), prox-
imal and distal UTR sequences were extracted in such a
way that they contained unique sequences only. This
means that the distal UTRs of genes with tandem UTR
models lacked the beginning of their sequence which is
unique to the proximal UTR as illustrated in Fig. 6H.
UTR sequence features of either positively or negatively

correlated genes were always compared to the control gene
set. Enrichment analyses were performed using a custom R
package (FeatureReachR) publicly available here: https://
github.com/TaliaferroLab/FeatureReachR. This R package
utilizes wilcoxon ranksum tests to compare length and GC
contents of the three gene sets. Motif and five-mer enrich-
ment significance is calculated with a Fisher’s exact test and
corrected using the Benjamini & Hochberg method [32].
RBP binding motifs are represented as a sequence match >
80% with position weight matrices sourced from the CISBP-
RNA database (http://cisbp-rna.ccbr.utoronto.ca/) [90] or
RNA bind-N-seq results [70]. AREScore [69] was utilized to
determine the presence of AU rich elements within the
UTRs and compared again using wilcoxon rank-sum tests
(http://arescore.dkfz.de/arescore.pl).
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Additional file 1: Figure S1. (A) Read coverage plot of Elavl1 in mouse
brain and liver tissues. Dots represent ψ values of 8 replicates. (B) PCA
analysis of ψ values calculated from human tissues. Data was produced
as part of the GTEx project. (C) As in B, but only using genes that have a
tandem UTR APA structure. (D) As in B, but using only genes that have
an ALE APA structure. (E) Comparison of ψ values from human brain and
liver samples. Delta ψ values for genes with FDR values less than 0.01 are
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plotted. (F) Comparison of ψ values from human testis and liver samples.
Delta ψ values for genes with FDR values less than 0.01 are plotted. (G)
Read coverage plot of Dab2 in control human PBMCs and those treated
with poly dI:dC. RNA from these cells was profiled using 3′ end
sequencing. Dots represent ψ values calculated in each of 3 replicates.
(H) Comparison of ψ values from 3′ end sequencing data as calculated by
LABRAT (orange) and by counting aligned reads (purple, see Methods) (I)
Comparison of APA quantifications produced by LABRAT (ψ) and QAPA
(PPAU). (J) Benchmarking of APA software performance at a range of
sequence read depths.

Additional file 2: Figure S2. (A) Genes that repeatedly display
differential APA isoform localization across repeated neuronal samples.
Hierarchical clustering of ψ values from biochemically fractionated
Drosophila DM-D17-C3 cells (B), HepG2 cells C), and K562 cells (D). (E-F)
Simplex plots relating relative ψ values for genes between the cytosolic,
membrane-associated, and insoluble fractions of DM-D17-C3 cells (E) and
K562 cells (F). A dot that is equidistant from all three vertices had equal ψ
values in each fraction while a dot that is closer to one vertex had a
higher ψ value in that fraction relative to the other two fractions. (G-H)
Comparison of ψ values in K562 (G) and DM-D17-C3 (H) cytosolic and
membrane fractions for genes whose ψ value was significantly different
between these compartments (FDR < 0.01).

Additional file 3: Figure S3. (A) α values for each RBP knockdown in
K562 cells were calculated using tandem UTR and ALE genes
independently. These were then plotted and correlated. Each dot in this
plot represents one RBP knockdown experiment. (B) Binomial p values for
overlaps between genes whose APA was sensitive to RBP knockdown
and genes whose 3′ UTRs were bound by an RBP in eCLIP experiments.
Data taken from ENCODE HepG2 experiments. (C) As in B, but using data
from ENCODE K562 experiments. (D) As in Fig. 4E. Among 102 RBPs
expressed in K562 cells, overlaps between the genes whose APA was
sensitive to RBP knockdown and the genes whose 3′ UTRs were bound
by the RBP in eCLIP experiments were calculated. The significance of this
overlap was calculated using a binomial test. 14 RBPs bound the 3′ UTRs
of their APA targets more often than expected (binomial p < 0.05). To
assess whether this was more than the expected number of significant
RBPs, relationships between RBPs and their lists of APA and eCLIP targets
were shuffled 1000 times, and the analysis was repeated after each
shuffle to create a null distribution (blue). (E, F) As in Figs. S3D and 4E,
but instead of considering eCLIP binding events only in the 3′ UTRs of
genes, eCLIP binding events throughout gene bodies were considered.

Additional file 4: Figure S4. (A-B) Histogram of gene-wise correlations
between changes in ψ and changes in gene expression (ρ) derived from
TCGA tumor and matched normal samples for tandem UTR (A) genes
and ALE (B) genes. (C-D) Histogram of gene-wise correlations between
changes in ψ and changes in gene expression (ρ) derived from ENCODE
RBP knockdown and control samples for tandem UTR (C) genes and ALE
(D) genes. (E) Binned scatter plot comparing changes in ψ and changes
in gene expression for genes with negative ρ values (blue), positive ρ
values (purple) and control genes (gray). (F) Enrichment of 5mers in the
distal UTRs of negatively correlated genes compared to the distal UTRs of
control genes. (G) Enrichment of 5mers in the distal UTRs of positively
correlated genes compared to the distal UTRs of control genes.

Additional file 5: Table S1. Delta ψ values (defined as RBP knockdown
- control knockdown) for all RBP knockdowns in the ENCODE HepG2
data. Only genes with significant FDR values (less than 0.05) are shown.
Delta ψ for genes that did not meet this threshold are indicated as NA.

Additional file 6: Table S2. Delta ψ values (defined as RBP knockdown
- control knockdown) for all RBP knockdowns in the ENCODE K562 data.
Only genes with significant FDR values (less than 0.05) are shown. Delta
ψ for genes that did not meet this threshold are indicated as NA.

Additional file 7: Table S3. Correlation of expression changes and APA
changes in TCGA and ENCODE data. A positive correlation indicates that
an increase in gene expression was associated with an increase in ψ. Put
another way, a positive correlation indicates that increased gene
expression was associated with increased distal polyA site usage, while a
negative correlation indicates that increased gene expression was
associated with increased proximal polyA site usage. Spearman

correlation coefficients were calculated across all sample pairs (tumor and
matched control in TCGA data, RBP knockdown and control knockdown
in ENCODE data) in which the gene was expressed (TPM > 5). If a gene
was not expressed in any sample pair, the correlation is noted as NA.
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