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Abstract

Background: Identifying differentially expressed genes between the same or different species is an urgent demand
for biological and medical research. For RNA-seq data, systematic technical effects and different sequencing depths
are usually encountered when conducting experiments. Normalization is regarded as an essential step in the
discovery of biologically important changes in expression. The present methods usually involve normalization of the
data with a scaling factor, followed by detection of significant genes. However, more than one scaling factor may exist
because of the complexity of real data. Consequently, methods that normalize data by a single scaling factor may
deliver suboptimal performance or may not even work.
The development of modern machine learning techniques has provided a new perspective regarding discrimination
between differentially expressed (DE) and non-DE genes. However, in reality, the non-DE genes comprise only a small
set and may contain housekeeping genes (in same species) or conserved orthologous genes (in different species).
Therefore, the process of detecting DE genes can be formulated as a one-class classification problem, where only
non-DE genes are observed, while DE genes are completely absent from the training data.

Results: In this study, we transform the problem to an outlier detection problem by treating DE genes as outliers,
and we propose a scaling-free minimum enclosing ball (SFMEB) method to construct a smallest possible ball to
contain the known non-DE genes in a feature space. The genes outside the minimum enclosing ball can then be
naturally considered to be DE genes. Compared with the existing methods, the proposed SFMEB method does not
require data normalization, which is particularly attractive when the RNA-seq data include more than one scaling
factor. Furthermore, the SFMEB method could be easily extended to different species without normalization.

Conclusions: Simulation studies demonstrate that the SFMEB method works well in a wide range of settings,
especially when the data are heterogeneous or biological replicates. Analysis of the real data also supports the
conclusion that the SFMEB method outperforms other existing competitors. The R package of the proposed method
is available at https://bioconductor.org/packages/MEB.
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Background
Next-generation sequencing (NGS) provides an attrac-
tive alternative for quantitative analysis of the underlying
complexities of gene expression [1]. The affordability and
effectiveness of high throughput sequencing has led to
its rapid application in a wide range of biological and
medical research. In particular, RNA sequencing, which
involves the mapping of sequenced fragments of cDNA to
a reference genome or transcriptome, has been used for
genotyping analysis, detection of methylation patterns [2],
and identification of transcription factor binding sites [3].
In RNA-seq experiments, the number of sequenced frag-
ments mapped to a feature is used to measure the expres-
sion level of a feature [4]. However, using RNA-seq data
for the detection of differential gene expression under dif-
ferent biological conditions or in different species remains
a challenge for practitioners.
Recently, several statistical methods have been devel-

oped to identify differentially expressed genes in the same
or different species. For the same species, the existing
methods broadly fall into two categories. The first one
is parametric methods, such as edgeR [5] and DESeq
[6], which assume that RNA-seq data follow a nega-
tive binomial distribution, and HTN [7], which assumes
a Poisson distribution for the read counts. The sec-
ond one is non-parametric methods, such as NOIseq
[8] and LFCseq [9]. For different species, Brawand et
al. [10] proposed a method based on reads per kilo-
base of transcript per million mapped reads (RPKM)
[11] to employ 1000 of the most conserved genes to
obtain the median expression level, and they regarded
the ratio of the median values as a scaling factor. Zhou
et al. [12] considered different structures between the
same and different species, and proposed a scale-based
normalization (SCBN) method that utilizes a part of
the known conserved genes and the hypothesis testing
framework.
Notably, normalization is essential to all these methods,

and Evans et al. [13] classified the existing normalization
into three categories. Total count [14] and RPKM assume
that two samples have the same number of total short
reads, and RNA-seq data normalization is based on library
size. DESeq and trimmed mean of M-values (TMM) [15]
normalize the RNA-seq data by distribution or testing
whether differentially expressed (DE) and non-DE genes
in the dataset have the same or balanced expression. In
addition, some methods perform the normalization using
control genes, like housekeeping genes [16] or spike-ins
[17]. Note that the gene number and sequencing depth are
natural factors that are considered in normalization for
the same species. However, we also need to consider data
constituents and gene lengths corresponding to ortholo-
gous genes in different species. Normalization is so essen-
tial for differential expression analysis that Evans et al. [13]

thought that errors in normalization could have a severe
influence and even mislead the downstream analysis.
In this paper, we propose a method that extends the

minimum enclosing ball (MEB) method in machine learn-
ing and is able to detect DE genes. Because the pro-
posed method is only based on the similarity of the
non-DE genes and differences between the non-DE and
DE genes, which does not require the normalization step
with a scaling factor, so we called it scaling-free mini-
mum enclosing ball (SFMEB) method. The MEB method
was first proposed by Elzinga et al.[18] to find the small-
est ball to enclose all the given sample points. In this
way, it is similar to the support vector data description
[19] designed to detect novelties or outliers. This prop-
erty enables SFMEB to identify the homologous points
in the enclosing ball and to detect points that differ sub-
stantially from the points in the ball. Specifically, SFMEB
constructs a spherically shaped decision boundary for the
enclosed sample points, and a point will be discriminated
as an outlier if it lies outside the ball. Similar to the sup-
port vector machine [20], the sample points are implicitly
mapped into high-dimensional feature spaces by a non-
linear transformation, so that kernel tricks can then be
utilized to increase the flexibility of the SFMEB method.
In the model, the house-keeping genes are only used as
a part of non-DE genes, and other non-DE genes would
be similar to the house-keeping genes. These similar non-
DE genes can be catched by the SFMEB model through
a compact enclosing hypersphere in the feature space,
while the DE genes, assumed to be different from the
non-DE genes, are very likely to be outside the enclosing
ball.
We have extended the SFMEB method to detect DE

genes by first assuming knowledge of a small set of house-
keeping genes (in same species) or conserved genes (in
different species). We then construct a SFMEB to enclose
as many as possible of these non-DE genes without sub-
stantially enlarging the size of the SFMEB.We control type
I errors by setting the proportion of the non-DE genes
which are outside of the SFMEB and thus regarded as
DE genes. The computation is expedited, as suggested by
Tsang et al. [21], by using core vector machines (CVM)
as one constant kernel function and extending it to the
general core vector machines [22] to work for any kernel
function. Hu et al. [23] also proposed a fast learning algo-
rithm (FL-TMEB) for SFMEB with a soft margin. In the
present paper, we considered the size of the real data and
we used the algorithm proposed by Chang et al. [24] to
facilitate the computation.
The real data we analysed involve the same species

under different conditions, as well as different species.
For the same species, the data consist of RNA-seq short
read counts from the liver and kidney, including 5 bio-
logical replicates for each sample (see Marioni et al. [25]
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for details). Human housekeeping genes were those used
previously [26] (see Eisenberg et al. [27] for a descrip-
tion of these genes). By excluding the obsolete transcripts,
which can be inquired in the NCBI database [28], we
eventually obtained 16519 genes and 530 housekeeping
genes for the subsequent analysis. For different species,
real data were obtained from Brawand et al. [10], which
includes two groups of orthologous transcripts of humans
and mice. Following the pre-process steps described by
Zhou et al. [12], we obtained 19330 available orthologous
transcripts, including 143 most conserved orthologous
transcripts.
Figure 1 shows the scatter plots of the short read counts

of genes in a random sample from a library of liver and
kidney [25] and the corresponding fitted linear models
in three cases. Only those genes with count number no
greater than 4000 are displayed in Fig. 1. In Fig. 1, the
left panel directly fits a linear model on the original data,
the middle panel fits a linear model with the normalized
data, where the original data are normalized by a scal-
ing factor which is estimated by TMMmethod [15] for all
genes, and the right panel also fits a linear model on the
normalized data, where the data are normalized by a scal-
ing factor estimated by TMM method with housekeeping
genes. Table 1 shows the coefficients of the fitted lines for

these three cases. It is clear that the slopes of fitted lines of
housekeeping genes in the first two cases are less than 1,
which suggests that the original data or normalized data
could not present the true expressions of genes. And in
the last case, the slope of the fitted line of housekeeping
genes is a little more than 1, which may be caused by a
few housekeeping genes that are much higher than the red
dash line. Thus, there may be more than one scaling fac-
tors in this real dataset, and normalization with two or
more scaling factors can be much more complex or even
unprocurable.
Supplementary Figures S1 and S2 show the distributions

of the absolute log-fold changes (base 2) for the same and
different species. If we regard the transcripts with a log
ratio of expression level (after normalization) less than 1 as
non-DE, we can see that most of the transcripts are non-
DE. However, some log ratios can be much greater than
1, even approaching 6, suggesting that those transcripts
have relatively higher expression levels. In this paper, the
dataset with clearly different log-fold-changes in different
parts of the genes is recognized as heterogeneous data.
The distribution of the same or different species shows
that heterogeneity is very common in real data. In addi-
tion, in real data, over-dispersion is also very common
in biological replicates; that is, the variance of biological

Fig. 1 The scatter plots and the fitted linear model of the short read counts of genes from a library of liver and kidney [25]. Each point represents a
gene, and the horizontal and vertical coordinates represent the gene counts in liver and kidney. Red points represent the housekeeping genes, and
blue points represent the remaining genes. The red dash lines are fit on the housekeeping genes, the black dash lines are fit on the remaining
genes, and the green solid lines are fit on all genes
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Table 1 The estimated coefficients of fitted linear models of real
data of liver and kidney

Intercept Coefficients

Non-normalized Housekeeping genes 24.6171 0.4668

Remaining genes 26.1319 0.6457

All genes 25.7412 0.6453

Normalized Housekeeping genes 21.0627 0.7025

by all genes Remaining genes 32.1974 0.9629

All genes 31.4334 0.9622

Normalized Housekeeping genes 26.273 1.093

by housekeeping
genes

Remaining genes 40.163 1.498

All genes 39.210 1.497

replicates is uncontrollable. The use of traditional meth-
ods that depend on a single scaling factor is no longer
feasible with real data, and this motivated us to develop a
method for detection of DE genes without normalization.

Results
In this paper, we proposed SFMEB method to detect
DE genes. The details of the SFMEB model have been
shown in “Methods” section. To validate the performance
of proposed method, we consider simulation studies and
real data analysis with same and different species. All the
R scripts that analysed the data have been uploaded at
github, which could be accessible at https://github.com/
FocusPaka/NIMEB.

Simulation studies
We evaluate the performance of the proposed method by
conducting simulations in a variety of scenarios and com-
paring the results with those obtained with five existing
methods using the criteria of receiver operating charac-
teristic (ROC) curve and area under the curve (AUC). The
five existing methods including Library Size, edgeR [5],
DESeq [6], HTN [7], and NOISeq [8], which are widely
used in the literature of DE gene expression.

Simulation design
Let G be all genes, and j (j ∈ {1, 2}) be the condition,
jr be the r-th replicate of the j-th condition. Then xijr
represents the observed number of short reads of gene
i in sample jr . In order to mimic real data, the simula-
tion data for the same species includes both non-DE genes
and DE genes. The DE genes have two scenarios: one
is genes with multiple expression levels and the other is
genes only expressed in one condition. We first set the
proportion of DE genes with multiple expression levels in
all genes (not including uniquely expressed genes) as π0
with d log-fold changes (base 2). Of those DE genes, the

proportion of pj are randomly up-regulated under condi-
tion j. In addition, the uniquely expressed genes for two
conditions are denoted as a vector uuu. We then gener-
ate the simulation data following the steps of Robinson
and Oshlack (2010) [15]. Considering the complexity of
real data, we also use an RNA-seq data simulater (com-
pcodeR::generateSyntheticData(), Soneson and Delorenzi
(2013) [29]) to generate the counts for each gene. The sim-
ulation data are sampled from a negative binomial (NB)
distribution. Both methods are achieved by R codes, the
former provides R scripts in [15], the latter is carried out
by function ‘generateSyntheticData()’ which is included
in R package ‘compcodeR’. In our work, the simulation
data are RNA-seq counts in each gene of different sam-
ples. We conduct the differential expression analysis with
the counts matrix. Generally, we do not directly anal-
yse the differential expression of RNA-seq reads, which
are obtained in the sequencing experiment. The reads are
usually mapped to the reference genome, and be trans-
formed to counts matrix for the downstream analysis.
Therefore, all datasets in our simulation studies are counts
data.
The first four simulation studies are conducted follow-

ing the steps of Robinson and Oshlack (2010) [15]. We
consider the simulation data either with or without bio-
logical replicates, and with or without heterogeneity. Note
that edgeR, HTN, DESeq and NOISeq need to normalize
data beforehand, whereas Library Size directly tests the
data without normalization. For the last two simulation
studies, the simulation data are generated by the func-
tion of generateSyntheticData() in R package ‘compcodeR’
[29]. In these two studies, we consider the simulation data
with or without heterogeneity. The six different simula-
tion designs are summarized in Table 2.
We first consider the non-heterogeneous data with-

out replicates in Study 1. The simulation data have only
one scaling factor, and each condition includes only one
sample as the non-heterogeneous data without replicates.
The parameters are set as follows. In this case, excluding
the uniquely expressed genes, we generate 15,000 genes
for the two conditions, and the proportion of DE genes
π0 changes from 0.3 to 0.7 by steps of 0.2. Of those
DE genes, 90% show 2 log-fold (base 2) up-regulation
in the second condition. To mimic real data, we anal-
ysed two real datasets which have been introduced in
“Background” section, and calculated the number of pos-
sibly uniquely expressed genes in different organs or
species in Supplementary Table S1. For the same species,
the RNA-seq short counts are from the liver and kidney
[25], which including 5 biological replicates for each sam-
ple. There are 508 unique genes in kidney and 1099 unique
genes in liver, which may affect the result of the model.
For the different species, real data were obtained from
Brawand et al. (2011) [10], which includes two groups of

https://github.com/FocusPaka/NIMEB
https://github.com/FocusPaka/NIMEB
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Table 2 Simulation designs for the Studies 1-6

Simulation methods Non-heterogeneity Heterogeneity Methods

Without Study 1 Study 2 SFMEB,

Robinson and Oshlack (2010) [15] replicates Library Size,

With Study 3 Study 4 edgeR,

replicates HTN,

Soneson and Delorenzi (2013) [29] With Study 5 Study 6 DESeq,

replicates NOISeq

orthologous transcripts of humans and mice. There also
exist 833 unique genes in human and 987 unique genes in
mouse. It is clear that the numbers of possibly uniquely
expressed genes in each sample are about 3% ∼ 6%. Thus,
in this simulation study, we set uniquely expressed genes
for two conditions as uuu = (1000, 500).
Unlike in Study 1, we consider heterogeneous data with

two scaling factors in Study 2. We obtain the heteroge-
neous dataset by generating two groups of data in the
same way, and we then combine them into one dataset.
The first dataset includes 15,000 genes. Of these, 60% are
DE genes at the 2 log-fold level. Of that 60%, 90% are
up-regulated in condition 2. The uniquely expressed gene
number is uuu = (1000, 500). The second dataset includes
10,000 genes, and we gradually changed the proportion of
DE genes from 0.1 to 0.5 by steps of 0.2. This revealed that
10% of the DE genes showed a 3 log-fold upregulation in
condition 2. The number of uniquely expressed genes for
the two conditions in the second data is uuu = (800, 1500).
In Study 3, we test the performance of all the methods

for the non-heterogeneous data with biological replicates.
We fix G = 15, 000, π0 = 0.6, p2 = 1, d = 2 and uuu =
(1000, 800), and we consider the case in which the number
of biological replicates under the two conditions changes
from 2 to 8 by step 3.
The forth study considers the heterogeneous data with

replicates. Following the same steps as in Study 2, we also
have two datasets and equal numbers of biological repli-
cates in Study 4. In the first dataset, we have G = 15, 000,
π0 = 0.6, p2 = 0.9, d = 2, and uuu = (1000, 800). In the
second dataset, the parameters are set as G = 10, 000,
π0 = 0.4, p2 = 0.1, d = 3, and uuu = (2000, 1000).
The number of biological replicates varies from 2 to 8 by
step 3.
In the last two studies 5 and 6, data are generated by an

RNA-seq data simulator (compcodeR::generateSyntheticData()).
Similarly, in Study 5, we consider the non-heterogeneous
data with biological replicates. The simulation data
are generated from negative binomial (NB) distribu-
tion with varied logFCs. In Study 6, we generate
the heterogeneous data with replicates. The data are
obtained by two combined datasets sampled from NB
distribution.

In Study 5, we generate 15,000 genes in two conditions,
and each condition has two samples. There are 60% DE
genes at the no less than 3 log-fold level, and all the DE
genes are up-regulated in condition 2. The number of bio-
logical replicates varies from 2 to 8 by step 3. We consider
the dataset with two scaling factors in Study 6. The param-
eters are set as follows: in the first dataset, we have 15,000
genes, and 60% are DE genes at the no less than 2 log-fold
level. All the DE genes are up-regulated in condition 2. In
the second dataset, we have 10,000 genes, and 40% are DE
genes at the no less than 3 log-fold level, of which 10%
are up-regulated in condition 2. Likewise, the number of
biological replicates varies from 2 to 8 by step 3.

Evaluation criteria
We assess the performance of the proposed SFMEB
method using the area under a receiver operating char-
acteristic (ROC) curve (AUC). Note that many popular
criteria, like FDR, Precision, Sensitivity and Specificity, are
strongly influenced by the choice of thresholding values.
The significance level for differential expression

between conditions is used to rank the genes from the
most to the least significant. We then plot the receiver
operating characteristic (ROC) curve, where the horizon-
tal ordinate is the false positive rate (FPR) and the vertical
coordinate is the true positive rate (TPR). The area under
the ROC curve is computed as the AUC, and a larger
AUC value indicates the overall discriminating ability.
For SFMEB, we use the distance between the point to
the decision hypersphere in feature space to measure the
significance level of a gene being a DE gene. The distance
can be positive or negative, depending on whether it is
outside the hypersphere or not. Thus we can rank the
genes based on the signed distance, and the larger the
distance is, the more possible is the gene a DE gene. For
Library Size, edgeR, HTN and DESeq, we use estimated
p-values for ranking. For NOISeq, the genes are ranked
by the estimated probabilities of the genes being DE
genes.

Simulation results
Each simulation study is repeated 20 times, and the aver-
aged performance for six methods, along with various
parameters, are reported in Figs. 2, 3, 4, 5 and 6. More
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Fig. 2 In Study 1, the simulation data are non-heterogeneous without replicates. The AUC values of six methods are shown when the proportion of
DE genes varies from 0.3 to 0.7 by steps of 0.2

simulation results can be found in Supplementary Figures
S3-S10. Simulation data for Supplementary Figures S3-S6
are generated by the method in Robinson and Oshlack
(2010) [15]. S3-S4 for non-heterogeneous data without
biological replicates, in Supplementary Figures S5-S6 for
heterogeneous data without biological replicates. Simu-
lation data for S7 are generated by an RNA-seq data
simulator (compcodeR::generateSyntheticData()). In S8-
S10, we compare the overall performance of six methods
under six studies.
Study 1 investigates the ROC and AUC performances

for non-heterogeneous data without replicates. Figure 2
plots the AUC values of six methods when the propor-
tion of DE genes varies from 0.3 to 0.7 by steps of 0.2.
SFMEB method shows its superiority over other methods
when the proportion is over 50%. Supplementary Figures
S3 and S4 show the discrimination results for six methods.
Each point in the plot represents a gene, the coordinates
of point are the counts of gene in two samples. For clar-
ity, we only display the genes whose read counts are no
greater than 600. When the proportion of DE genes is
small, DESeq and NOISeq perform better for the detec-
tion of true negative genes, but they yield higher false

negatives when the proportion is 0.6. Therefore, SFMEB
outperforms other methods when the proportion of DE
genes is large.
Study 2 investigates the heterogeneous data including

two scaling factors without biological replicates. Figure 3
shows the AUC values of the six methods when the pro-
portion of DE genes in one of the datasets changes to
0.1, 0.3, and 0.5. The figure shows that the performance
is better with SFMEB than with the other methods in
this case. Supplementary Figures S4 and S5 show the dis-
crimination results. The performance of Library Size is
generally unsatisfactory, as DESeq yields a large number
of false negative genes, edgeR and HTN become ineffec-
tive at detecting genes when the number of false positives
increases and NOISeq performs better with a smaller pro-
portion of DE genes. Likewise, SFMEB performs the best
with heterogeneous data when the proportion of DE genes
is large.
We also mimic the real scenarios by generating data

with biological replicates in Studies 3 and 4. We anal-
yse non-heterogeneous data with replicates in Study 3.
Figure 4 shows that the AUC values are much larger
for SFMEB than for the other methods under different
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Fig. 3 In Study 2, the simulation data are heterogeneous, with two scaling factors, and without biological replicates. The proportion of DE genes in
one of the datasets is fixed at 0.6, and the AUC values of six methods are shown when the proportion of DE genes in another datasets changes to
0.1, 0.3, or 0.5

number of biological replicates. In summary, SFMEB is
a good method for handling data with biological repli-
cates. Study 4 considers heterogeneous data including two
scaling factors with biological replicates. Figure 5 shows
the AUC boxplots for six methods when the number of
biological replicates equals to 2, 5, and 8. The AUC per-
formance of SFMEB confirms the same conclusions with
Study 3.
The simulaiton data analysed in Studies 5 and

6 are generated by an RNA-seq simulator (comp-
codeR::generateSyntheticData(), Soneson et al. [29]). In
Study 5, we consider to generate the non-heterogeneous
data with biological replicates by the new RNA-seq sim-
ulator. Figure 6 shows the AUC values of six methods for
different number of biological replicates in each condi-
tion. The six methods have a stable performance in this
case, and SFMEB shows its superiority over other meth-
ods for different number of biological replicates. In Study
6, we consider the heterogeneous data including two scal-
ing factors with biological replicates that generated by a
NB distribution. Similarly, we compare the performance
of six methods for the different number of biological

replicates, and the results are shown in the Supplementary
Figures S7. We also find that SFMEB performs better than
the other methods for different number of replicates.
In each simulation study, we compare the performance

of six methods for the different logFC values and the dif-
ferent proportions of up-regulated in all DE genes. Sup-
plementary Figure S8 shows that the ROC curves of six
methods when simulation data are non-heterogeneous
and without replicates (Study 1), and under different
logFCs and different up-regulated proportions. In this
case, SFMEB performs better for a higher logFC or
a higher proportion of up-regulated in all DE genes.
Besides, SFMEB has a robust performance for varied
logFCs and up-regulated proportions. In Supplementary
Figure S9, we compared that for six different simulation
datasets, the performance of six methods when the value
of logFCs equals to 1, 2, and 3. Panels A to F are cor-
responding to the six studies in the simulation studies.
The data in panels A to D are generated by a Poisson
distribution [15], and the data in panels E and F are
generated by a negative binomial distribution [29]. In
summary, compared with the other five methods, SFMEB
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Fig. 4 In Study 3, the simulation data are non-heterogeneous with replicates. The AUC values of six methods are shown under the different number
of biological replicates

performs more robust with varied logFC values, and out-
performs other methods with larger logFC values. Espe-
cially, SFMEB method shows its superiority over other
methods for two scaling factors data. Supplementary
Figure S10 shows the AUC performances of in six stud-
ies under different proportion of up-regulated genes. For
the case of 50:50 odds, SFMEB performs a little worse
than the other methods for one scaling factor. For the
case of 70:30 odds, SFMEB is comparable with the best
performance HTN method for one scaling factor. How-
ever, our proposed method is much better than the other
methods for the case of 90:10 odds. For two scaling fac-
tors, the SFMEB method outperforms the other methods
with different ratios of up-regulated genes. In total, the
proposed method has a robust performance in a balance
proportion of up-regulated genes and outperforms other
methods with a higher proportion of up-regulated genes
in one condition. Note that, the data with a higher pro-
portion of up-regulated genes in one condition or with
a higher value of logFC will inflate the library size of
the up-regulated group, which has a great impact on the
performance of library-based methods, leading to poorer
results for methods that normalise based on library size.

Simulation with different species
We used the same simulation setup describe by Robinson
et al. [15] to generate a dataset for two species. We com-
pared SFMEBwithMedian [10] and SCBN [12]. Note that,
except for DE and non-DE orthologous genes, we also
include unmapped genes, which represent genes that only
exist in one of the species; these are denoted by a vector s.
Here, we generate two groups of datasets by only consid-
ering heterogeneous data including two scaling factors in
the different species. In the first dataset, let G = 12, 000,
π0 = 0.4, p2 = 0.1, d = 3, uuu = (1000, 1200), and
sss = (1000, 800). In the second dataset, let G = 10, 000,
p2 = 0.9, d = 2, uuu = (2000, 1000), and sss = (3000, 2000).
The proportion of DE orthologous genes changes from 0.3
to 0.7 by step 0.2.
Supplementary Figure S11 displays the AUC values of

three methods when the proportion of DE orthologous
genes equals to 0.3, 0.5, and 0.7. Compared with other
two methods, SFMEB has a relatively higher AUC value.
The discrimination result in Supplementary Figure S12
shows that Median and SCBN have more false positive
genes; however, SFMEB has less false positive genes and
more false negative genes. Therefore, SFMEB performs
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Fig. 5 In Study 4, the simulation data are heterogeneous, with two scaling factors, and with replicates. The AUC values of the six methods are shown
when the number of biological replicates equals to 2, 5, and 8

best at precise discrimination between DE and non-DE
genes.

Real data analysis
In this section, we apply the proposed SFMEB method to
analyse a liver and kidney [25] dataset for the same species
and human and mouse [10] dataset for different species.
We compare its performance with other existingmethods.
For the liver and kidney [25] RNA-seq count data, there

are two tissues of a male, each of which includes 5 biologi-
cal replicates. The RNA-seq short reads are sequenced by
Illumina sequencing platform and thenmapped to the ref-
erence genes. We consider that 10% of the housekeeping
genes are DE genes, so we finally obtain 1681 DE genes
with the SFMEB method. For Library Size, edgeR, HTN
and DESeq, we also regard the 1681 genes with the small-
est p-values as DE genes. For NOISeq, the 1681 genes
with the largest probabilities are considered DE genes. We
then use these 1681 DE genes detected by each method to
report the number of false detected housekeeping genes.
In addition, we report the number of false detected in
the 500 and 1000 most significant DE genes. Compar-
ison with the other five methods in Table 3 confirms

that SFMEB detects the smallest number of housekeeping
genes in the detected DE genes in all three cases, leading
to the smallest FDR. Note that SFMEB performs better
than other methods with the criteria, because it builds the
model by identifying outliers compared to housekeeping
genes. There may be a biases comparison since we have
no ground truth in real data analysis. Whatever, one of the
key advantages of SFMEB is that one can control the type
I error and ensure a lower FDR.
Next, we consider the computational cost of six meth-

ods for DE gene detection. Supplementary Table S2 shows
the CPU time (seconds) of all methods for different sam-
ple sizes in the real data of liver and kidney [25]. Com-
pared with othermethods, the SFMEBmethod spends less
time, especially for larger sample size. HTN will spend
much more time than the other methods, which may be
caused by the process of calculating scaling factor for each
sample to the reference sample.
Finally, we assess the biological function of the detected

DE genes to compare the accuracy of six methods. We
first take pairwise comparisons for the six methods. The
results of overlapping genes are shown in Supplemen-
tary Figure S13. Note that SFMEB detects less common
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Fig. 6 In Study 5, the simulation data are non-heterogeneous with biological replicates, and data are generated by an RNA-seq simulator
(compcodeR::generateSyntheticData(), Soneson et al. (2013)). The AUC values of the six methods are shown under the different number of
biological replicates

genes compared with the other methods. In fact, SFMEB
employs a completely different method for detecting DE
genes, and this also enables us to find different signifi-
cant DE genes. In this paper, we consider the comparison
between SFMEB and the other methods, as shown in the
first line of Supplementary Figure S13. We exclude the
overlapping genes and analyse the rest of genes detected
by eachmethod as the 200most significant genes to deter-
mine howmany are related to illness, liver and kidney, and
how many are related to liver or kidney. The biological
function of each gene could be inquired at the NCBI web-
site [28]. The pairwise comparison results of the biological
function of the detected significant genes between SFMEB
and the other five methods are shown in Fig. 7. SFMEB
clearly finds more related genes compared with the other
five methods. In particular, some important genes are only
detected by SFMEB. These include ‘ENSG00000146648’,
which is associated with lung cancer, ‘ENSG00000129675’,
which can cause X-chromosomal non-specific cognitive
disability, and mutations in ‘ENSG00000012048’, which
are responsible for approximately 40% of inherited breast
cancers and more than 80% of inherited breast and

ovarian cancers. The biological functions of the uniquely
detected significant genes between SFMEB and the other
five methods are presented in Additional file 2. The results
show that SFMEB provides a more accurate DE gene
detection in real data of the same species.
For human and mouse RNA-seq counts data, each

species has two groups of orthologous transcripts, which
were obtained by using the mRNA-seq Sample Prep Kit
(Illumina) platform with paired-end sequencing [10]. We
apply a similar analysis process as same species and detect

Table 3 The number of detected housekeeping genes in the
most significant 500, 1000, and 1681 DE genes for the six methods

Number of DE genes 500 1000 1681

SFMEB 6 13 43

Library Size 17 33 52

edgeR 13 27 54

HTN 13 27 54

DESeq 12 30 55

NOISeq 14 28 49
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Fig. 7 The pairwise comparison between SFMEB and the other five methods for the 200 most significant DE genes, excluding common genes. The
barplots show the number of genes related to illness, liver and kidney (Related), the number of genes related to liver and kidney (Related_LK), and
the number of genes unrelated to illness, liver or kidney (Unrelated)

more DE genes by setting the reject rate at 20% for the
training data, for a final detection of 4389 DE ortholo-
gous genes. Likewise, we compare the number of con-
served orthologous genes that are included in the detected
4389 DE genes, as well as in the 500 and 1000 most
significant genes. The results are shown in Supplemen-
tary Table S3. SFMEB identifies the smallest number of
known conserved orthologous genes and therefore has
the smallest FDR. We then analyse the biological function
of the 200 most significant genes that exclude common
genes. Supplementary Figure S14 shows the number of
common genes detected by at least two methods and
the genes that were only detected by one method. The
pairwise comparison results for the biological function
of the detected significant genes between SFMEB and
Median and SCBN are shown in Supplementary Figure
S15. Similarly, SFMEB detects more genes related to ill-
ness or evolution, such as ‘ENSG00000131095’ that can
cause Alexander disease, ‘ENSG00000128656’ that is asso-
ciated with Duane’s retraction syndrome 2 (DURS2),
‘ENSG00000165795’ that is involved in glioblastoma car-
cinogenesis, and ‘ENSG00000197746’ that is associated
with Gaucher disease andmetachromatic leukodystrophy.
These genes are not included in the 200 most signifi-
cant genes detected by other two methods. The biological
functions of the uniquely detected significant orthologous

genes between SFMEB and the other two methods are
presented in Additional file 3.

Discussion
High-throughput sequencing is an advanced technology
for conducting biological research; however, detecting DE
genes between the same or different species is still a chal-
lenge. DE analysis tries to find a set of genes for classifi-
cation or identification of the features that corresponding
to the interested biological phenomenon. Although sev-
eral methods have been proposed to detect DE genes
in the same species, the demand for DE gene detection
in different species continues to increase, including the
exploration of gene evolution in mammalian organs [10]
and the comparison of medicine effect of gene expression
levels [30–33].
The data for the same and different species have a

different structure; therefore, the existing method for
the same species cannot be directly applied to different
species. Furthermore, systematic variation, such as biolog-
ical replicates and heterogeneity, makes the real data more
complicated.We have used datasets of same species (Liver
and Kidney) and different species (Human and Mouse),
to illustrate one of the complex scenario in real data. We
found that heterogeneity is very common in real data,
which has a huge influence on the normalization methods
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that based on only one scaling factor. Therefore, a method
to solve these problems is urgently needed.
One of the advantage of the proposed SFMEBmethod is

that not necessary to normalize data, which is particularly
attractive when the RNA-seq data include more than one
scaling factor. Bying treating DE genes as outliers, SFMEB
transforms the DE gene detection to an outlier detection
problem. And SFMEB only uses a small set of stable genes
(eg. housekeeping gene or conserved orthologous gene)
to build the model. This property enables SFMEB to deal
with heterogeneous data or data with biological replicates.
Simulations are further conducted to evaluate the per-

formance of SFMEB in a broad range of possible settings.
We have the following findings. First, SFMEB method
outperforms the other methods in most cases, especially
when the proportion of DE genes is large, the data are
heterogeneous or biological replicates are present. Sec-
ond, SFMEB method can set the reject rate in the training
data, and thus control the type I error and ensure a lower
FDR. Third, SFMEB method could be easily extended
to different species without normalizaiton. The real data
analysis also confirms the performance of the proposed
SFMEB method in both the same species and different
species. However, note that there are also some limita-
tions of SFMEB model: firstly, it provides a dihcotomic
separation of results instead of a score, such as a p-value
or adjusted p-value; secondly, it depends on the choice of
some parameters (such as the parameter C and ν in the
model).

Conclusions
In this paper, we propose a scaling-free minimum enclos-
ing ball (SFMEB)method for detecting DE genes for RNA-
seq data. Exploiting this SFMEB method allows ready
detection of DE genes in same species as well as in differ-
ent species without normalization. To satisfy implication
requirement, we developed a R package MEB, with source
code available at bioconductor website. The practition-
ers can use this method to detect DE genes based on the
information of the given RNA-seq dataset and a small
set of stable genes (eg. housekeeping gene or conserved
orthologous gene).
The proposed method is better at detecting DE genes

in some cases; however, some problems remain, such as
the selection of the reject rate. In addition, the SFMEB
method is insensitive when the data only include a small
part of the DE genes and when biological replicates are
lacking. These issues still need further consideration in
our future work.

Methods
Notations
Let G be the set of all genes, and let G0⊂G denote a small
set of known non-DE genes, such as housekeeping genes.

Let {xij} be the observed count of short reads of gene i in
condition j, where 1 ≤ i ≤ |G|, and | · | represents the
number of elements in a set, generally, j = 1, 2. If multiple
reads are made for each condition, they can also be rep-
resented as a vector xxxi, which represents the expressions
of gene i in all conditions. We further assume the non-DE
genes are similar so that there exists a mapping, possi-
bly nonlinear, φ that maps xxxi into a feature space, where
non-DE genes can be enclosed by a compact hypersphere.
Ideally, in the feature space, all non-DE genes inG are con-
tained in the ball, and those genes outside the enclosing
ball can be identified as DE genes.

Scaling-free minimum enclosing ball method
Given a set of non-DE genes G0, the scaling-free mini-
mum enclosing ball (SFMEB) method finds a smallest ball
B(ccc,R) containing all themapped non-DE genes in the fea-
ture space, where ccc is the center of the enclosing ball and R
is the radius. For a hard margin ball, all the non-DE genes
must be contained within the ball. This can be formulated
as

min
ccc,R

R2

subject to ||φ(xxxi) − ccc||2 ≤ R2, for any xxxi ∈ G0,
(1)

where φ is the implicit mapping function that maps xxxi to
the feature space.
However, in reality, enforcing the inclusion of all non-

DE genes in the enclosing ball is often too restrictive and
leads to a large value of R and, thus, a large false negative
rate in terms of identifying DE genes. Therefore, a more
appropriate approach is to allow some non-DE genes to
lie outside the enclosing ball, as this leads to the SFMEB
method with soft margin.
The key idea of a soft margin is to introduce a set

of nonnegative slack variables which indicate the out-
liers of non-DE genes lying outside the enclosing ball.
More specifically, the proposed SFMEB method with a
soft margin can be formulated as

min
ccc,R,ξ

R2 + C
∑n

i=1 ξi,

subjuct to ||φ(xxxi) − ccc||2 ≤ R2 + ξi,
ξi ≥ 0, i = 1, 2, · · · , n,

(2)

where ξi is the slack variable, and C is a tuning parameter
controlling the ball radius and the number of errors. The
Lagrangian of the primal problem (2) can be written as

L(ccc,R, ξ ,α,β) = R2 + C
∑n

i=1 ξi + ∑n
i=1 αi(||φ(xxxi) − ccc||2

−R2 − ξi) − ∑n
i=1 βiξi,

(3)

where αi ≥ 0 and βi ≥ 0 are the Lagrange multipliers.
By the duality principle, the dual problem of (2) is

max
α,β

min
ccc,R,ξ

L(ccc,R, ξ ,α,β). (4)
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We first calculate the minimum of L(ccc,R, ξ ,α,β) in terms
of ccc, R and ξ , and we have

ccc =
n∑

i=1
αiφ(xxxi). (5)

Plugging formula (5) into (4), we obtain the equivalent
dual form

min
α

∑n
i=1

∑n
j=1 αiαjK(xxxi,xxxj) − ∑n

i=1 αiK(xxxi,xxxi)
subject to

∑n
i=1 αi = 1,
0 ≤ αi ≤ C, i = 1, 2, · · · , n.

(6)

where K is a kernel function satisfying K(xxxi,xxxj) =
φ(xxxi)Tφ(xxxj). Note that the optimization problem in (6) is
a typical quadratic programming (QP) task that can be
solved by many standard QP packages. Furthermore, by
the Karush-Kuhn-Tucker (KKT) condition, R̂2 = ||φ(xxx∗

i )−
ccc||2, where xxx∗

i is support vector.
By solving (6) for α̂i, we obtain the decision function of

the SFMEB method

f̂ (xxxi) = ||φ(xxxi) − ĉcc||2 − R̂2

= K(xxxi,xxxi) − 2
∑n

j=1 α̂jK(xxxi,xxxj)
+ ∑n

i=1
∑n

j=1 α̂iα̂jK(xxxi,xxxj) − R̂2.
(7)

The gene is regarded as a DE gene if f (xxxi) > 0 and as a
non-DE gene otherwise.
One of the key advantages of the proposed method is

that it does not require normalization of the raw data in
advance, so it circumvent the difficulties of inappropriate
normalization and other complex matters with more than
two scaling factors. This flexibility means that the SFMEB
method can be easily extended to handle the detection of
DE genes in different species.
Generally, we use the radial basis function (RBF) as a

kernel function,K(xxxi,xxxj) = exp(−ν||xxxi−xxxj||2), with a scale
parameter ν. For the QP problem of (6), we have tuning
parameters ofC and ν. We can simplify the tuning process
by fixing C=0.1 and selecting ν by a grid search in (0, 1).
In order to control the scale of the ball in the feature space,
we also need to set the reject rate, which represents the
proportion of non-DE genes in the training data that will
be regarded as DE genes. In real data, we usually set this
parameter according to the complexity of data: the more
complex the data, the larger the reject rate. In this paper,
we set the reject rate as 10% in most cases. Supplementary
Figure S16 shows the error rates of training data and test
data in a simulation data when fixing the parameter C as
0.01, 0.1, and 1, separately, and selecting the value of ν in
(0, 1) by the same steps. Apparently, it is more reasonable
to set C as 0.1 to ensure the best test error when taking
10% training error (10% reject rate).
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