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Abstract

Background: Direct-sequencing technologies, such as Oxford Nanopore's, are delivering long RNA reads with great
efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a
single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this
potential requires new tools to analyze and explore this type of data.

Result: Here, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore
sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to
import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities,
and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by
generating and analyzing ~ 500k reads from direct RNA sequencing data of human Hela cell line. We focus on
comparing signal features from m6A and m5C RNA modifications as the first step towards building automated
classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters,
we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative
signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to
discover from the visualization.

Conclusions: Sequoia’s interactive features complement existing computational approaches in nanopore-based
RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses,
and insights into the dynamic nature of RNA. Sequoia is available at https://github.com/dnonatar/Sequoia.
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Background

In recent years, several studies have led to the discovery
of dynamic chemical modifications of nucleotide RNA
bases, which are changes that are increasingly seen as
key switches in the metabolism of RNA [1-3]. While
modifications like pseudo uridine (y) and internal N6-
methyladenosine (m6A) in mRNAs have been known for
decades [4], lack of efficient detection and analysis tech-
niques limited their transcriptome-wide profiling, im-
peding the field of epitranscriptomics.

Single-molecule, long-read sequencing technologies
from Oxford Nanopore Technologies (ONT), however,
is enabling cost-effective RNA sequencing. The MinION
from the ONT, for example, records changes in the
current across the nanopore as an RNA molecule passes
through a nanopore. The current disruption is sensitive
to the characteristic of the moiety passing through the
pore, making it possible to detect modifications at
single-base level. However, developing tools that can
automatically detect such modifications is a challenge,
since it requires an understanding of signal features that
discriminate modified from non-modified bases. Al-
though such analyses can greatly benefit from visual in-
spection of signal features currently there are limited
tools and resources which can facilitate the visual ex-
ploration of the signal space, impeding the development
of computational models for single molecule mapping of
modifications.

Recently multiple packages and frameworks became
available for analyzing and visualizing nanopore sequen-
cing data (e.g. poRe [5], poretools [6], HPG Pore [7],
NanoPack [8], NanoPipe [9], and NanoR [10]), however
most of these existing tools are primarily designed to
provide summary visualizations or descriptive statistics
of an overall run. These tools provide limited support
for analyzing signal features at a detailed level. There is
thus an unmet need for new visualization techniques to
enable detailed visual exploration of ONT signal charac-
teristics while supporting the comparison of large multi-
ples of signals. Even though tools that enable users to
explore signal information do exist, such as SquiggleKit
[11], which enables users to compare raw signal traces
with a given nucleotide sequence using the dynamic
time warping algorithm, they do not allow users to look
into the individual signal instance of each read, nor ren-
der options to observe signal clusters based on signal
similarity.

In this study, we present Sequoia, a visualization tool
for exploring signals generated by the ONT. Sequoia
was specifically designed to aids users in interactively ex-
ploring nanopore current signals underlying RNA se-
quences with the aim of finding features that
differentially discriminate modified from unmodified
bases. The tool enables users to directly import Fast5
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files generated by the ONT and employs dynamic time
warping to cluster signals based on the similarity of their
electric current or the sequences they represent as iden-
tified by base-calling algorithms. Sequoia provides a
multi-view interface for nanopore signal analysis at both
an overview and very detailed level. The software con-
sists of a command-line Python-based component for
data processing and a visualization that can be run
within a web browser. We deploy the Sequoia pipeline
to compare nanopore RNA signal data of modified and
unmodified bases. We show how interactive visualization
enables the discovery of qualitative signal that discrimin-
ate m6A and m5C modifications from otherwise non-
modified RNA bases. Qualitative insights unearthed
through Sequoia can suggest features for building auto-
mated modification-prediction techniques, paving the
way for high-throughput profiling of epitranscriptomic
events.

Methods

Sequoia is an interactive platform for nanopore sequen-
cing data, which not only facilitates an intuitive
visualization but also enables an efficient feature extrac-
tion from nanopore sequencing datasets. Sequoia allows
comparison of signal instances across various 5-mers
and further analyze them in detail to develop a profound
understanding of user defined datasets. Initiated via
command-line, the long-read data generated from Nano-
pore goes through a series of backend data processing
steps. As seen in Fig. 1A, the user input Fast5 files are
parsed into a table of 5-mers and their corresponding
signal instance pairs using Sequoia’s signal extraction
script implemented in Python (see Backend: computa-
tional framework). Furthermore, to compute a similarity
matrix that compares every pair of 5-mers (Fig. 1B), a
dynamic time warping algorithm is deployed using the
Python package called ‘dtaidistance’ (https://doi.org/10.
5281/zen0do.3981067). Each value in the similarity
matrix is the quantification of similitude between any
two given signal instances. A lower similarity score indi-
cates more resemblance while a higher score indicates
more contrast, thereby leaving all the diagonal values of
the similarity matrix as zero since each signal instance is
being compared to itself (see Backend: computational
framework). Once the preprocessing is completed, Se-
quoia’s visualization (implemented using Javascript’s li-
brary D3.js) can be visualized using a web browser (see
GitHub page for detailed instructions). Sequoia’s inter-
face consists of multiple visualizations, each depicting a
different level of insight about the input data. Sequoia
generates a box/violin plot showing similarity score dis-
tributions within each 5-mer, a t-SNE plot (implemented
using tsne.js) illustrating similarity between signal in-
stances of up to four user-interested 5-mers, and a line
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Fig. 1 Sequoia’s workflow showing: A Nanopore based single molecule sequencing, B Extracting signals corresponding to successive 5-mers from input Fast5
file, C Constructing a similarity matrix by computing a similarity score for every pair of signal instances using the dynamic time warping algorithm, subset
showing DTW based distance between signals being compared, D Displaying homogeneity of signal instances within each 5-mer through box and violin plots
based on the summary statistics of the similarity matrix (E) lllustrating variabilities among signal instances across multiple 5-mers via t-SNE plot
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graph displaying the selected signal instances, a snippet
of which can be seen in Fig. 1C. The box and violin plots
are the representation of how uniform the signal in-
stances for each 5-mer are. If the median and distribu-
tion are closer to zero, it implies that the corresponding
signals instances of that 5-mer are homogenous. On the
other hand, the t-SNE plot on Sequoia can be used to
compare signal instances from up to four unique 5-
mers. Signal instances with relatively low similarity
scores will be clustered together, while signal instances
with relatively high similarity score will be distinguish-
ably further. Figure 1D and E show the steps where sev-
eral statistics are computed, including current averages,
medians, and t-SNE projections. These statistics are then
used to generate the visualizations.

Backend: computational framework

Nanopore sequencers generate Fast5 files from se-
quenced reads, where Fast5 is an hdf5 based hierarchy
of directories containing events table, signal information,
and other metadata as seen in Supplementary Fig. 1. The
events table has successive 5-mers annotated with the
indexes of the pertaining values from the signal list.
Where, the signal list is an array of electric current
values indexed in tandem with the events table (see Sup-
plementary Fig. 1). To process the raw Fast5 data from
the Oxford Nanopore sequencer, we developed Python
scripts to extract and reformat the signal information for
further analysis and visualization.

Input file preprocessing and signal extraction

The Sequoia pipeline starts by submitting a
Nanopore-generated Fast5 file through a Python-
based command-line script. The script parses and ex-
tracts the electric current signals for each consecutive
5-mer in the full-length read. This is achieved by
extracting the observed electric time-series within a
five-nucleotide window. The window is then slid by
one nucleotide to the right to obtain the signal for
the next 5-mer’s. The process repeats until reaching
the end of the read, effectively annotating all overlap-
ping 5-mers in that read. Note because the electric
signal for a 5-mer is determined by ‘start’ and ‘stop’
indices in the Nanopore event table, the 5-mers may
have different signal length. We refer to each signal
(corresponding to a single 5-mer) as a ‘signal in-
stance’. The cumulative list of signals (representing all
5-mers) is hereafter referred to as the ‘cumulative sig-
nals’ (see Supplementary Fig. 1). The output cumula-
tive signals are then fed into the rest of the pipeline
to compute a similarity matrix, summary statistics,
and other 5-mer specific information.
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Similarity matrix and dynamic time warping

To effectively cluster nanopore signals, we employ dy-
namic time warping to measure the similarity of 5-mers.
We compute a full similarity matrix, measuring the simi-
larity of every pair of 5-mers in the input. Each numer-
ical value in the matrix is a representation of how
similar two corresponding signals are. The smaller the
value, the more similarity there is between the two sig-
nals. Dynamic time warping enables measuring similar-
ities between two temporal sequences that may vary in
length [12]. If A and B are two nanopore current time-
series representing two 5-mers, Dynamic Time Warping
(DTW) is defined as:

A =a;, a, az,....., Ay (1)

B =b;, by, bs,......;bn (2)

Cost(w) = > _d(w) (3)
k=1

DTW (A, B) = min(Cost(w)) (4)

Where wy is the matrix element belonging to the k™
element of the warping path W that represents a mapping
between A and B [12]. In other words, dynamic time
warping works by warping sequences A and B to A* and
B* such that the dissimilarity (i.e. cost) between A* and B*
is minimized. “Warping” includes edits, such as expanding
or contracting the timeseries, in order to find the best
alignment between the two signals. If the penalty is not
zero, each edit will be considered a cost. Specifically, the
penalty term will be added to Eq. (3) as follows.

K

Cost(w) = > d(wi)+p Y I (5)
k=1

k=1

Where p is the specifiable penalty that will be added
each time an expansion or contraction occurs (i.e. when
I =1, otherwise I =0).

Our use of DTW is motivated by the fact that it offers
more tolerance in comparing signals, compared to a
straight matching criterion. Additionally, DTW allows
for measuring similarity between signals of different
lengths, which is necessary in our case, given that 5-
mers could have signals that vary in length, which is de-
termined by the time needed for the molecule to pass
through the nanopore. The constructed similarity matrix
comprises the raw signal similarity between every pair of
5-mers found in the run. The matrix serves as an input
to the clustering algorithm and visualization.
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Frontend: visualization

Interface components

The Sequoia interface consists of a multi-view

visualization with several, interactive visual representa-
tions. The initial interface consists of a data selection
textbox used to upload a preprocessed file and the 5-
mer list displaying all 5 nucleotide sequences contained
in the file. The charts include a t-SNE plot that visually
displays the resemblance of the signal instances in se-
lected 5-mers, a box or violin plot which depict the uni-
formity across the signal instance of a 5-mer, and a raw
signal graph which superimposes signal instances from
various 5-mers for comparison. Figure 2 illustrates the
various components; each will be described in detail.

i) Data Selection Widget:

The user initiates the visualization by providing the in-
put directory containing the preprocessed Nanopore
files, and then clicking the ‘choose’ button, as shown in
Fig. 2A. If no directory is provided, Sequoia by default
looks for a directory named ‘data’. Multiple directories
can be specified by typing them one by one in a textbox
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between different datasets, or between different dynamic
time warping parameter settings.

ii) 5-mer List:

To illustrate the uniformity of signals within 5-mers, Se-
quoia plots distributions of time warping distances (i.e.,
signal dissimilarity) in the form of box or violin plots, and
ranks those plots in a scrollable list, as seen in Fig. 2E. The
distribution of distances is shown by 5-mer, giving the
user an overview of signal consistency within each 5-mer
class. For instance, in the box plot view in Fig. 2E, the user
observes that the distribution of distances for 5-mer
GCCAC is generally narrower than 5-mer CTCCC, imply-
ing that the latter exhibits more variation in the shape of
its signals. The user can interactively switch between box
and violin plot via a drop-down menu shown in Fig. 2B.
The 5-mers can also be ranked alphabetically, or based on
the median distance amongst the signal instances (5-mer
with higher signal uniformity appear higher in the list), as
illustrated in Fig. 2C. Moreover, the list of 5-mers can be
filtered by typing the label of a 5-mer of interest (Fig. 2D),
which restricts the list to visualize the distribution of the

and click ‘choose’ after each, enabling comparison 5-mers matching the label. Sequoia provides an
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Fig. 2 Sequoia’s interface overlay: A Textbox for specifying input data directory, B Dropdown menu for selecting either a box or violin plot,
C Available sorting options for the box/violin plots, D Textbox for filtering box/violin plots based on 5-mer sequence, E Box/violin plots for all 5-
mers in the dataset, F Box/violin plots for the selected 5-mers, G t-SNE plot corresponding to the selected 5-mer, H Parameters for adjusting the
t-SNE plot, I Buttons for zooming in and out of the t-SNE plot, J Button for downloading selected t-SNE points, K Signal plot corresponding to
the selected points on the t-SNE plot, L Buttons for normalizing and averaging signal instances
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autocomplete for the search field. Additionally, wild card
regular expression can also be used in the search box. For
instance, an asterisk act as a wildcard for all four RNA nu-
cleotides (A, C, G, and T); typing ‘AACA* brings up
AACAA, AACAC, AACAG, and AACAT.

iii) t-SNE plot:

While the distribution plots in the 5-mer list serve as
an overview, the t-SNE plot allows a user to study each
5-mer in more detail. The plot visualizes signal similarity
on a 2D scatterplot, enabling the comparison of signals
from one or more 5-mers. Once a 5-mer is selected from
the list, points representing signals will appear in the t-
SNE plot. The positioning of the points is such that
similar signals appear relatively close to one another, as
compared to signals that exhibit a different electric pat-
tern, which are positioned further apart (see Fig. 2QG).
The positioning of points is determined by the t-SNE al-
gorithm, which is a technique for visualizing high-
dimensional data by mapping data points onto a two-
dimensional map [13], and based on the similarity
matrix using a DTW measure (See Similarity matrix and
dynamic time warping for more detail). As illustrated in,
a set of t-SNE parameters are available including the ad-
justable slide bars for the t-SNE’s perplexity, t-SNE’s
learning rate, and the circle size to be displayed on the
plot. Adjusting these parameters affects how the t-SNE
plot will display. For closer inspection of data points, the
user can zoom in onto the t-SNE scatterplot (see Fig. 2I).
Individual signals can be selected and exported from this
plot into a CSV file (Fig. 2J), which provides a way for
the user to obtain direct current values for signals of
interest.

iv) Signal plot:

The signal plots (Fig. 2K) visualize the raw signal as a
line graph representing the raw Nanopore- generated
electric current. The X-axis represents time (for the pas-
sage of through the Nanopore), whereas the Y-axis rep-
resents the strength of the current measured. Multiple
signals of the user’s choice (see Interactions across views
for more detail) can be superimposed in the signal plot,
enabling more detailed examination of signal features.
There are two dynamic options for this plot that users
can choose in between: normalized and average (Fig. 2L).
By default, each signal instance will be displayed with its
original length. A normalization option homogenizes the
length of the signals in the time dimension, enabling
comparison regardless of the time it took for the se-
quence to pass across the nanopore. The ‘average’ mode
groups signals corresponding to the same 5-mer and dis-
plays their average, rather than by individual signal. In
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addition to plotting the median signal, a shaded shows
the 25th and 75th percentile of electric current values
recorded at each time step.

Interactions across views

Up to four 5-mers can be selected simultaneously from
the 5-mer list to visualize associated data simultaneously.
Once a 5-mer is selected by clicking, its set of signals are
added to the t-SNE plot. The colors of points in the
scatterplot are consistent with the selection highlight
appearing in the box/violin plot. Brushing and linking
are also enabled between the views; selecting items from
one view will cause the other views to highlight as well.
For example, hovering over 5-mers in the list will also
cause their signals to be highlighted in the t-SNE and
signal plots, thereby revealing the clustering of signals
within 5-mer, as well as their general shape. Similarly,
hovering over a point in the t-SNE plot will highlight its
corresponding signal in the signal plot. Additionally, the
t-SNE plot also supports multiple selections; the user
can create a ‘brush’ by drawing a rectangular selection
onto the plot, causing signals within the bounding box
to be selected and highlighted.

Case studies

To demonstrate the application of Sequoia, we deployed
it over two case studies. Each of the case studies illus-
trated the differential nature of the signal from ONT
across m5C and m6A RNA modifications.

Motivation

More than 160 types of RNA modifications have been
reported, with amalgamating evidence for their role in
gene regulation, cell development, translation, metabol-
ism and stress response [14, 15]. However, m6A modifi-
cation is thought to be the most abundant of mRNA
modifications, accounting for the modification of 0.1-
0.5% of all adenosines, with a crucial role in regulating
RNA stability, expression, and localization [1, 16, 17].
Although the precise location of m6A modifications on
mRNA is still under debate, new high-throughput detec-
tion techniques point to their enrichment near 3’ un-
translated regions (UTRs) and at stop codons in long
exons [18-20]. N5-methylcytidine (m5C) modifications
of regular cytosines on RNA were originally observed in
tRNAs and rRNAs. It is now known to play a key role in
controlling the secondary structure conformation and
translation of RNAs [21]. RNA modifications affect di-
verse eukaryotic biological processes, and the correct de-
position of many of these modifications is required for
normal development [22]. Therefore, the effective detec-
tion of these modifications from direct sequencing data
could provide a wealth of useful data for understanding
functional RNA roles.
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We used Sequoia to explore modified vs. unmodified
samples in order to understand differential signals from
ONT-based long-read sequencing. Corresponding visu-
alizations were generated to establish the application,
scalability and scope of the tool.

Data generation

Cell culture Hela cell line was purchased from ATCC
cell line collection and cultured in DMEM media sup-
plemented with 10% FBS and 0.5% penicillin/
streptomycin.

Library preparation and RNA sequencing Libraries
were prepared following the Nanopore Direct RNA se-
quencing kit documented protocol (SQK-RNAO0O02).
Briefly, total RNA was isolated using Qiagen RNeasy
Mini Kit (Cat No. /ID: 74,104), followed by PolyA en-
richment using Thermo Fisher Dynabeads™ mRNA
DIRECT™ Micro Purification Kit (61,021). 500 ng of poly
(A) RNA was ligated to a poly (T) adaptor using T4
DNA ligase. Following adaptor ligation, the products
were purified using Mag-Bind® TotalPure NGS Beads
(M1378-00), following the NGS bead purification proto-
col. Sequencing adaptors preloaded with motor protein
were then ligated onto the overhang of the previous
adaptor using T4 DNA ligase followed by NGS bead
purification protocol. The RNA library was eluted from
the beads in 21 pl of elution buffer and quantified using
a Qubit fluorometer using the manufacturer’'s RNA
assay. The final RNA libraries were loaded to FLO-
MIN106 flow cells and run on MinION. Sequencing
runs and base calling were performed using MinKNOW
software (Oxford Nanopore Technologies Ltd.) The data
output from MinKNOW for Hela cell line was 800k se-
quence reads using one flow cell. MinKnow generates
data as pass and fail folders. FASTS5 files from pass folder
were again base called using Albacore 2.1.0 (Oxford
Nanopore Technologies Ltd.) resulting in 500 K single-
molecule reads for the Hela cell line which corresponded
to full-length transcripts ranging from 50b to 8 kb. The
direct RNA-sequencing data generated in this study are
publicly available on SRA, under the project accession
PRINA604314.

Data processing

Modification location-specific signal extraction To
visually compare the ONT generated signal across modi-
fied and unmodified RNA bases, we extracted 8737 gen-
omic locations for m5C and 84,149 m6A modifications
in HeLa cells from previous RNA modification studies
[23-26]. Adhoc scripts available on the github repository
of Sequioa were used to complete the location-based
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signal extraction process. Briefly, these scripts encapsu-
late the following steps. The first step of the signal ex-
traction process was to index the organization of the
Fast5 files for the HeLa dataset generated in this study.
This indexing information was fed into the downstream
to efficiently locate and navigate the Fast5 files. Simul-
taneously, we used Guppy (V 4.4.1) (https://
nanoporetech.com) to base call the Fast5 data generated
and aligned the corresponding Fastq to the hg38 human
genome using Graphmap (V 0.5.2) [27]. The resulting
sam files were then processed along with the RNA modi-
fication genomic coordinates to extract the read index
coordinates. All this information was then fed into the
in-house developed signal extraction pipeline (see Input
file preprocessing and signal extraction) to extract the
signal corresponding to the 5-mer surrounding each of
the experimentally known m5C and m6A modified loca-
tions. Similarly, signals corresponding to 5-mers for an
equal number of random unmodified genomic locations
where the middle base is a C or an A nucleotide were
also extracted for unbiased comparison.

Results
Long-read direct RNA sequencing promises a potential
to answer fundamental questions around cellular com-
ponents’ interaction and function from a transcriptomic
and clinical point of view [28, 29]. Nanopore sequencing
technology has shown particularly promising progress
on this front. As more and more research groups adopt
long-read sequencing, there is increasing need to under-
stand and develop insights about the data generated by
these technologies. Despite its rapidly expanding user
base, the tools to visualize and dissect the Nanopore-
based signal information are few. Nanopore sequencers
generate a Fast5 output, which follows a HDF5 based
organization. The current Nanopore sequencing proto-
col writes each sequenced read to a Fast5 file although
more recent protocols result in multi Fast5 files. As seen
in Supplementary Fig. 1, each Fast5 file contains an
indexed signal list, which is an array of electric current
values (referred to as signal values), and an events table
which records the signal indices pertaining to each 5-
mer. Therefore, each 5-mer will have a series of signal
values from each read, hereby referred to as signal in-
stance (see Supplementary Fig. 1). Since 5-mers repeat
in a read, each 5-mer has a consensus of signal in-
stances, hereby referred to as a 5-mer’s cumulative signal
(see Input file preprocessing and signal extraction).
Given the temporal nature of a signal instance, a tool
like Sequoia, which can emphasize the underlying in-
sights of a time series data is the need of the hour. Al-
though there are tools that specialize in visualizing time
series data, they are not necessarily suitable for nanopore
sequencing data exploration. For instance, TimeSearcher
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is a visualization tool for exploring and forecasting time
series data, but does not allow segregation of data into
groups [30]. Similarly, TimeFork is another analytics tool
for exploring and predicting multivariate time-series
data [31], which primarily focuses on the prediction of
probable sets of temporal data points rather than provid-
ing comprehensive insights about the data itself. There-
fore, we develop Sequoia, an automated framework to
visualize, compare, and analyze Nanopore-based long-
read sequencing signal information. Sequoia enables
users to load Nanopore-sequencing datasets, generate
plots that render insights into signal information, com-
pare how identical signal patterns from various 5-mers
are, and cluster signal instances with similar patterns to-
gether. An application like Sequoia will not only aid the
development of a hypothesis but will also help design
coherent experiments. Briefly, Sequoia is a pipeline de-
veloped in Python and JavaScript, which extracts and
processes the signal information for various 5-mers from
the user-defined input Fast5 files. Furthermore, these ex-
tracted signal patterns are compared across various 5-
mers using Dynamic Time Warping measure to repre-
sent signal similarity. Sequoia then uses the computed
statistics and generates a local interface to visualize them
in various formats like box plots that depict the uni-
formity across the signal instances of a 5-mer, line
graphs superimposing signal from various 5-mers, and t-
SNE plots that enable users to compare and discern sig-
nal patterns across 5-mers.

To demonstrate the extent of application and adapt-
ability of Sequoia, we extracted Oxford Nanopore-based
direct RNA-sequencing signal information for two RNA
modifications, m6A and m5C to compare them with
their respective unmodified nucleotide signals. Using
these case studies, we also wanted to demonstrate and
explore how various parameters dynamically interact
and influence the signal visualization.

Comparison of m5C and unmodified cytosine signals
illustrates the significant difference in signal length

To demonstrate the effect of one of Sequoia’s adjustable
parameters called dynamic time warping penalty, which
is the added distance when compression or expansion is
applied to match a pair of signals, we compared the sig-
nals extracted from m5C and unmodified C in the HeLa
cell line. The two datasets used in this study were from
the m5C data consisting of 19,391 5-mer with modified
‘C’ in the middle and the unmodified data consisting of
537,697 5-mer with unmodified ‘C’ in the middle. In this
study, we focused only on unique 5-mers that had at
least 100 signals in the m5C dataset. The rest of the data
was filtered out, with a final residue of 46 unique 5-
mers. Further, for each of the 46 5-mers, we randomly

Page 8 of 13

sampled 100 signals from each dataset to be compared
in the visualization.

After the preprocessing, we fed the data into Sequoia’s
backend and generated the dynamic visualizations
shown in Fig. 3. In the first attempt, the dynamic time
warping penalty was set to zero. After visualizing the
data, we decided to focus on GACCT since it was one of
the 5-mers that best showed a promising visual separ-
ation between normal and modified signals on the t-SNE
plot. It can be seen in the left plot of Fig. 3 A that the
points with homogeneous colors are locally grouped. Al-
though the initial result was satisfactory, we sought to
further improve the separation between groups.

To explore the data further, we utilized the brushing
tool for group selection, which is one of the functional-
ities provided by Sequoia. By brushing over a group of
points on the t-SNE plot (as shown in Fig. 3A), we could
see the raw signals associated with the selected 5-mers.
We observed that for the GACCT signals that we had
sampled, there was a noticeable difference in signal
lengths between the normal and modified groups. To
confirm that the length difference observed was truly
significant, we used the Welch’s t-test to test our sam-
pled data with the null hypothesis that the two popula-
tions have equal means. The resulting p-value was less
than 0.001, implying that the population means of the
two groups were not equal. The distribution plots for
both groups are shown in Fig. 3B.

After confirming the significant difference in signal
lengths of the two groups, we regenerated the
visualization. Given that the signal lengths were largely
related to the compression and expansion of signals dur-
ing the dynamic time warping process, the dynamic time
warping penalty was increased to 100, as opposed to 0 in
the previous attempt. As a result, the t-SNE plot for
GACCT successfully displayed qualitatively better separ-
ation between points representing normal and modified
signals, as shown in Fig. 3C.

Large-scale comparison of m6A and unmodified
Adenosine using Sequoia demonstrates statistically
significant differences in average signal pattern
Sequoia is tailored to answer user-defined questions
around how variations in the Nanopore signals can sig-
nal functional events or modifications in RNA se-
quences. For instance, in this case study we demonstrate
how differences in the average level of electric current
signal can be predictive of m6A modification. We show
how these differences can be surfaced by exploring the
t-SNE plot and iteratively adjusting the parameters of
the visualization.

In order to illustrate Sequoia’s application, we visual-
ized Nanopore-based direct RNA-seq signal for modified
(m6A) and unmodified locations in HeLa cell line. After
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Fig. 3 Case study 1: Comparison of the signal instances from modified Cytosine locations (m5C) versus regular Cytosine. A Left panel: t-SNE plot
of signal clusters for ‘GACCT" with no dynamic time warping penalty applied. Right panel: Raw signal plot corresponding to the highlighted
points in the left panel. B Comparing signal length distributions for the regular Cytosine and m5C signals for the 5-mer: GACCT. C t-SNE plot for
GACCT after applying dynamic time warping with penalty. The contrast across Fig. 3A & 3B highlight the role of dynamic time warping in

segregating and exploring nanopore based signal information

performing the sequencing, signal information for all
m6A modified and unmodified locations were extracted
(see methods 2.4.2). Since Nanopore generates signal
corresponding to a 5-mer passing through the bioengi-
neered pore, rather than single nucleotide, we extracted
the signal in such a way that the modified or unmodified
Adenosine falls in the middle of the 5-mer. A total of 41,
867 5-mers with modified-A in the middle and 1,031,
337 5-mers with unmodified-A were extracted. In this
study, we focused only on unique 5-mers that had at
least 100 signal instances in the m6A dataset. The rest
of the data was filtered out, with a final set of 24 unique
5-mers. Furthermore, for each of the 24 5-mers, we ran-
domly sampled 100 signals from modified-A and
unmodified-A datasets, to visually compare the signal
characteristics using Sequoia.

To visualize the signal disparity across input datasets,
Sequoia clusters the signals based on the similarity
matrix (see Similarity matrix and dynamic time warp-
ing). The cumulative signal instances of above men-
tioned (modified-A and unmodified-A datasets) were
imported into Sequoia and the t-SNE plots are as seen
in Fig. 4. When using t-SNE to visualize data, the most
important parameter to consider is called perplexity,
which is the measure of the effective number of neigh-
bors. A perplexity with a general range of values from 5
to 50 significantly affects the performance of t-SNE.
With low perplexity, the points on the t-SNE plot would
be scattered. On the other hand, a larger number of
points would be grouped when perplexity is high. Fig-
ure 4A juxtaposes the t-SNE plots of the signals from
ACAGG using high and low perplexity. With higher per-
plexity, a rough signal pattern can be observed, but only
two major groups are distinctively separated. When per-
plexity is adjusted to be lower, the large groups are
broken down into smaller subgroups consisting of simi-
lar signals. Higher perplexity is more useful when users
would like to consider the big picture of the t-SNE plot,
while lower perplexity is more effective if users would
like to examine local structures, particularly when there
are multiple signal shapes within the same 5-mer. Al-
though dynamic time warping and t-SNE parameters
can be adjusted, sometimes observing raw signals from
another perspective can lead to more conclusive obser-
vations. When inspecting raw signals, Sequoia allows
users to change the mode from displaying original sig-
nals to displaying the average of a selected group

instead. This option can help reveal a difference between
the unmodified and modified nucleotide signal group
that might be overlooked if not for the averages. For in-
stance, Fig. 4B shows the average signal plot of a group
of signals from ACAGT. The t-SNE plot does indicate
that there is some separation between normal and modi-
fied signals. The signal plot however shows that the
modified group has 20 mA higher current value on aver-
age for the selected group relative to the unmodified sig-
nal group.

Discussion

Here we demonstrate Sequoia’s ability to distinguish
Nanopore sequencing based on signal differences across
m6A and unmodified A, and provide the first reports of
significant difference in the signal lengths of an m5C
and unmodified C in human cell lines. Although applica-
tions we demonstrated in are specific to the RNA modi-
fications investigated in this study, Sequoia is not limited
to these modifications. Sequoia is developed in such a
way that it can be employed to not only study the signal
features of raw Nanopore sequencing datasets facilitating
the understanding of various types of RNA modifica-
tions, such as the Adenosine-to-inosine (A-to-I),
Pseudouridine, and 2’-O-methylated nucleotides (Nm),
but also potentially to DNA sequencing data, and
thereby DNA modifications as well. Sequoia can effect-
ively be used to compare signals of any k-mers of inter-
est across direct RNA, and DNA sequencing-based
datasets. Using sequoia users can analyze publicly avail-
able Nanopore-based datasets on a large scale, enabling
signal-based studies to understand RNA and DNA func-
tional characteristics. Sequoia can also aid in the im-
provement of the current Nanopore Basecalling
accuracy, by comparing various RNA and DNA modifi-
cations and discriminating signals to distinguish them
from regular bases. Potentially, Sequoia can be devel-
oped into a more versatile platform by including a wider
range of time-series features and integrating it with ma-
chine learning models that can automatically predict
modification locations.

Conclusions

Sequoia is a visual analytics platform that facilitates the
exploration of nanopore sequencing datasets. The plat-
form enables users to visualize and cluster signal in-
stances and thereby aid in the identification of RNA
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Fig. 4 Case study 2: comparing signal patterns based on varying parameters, for modified A (m6A) and a regular Adenosine. A Comparing t-SNE plots
for ACAGG with perplexity = 30 on the left and perplexity = 7 on the right. Clustering significantly reorders and assembly improves depending on the
perplexity and data. B On the right panel, the average signal corresponding to the 5-mer ‘ACAGT' pertaining to the selected points in the t-SNE plot
on the left panel. The black line is the average signal of the regular Adenosine reads while the orange is an average signal of the m6A

modification patterns across datasets. Using Sequoia,
users can input the raw Fast5 files of their interest and
analyze k-mer specific signals, which can be further
processed to generate visualizations that depict the char-
acteristics of datasets as well as k-mers. Sequoia employs
algorithms including dynamic time warping and t-SNE
to highlight similarities and differences in the underlying
nanopore current signal. This framework generates a set
of intuitive visualizations, enabling users to pinpoint var-
iations not only across cohorts and datasets but also in-
dividual k-mers themselves. We also demonstrate the
usability, versatility, and empirical nature of Sequoia by
deploying it on two case studies visualizing RNA
modifications.

Availability and requirements
Project name: Sequoia.

Project home page: https://github.com/dnonatar/
Sequoia.

Operating system(s): Mac, Linux.

Programming language: Python 3, JavaScript.
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