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Abstract

of 2997 brain cancer cases.

Background: Brain cancer is one of the eight most common cancers occurring in people aged 40+ and is the fifth-
leading cause of cancer-related deaths for males aged 40-59. Accurate subtype identification is crucial for precise
therapeutic treatment, which largely depends on understanding the biological pathways and regulatory
mechanisms associated with different brain cancer subtypes. Unfortunately, the subtype-implicated genes that have
been identified are scattered in thousands of published studies. So, systematic literature curation and cross-
validation could provide a solid base for comparative genetic studies about major subtypes.

Results: Here, we constructed a literature-based brain cancer gene database (BCGene). In the current release, we
have a collection of 1421 unique human genes gathered through an extensive manual examination of over 6000
PubMed abstracts. We comprehensively annotated those curated genes to facilitate biological pathway
identification, cancer genomic comparison, and differential expression analysis in various anatomical brain regions.
By curating cancer subtypes from the literature, our database provides a basis for exploring the common and
unique genetic mechanisms among 40 brain cancer subtypes. By further prioritizing the relative importance of
those curated genes in the development of brain cancer, we identified 33 top-ranked genes with evidence
mentioned only once in the literature, which were significantly associated with survival rates in a combined dataset

Conclusion: BCGene provides a useful tool for exploring the genetic mechanisms of and gene priorities in brain
cancer. BCGene is freely available to academic users at http://soft.bioinfo-minzhao.org/bcgene/.
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Background

Brain cancer, a leading type of cancer that causes death
in both children and adults, was diagnosed in about 300,
000 new cases and caused 241,000 deaths globally in
2018 [1]. More recently, mortality figures of brain and
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other nervous system cancers in the United States
caused an estimated 23,890 deaths in 2020 (12,590 males
and 10,300 females) [2]. As a heterogeneous disease, un-
controlled cell growth in brain cancer has complex mo-
lecular mechanisms, which may be caused by promoter
methylation, deregulated gene expression, and/or genet-
ically altered tumor-suppressor genes and oncogenes [3,
4]. According to the most recent data summary in the
cancer genomics data portal cBioPortal, there are 6166
cases covering a comprehensive multi-omics data of gen-
etic alterations and deregulated expression. Although
those genomic profilings play a major role in shaping
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the genetics and transcriptome of brain tumours, the
literature-based genetic differences of various brain can-
cers are still largely unknown.

Histologically, glioma is the most common tumor type
and includes astrocytoma, ependymoma, and oligo-
dendroglioma. Oligodendroglioma is more sensitive to
chemotherapy than is astrocytoma, and therefore has a
better overall prognosis [5]. The overall 5-year survival
rate of brain cancer patients is approximately 36%, but
the 5-year survival rate of oligodendroglioma patients is
about 80.6%, and the 10-year relative survival rate is
63.8%. However, the 5-year survival rate for patients
with glioblastoma (also known as glioblastoma multi-
forme, or GBM) is only 5.4%, and the 10-year survival
rate is only 2.7% [6]. Therefore, exact identification of
glioma subtypes is essential for neuro-oncologists to
provide the best treatment. Although many existing clin-
ical and histological methods identify brain cancer sub-
types, molecular subtype information can independently
and reliably confirm or refute those identifications, thus
providing more accurate diagnostic evidence.

Although thousands of published articles have focus
on brain cancer, a literature-based effort that scrutinizes
both the common and unique genetic information of
each brain cancer subtype does not exist. Additionally,
most functional or clinical studies have been single-
gene—based, and thus have failed to provide any descrip-
tions of tumorigenesis for different cancer subtypes. We
hypothesize that mapping literature-based information
to public cancer genomics data will provide a more com-
prehensive genetic perspective for brain cancer and
those important subtypes. Therefore, we developed a
database, BCGene, that is a reusable genetic resource for
brain cancer, has links to the appropriate literature, and
provides global genetic profiles of brain cancer subtypes.
The curated genes in the literature can be prioritized ac-
cording to their correlations with brain cancer, and com-
mon and unique cellular events in different brain cancer
subtypes can be identified.

Materials and methods

Literature search and curation

As shown in the flowchart in Fig. 1, we relied heavily on
the PubMed and GeneRIF (Gene Reference Into Func-
tion) databases to assemble our collection of brain
cancer-implicated genes [7]. Specifically, in the GeneRIF
database, we performed a keyword-based query using a
Perl regular expression to extract relevant sentences we
had previously described [8]: “[gG] liomas or [gG] lio-
blastomas or [Bb] rain tumor or [Bb] rain cancer or [Aa]
strocytomas or [Oo] ligodendrogliomas or [Ee] pendy-
momas or [Mm] eningiomas or [Hh] aemangioblastomas
or [Aa] coustic neuromas or [Cc] raniopharyngiomas or
[L]] ymphomas or [Hh] aemangiopericytomas or [Ss]
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pinal cord tumor or [Nn] euroectodermal tumor or
[Mm] edulloblastoma or [Pp] ituitary tumor”. In total,
within 2881 unique PubMed abstracts, we found 9304
short sentences related to brain cancer. We used the
same expression to search the PubMed database, and all
matching records from PubMed and GeneRIF were
merged to remove redundancies. Further literature cur-
ation included clustering abstracts, extracting matching
cancer subtypes, collecting species information, and for-
malizing gene symbols. For example, in the sentence “re-
expression of N-cadherin in gliomas restores cell polarity
and strongly reduces cell velocity, suggesting that loss of
N-cadherin could contribute to the invasive capacity of
tumour astrocytes”, N-cadherin is a common alias for
the gene CDH2 in the Human Gene Nomenclature
Database. We also collected tumor subtypes, such as
“gliomas”. For non-human genes, we mapped all genes
to human orthologous genes. In total, we curated 1421
human protein-coding genes (Table S1).

Biological annotation and pre-calculated data

To provide biological insight for those collected genes,
we retrieved comprehensive biological functional anno-
tations from public resources as described previously [9].
In addition, we used The Cancer Genome Atlas (TCGA)
large-scale database to calculate genomic mutation in-
formation. For example, the resulting copy number gains
and losses in TCGA-GBM and TCGA low-grade glioma
(LGG) will enable investigation of changes at the
thousands-of-bases level, which may have been over-
looked by those published studies focusing on the single
nucleotide mutations. We also mapped our 1421 genes
to the gene expression information from all brain re-
gions in the most updated Allen Human Brain Atlas,
thus providing potential gene expression patterns for
hundreds of anatomical locations.

The web interface

Based on a systematic survey of genes implicated in
brain cancer in the literature, we developed a web inter-
face to make those annotations publicly available. From
our web interface, curated subtype information allows
users to explore all brain cancer-implicated genes, and
the amount of literature evidence for each gene provides
a guide to how reliably a gene of interest is associated
with brain cancer. We also built a responsive, mobile-
friendly webpage by using a Bootstrap framework to
provide a grid-based layout.

As shown in Fig. 2A, three search modules are imple-
mented by entering 1) a gene name or its description; 2)
a gene ontology, (including biological processes), mo-
lecular function, and cellular component; and 3) any
keywords of interest in the curated literature. These
keyword-based queries enables users to identify both
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curated genes and the related literature on a specific bio-
logical topic. For advanced bioinformatics analysis, users
may download curated genes, applicable literature, and
subtypes in bulk (Fig. 2B). To organize information for
each gene, we divided our annotation details into six cat-
egories: gene information, published evidence, gene
ontology, biochemical pathway [10], genetic mutation
summary from TCGA, and gene expression information
from the Allen Brain Map (Fig. 2C).

Functional enrichment analysis

We used ToppFun [11] to conduct a functional enrich-
ment analysis of the 44 genes shared by multiple subtype
groups. In that analysis, we used all 1421 genes in our
BCGene database as background and then used the
hypergeometric model, comparing the differences be-
tween the 44 annotated genes and all 1421 genes, to
identify the statistical significances of enriched annota-
tions. Since we calculated thousands of raw p-values, we
then used the Benjamini-Hochberg multiple correction
method to adjust those raw values. Focusing on the most
significant changes, we extracted the enriched annota-
tions with corrected p-values less than 0.01 and used
them as over-representative annotations for the 44
genes. Finally, we visualized those enriched biological
process terms by the TreeMap package using R
language.

Gene prioritization based on functional similarity

Since we have 883 genes with only a single study in the
literature, we had to consider the relative importance of
each gene when ranking candidate genes according to

their functions. To accomplish this, we first built a gold
standard, brain cancer gene list that we subsequently
used to train an algorithm to identify important func-
tional features. The training gene list included the 27
most reliable genes, each of which was supported by 20
or more published studies in the literature. To prioritize
the relative importance based on functional similarity,
we first used the gene ranking tool ToppGene [11] to
generate a functional matrix of our 27 training genes
based on 12 features including three namespaces from
gene ontology, human phenotype ontology, protein do-
mains, gene family, biological pathways [10], known
protein-protein interactions, binding transcription fac-
tors, co-expression patterns, disease annotations, and
data mined from the literature. Then we calculated the
similarity score to the functional matrix for each of the
12 features. For a test gene with lack of annotations, the
similarity score was set to — 1. Otherwise, the value of
the similarity score was between 0 and 1. The derived 12
similarity scores of each test gene were summarized into
an overall similarity score based on statistical meta-
analysis.

Cancer genomic analysis of the 33 top-ranked genes that
are mentioned in only one published article

We input the 33 genes that have only one published
study into cBioPortal to obtain a summary pattern
across multiple brain cancer datasets [12]. Then, using
the OncoPrint module in cBioPortal, we visualized the
sample-based mutational patterns of 2997 brain cancer
samples from 14 studies. To provide the most compre-
hensive mutational profile, we included the most
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important genetic mutations in cancer development and
progression: single nucleotide variations, gene fusions,
and copy number variations (CNVs) [13-15]. We also
used mutually exclusive analyses as an overview for mu-
tational complementary patterns across all the samples.
Finally, we plotted the correlations between mRNA ex-
pression and copy number variant/methylation for each
gene of interest and conducted an overall survival ana-
lysis of the 2997 patient samples found with at least one
of those 33 genes.

Results and discussion

The literature frequency for various brain cancer subtypes
Based on our comprehensive literature curation, we
cleaned up all the associations between brain cancer
genes and the literature before conducting further ana-
lyses. As shown in Fig. 3A, we found 27 genes that were
each supported by more than 20 PubMed abstracts.
However, 883 of the 1421 genes implicated in brain can-
cer (62%) were supported by only a single evidentiary
mention in the literature; so obviously, those genes’
functions need further experimental validation. Using
cancer subtype keywords, we assigned the 1421 genes to
different subtypes, while a gene could be associated with
multiple cancer subtypes, each subtype has its own
literature-based evidence (Table S2). As shown in Fig.
3B, the top three keywords were: glioma (associated with
582 genes), lymphoma (associated with 450 genes), and
medulloblastoma (associated with 245 genes). To ex-
plore the genetic heterogeneity of brain cancer, we
grouped curated subtype information. For example, as-
trocytoma, oligodendroglioma, ependymoma, GBM,
LGG, ganglioglioma, and oligoastrocytoma were all
grouped as gliomas, and medulloblastoma was grouped
with neuroectodermal tumors. Then, we subsequently
identified 809 glioma-related genes and 354 neuroecto-
dermal tumor-related genes in those two major subtype
groups.

After we curated 227 and 25 genes for GBM and LGG,
respectively, we summarized all the GBM and LGG
CNVs on the gene pages in BCGene. To demonstrate
how well our data identifies potential tumor suppressors
and oncogenes, we first identified 85 GBM-associated
tumor suppressors with more copy number loss (the ra-
tio between copy number loss and copy number gain >
2.0) and 39 GBM-associated oncogenes with more copy
number gain (the ratio between copy number gain and
copy number loss >2.0). Then, by cross mapping to the
tumor suppressor and oncogene databases (TSGene 2.0
[16] and ONGene [8], respectively) (Fig. 3C), we found
that 23 GBM genes with more frequent copy number
loss are known tumor suppressor genes, and another 15
GBM genes with more frequent copy number gain are
known oncogenes.
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Functional enrichment of those genes shared by different
subtype groups

To check the genetic heterogeneity of the high-level can-
cer subtype groups, we overlapped their associated genes
to compare the common and unique genetic features of
the five subtype groups (glioma, lymphoma, meningi-
oma, neuroectodermal tumor, and pituitary tumor)
(Fig. 4A) and found 44 genes belonging to four or more
groups. Gene ontology enrichment analysis revealed that
those 44 genes are highly associated with 12 functional
categories (Fig. 4B). Some of those categories are highly
related to cancer, such as negative regulation of pro-
grammed cell death (Benjamini and Hochberg false dis-
covery rate (FDR) corrected p-value =4.35E-05), DNA
metabolism regulation (Benjamini and Hochberg FDR
corrected p-value = 1.42E-04), and regulation of the mi-
totic G1/S transition (Benjamini and Hochberg FDR cor-
rected p-value =3.79E-04). A most interesting finding
was the response to hypoxia (Benjamini and Hochberg
EDR corrected p-value = 3.31E-04). In general, hypoxia is
important in drug resistance and poor survival [17].
Therefore, targeting hypoxia might be a practical way to
improve patient survival rate of patients with astrocy-
toma and GBM [18].

Our KEGG pathway [10] analysis based on ToppFun
[11] further highlighted a few important cancer-related
signaling pathways, such as the PI3K-Akt signaling path-
way (corrected p-value = 8.04E-05), pathways in cancer
(corrected p-value =5.32E-10), proteoglycans in cancer
(corrected p-value = 3.33E-06), and the advanced glyca-
tion end products-receptor for advanced glycation end
products pathway (corrected p-value = 1.201E-5). More
interestingly, signaling by interleukins (corrected p-
value = 3.7E-05) and cytokine signaling in the immune
system (corrected p-value =1.06E-03) highlighted the
importance of interleukins in the progression of brain
cancer. Previous observations confirmed that many cyto-
kines (mainly interleukins) are involved in brain cancer
aggressiveness and the generation of disease-associated
pain [19]. In summary, all our functional analyses dem-
onstrated that subtype-specific gene mining using the
BCGene database may be used to identify common
genes in different brain cancer subtypes and to explore
potential common molecular mechanisms.

Identify top-ranked genes with evidence mentioned only
once in the literature

To further explore the curated genes’ relevancies to
brain cancer, we ranked all the 1421 genes based on the
27 most reliable brain cancer genes as training set. The
reliability of these 27 genes are based on each gene hav-
ing 20 or more evidentiary mentions in the literature.
This ranking result is to generate relatively importance
to the remaining 1394 (1421 minus 27) genes in our
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database (Table S3). With similar functions to the 27
genes in the training set, the subsequent 100 top-ranked
genes are likely important in brain cancer development.
And within those top-ranked 100 genes, 33 were linked
only by a single support from the literature. Thus, we
consider that the roles of those 33 genes in brain cancer
development are likely underestimated.

To investigate the potential oncogenic roles of those
33 genes, we used the large-scale cancer genomics data-
sets in cBioportal [12]. Altogether, we combined 2997
samples from 14 independent studies, including four
datasets related to medulloblastoma, two datasets related
to glioma, two GBM studies, two LGG studies, a study
of anaplastic oligodendroglioma and anaplastic oligoas-
trocytoma, a study of a brain tumor patient-derived
xenograft, an investigation of pilocytic astrocytoma, and
a dataset of pheochromocytoma and paraganglioma. As
shown in Figure S1, sample-based mutational patterns
revealed 536 samples (18% of the total 2997 samples)
that had at least one genetic mutation related to one of
the 33 genes. After closely scrutinizing their subtype in-
formation (Fig. 5A), we found that the 33 genes were
highly mutated in the glioma and GBM datasets but had
relatively low mutational rates in the four datasets re-
lated to medulloblastoma. Interestingly, those 33 genes
had a huge effect on patient survival (Fig. 5B). Among
the 2303 patients with survival information, 467 of them
had one or more genetic mutations in the 33 genes. The
median survival of those 467 patients was 24.59 months,

but the remaining 1836 patients’ median survival was
42.20 months, a very significant difference (log rank test,
p = 2.30E-8).

Among the 536 samples with genetic mutations in one
or more of the 33 genes, the top-ranked gene, CDK4,
was mutated in 202 samples (8% of the 2997 samples)
and the second-ranked gene, MAP 3 K1, was mutated in
79 samples (2.8%), and 8 of those samples also had a
CDK4 mutation. Since the mutated genes in that muta-
tional pattern are almost mutually exclusive, they may
have complementary roles in the progression of brain
cancer [20]. As shown in Fig. 6A, amplified CDK4 in five
samples coincided with mRNA up-regulation, but four
of the five samples had low methylation, which could
have caused the increased mRNA expression (Fig. 6C).
However, MAP 3 KI’s correlation patterns were strik-
ingly different than CDK4's (Fig. 6B, D). Altogether,
CDK4 provides a good example of consistent mRNA up-
regulation based on both amplification and methylation
patterns, and MAP 3KI may be a good candidate for
evaluating some brain cancers’ progressions, but those
possibilities need further study.

In summary, the functional similarity-based gene
prioritization identified 33 top-ranked brain cancer-
implicated genes with evidence mentioned only once
in the literature. By focusing on 2997 samples from
14 independent brain cancer genetic datasets, we
found that these 33 genes are highly mutated in hun-
dreds of brain cancer samples and significantly
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associated with survival time. In addition, we found a
mutually exclusive mutational pattern between the
two top-ranked genes, CDK4 and MAP 3 K1, which
affected more than 200 brain cancer patients. There-
fore, we consider that these two genes might be the
most promising genes and might play important roles
in the development of brain cancer.

Conclusions

We have constructed a public repository, the brain can-
cer gene database (BCGene), which provides literature-
based information for 1421 unique human genes by cur-
ating thousands of published articles. The main features
of BCGene include: 1) manually curated literature; 2)

cancer subtype information; 3) comprehensive function
and annotation; 4) online-based data browsing system;
5) downloadable data for large-scale data integration.
The database contains both microarray and in situ
hybridization data, much of which is described here for
the first time. Taken together, BCGene might signifi-
cantly advance the understanding of genetics in brain
cancer and provides a timely and valuable resource for
the brain cancer genomics community. From our data
collection, 809 gliomas, 450 lymphomas, and 354 neu-
roectodermal tumor-related genes are supported by evi-
dence in the literature. This comprehensive data
collection not only presents the genetic heterogeneity of
brain cancer, but also provides comparable genetic
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resources for exploring the common genetic mecha-
nisms among different brain cancer subtypes. Our future
plans are to focus on the subtype-unique gene sets,
which may both aid the understanding of underlying dis-
ease mechanisms and identify novel therapies for specific
brain cancer subtypes.

Abbreviations

BCGene: Brain Cancer-implicated Genes and Literature database;

GBM: Glioblastoma; LGG: Low Grade Gliomas; TCGA: The Cancer Genome
Atlas; GeneRIF: Gene Reference Into Function; ICGC: International Cancer
Genome Consortium; MSK: Memorial Sloan Kettering Institute;

DIFG: Desmoplastic Infantile Ganglioglioma; MBL: Medulloblastoma;

PCPG: Pheochromocytoma and Paraganglioma; PAST: Pilocytic Astrocytoma

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/512864-021-07793-x.

Additional file 1: Fig. S1 The top ranked genes’ sample-based muta-
tional profiles across 2997 patient samples from 14 different brain cancer
studies.

Additional file 2: Table S1. General information of the 1421 human
brain cancer genes in the BCGene.

Additional file 3: Table S2. Curated brain cancer subtype information.

Additional file 4: Table S3. Gene prioritization results for all the 1394
genes with less than 20 evidentiary mentions in the literature.

Acknowledgements
Not applicable.

Authors’ contributions

M.Z, D.Q. and H.Q. designed the project. M.Z. and G.D. collected data. M.Z,,
Y.L. and H.Q. performed the analysis. H.Q. supervised the project. All authors
wrote the manuscript draft, which M.Z. prepared original draft, and H.Q.
finalized the manuscript. The author(s) read and approved the final
manuscript.

Funding

This work was supported by the National Key Research and Development
Program of China (No. 2017YFC1201200), the National Natural Science
Foundation of China (No. 31671375 and 31801120), and the research start-up
fellowship of university of sunshine coast to MZ. The funders did not play
any role in research design, data collection, analysis and interpretation, and
manuscript writing.

Availability of data and materials

The data-sets generated and/or analysed during the current study are avail-
able in the BCGene repository, http://softbioinfo-minzhao.org/bcgene/.
The data-sets used and/or analysed during the current study available from
the corresponding author on reasonable request.

All data generated or analysed during this study are included in this
published article and its supplementary information files.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Page 10 of 11

Author details

'School of Science, Technology and Engineering, University of the Sunshine
Coast, Maroochydore DC, Sippy Downs, Queensland 4558, Australia. “The
School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou
Medical University, Guangzhou, China. *School of Computer Science &
Technology, Beijing Institute of Technology, Beijing 100081, China.
“Information Center, China Association for Science and Technology, Beijing
100863, China. *Center for Bioinformatics, State Key Laboratory of Protein
and Plant Gene Research, College of Life Sciences, Peking University, Beijing
100871, P.R. China.

Received: 23 February 2021 Accepted: 7 June 2021
Published online: 18 June 2021

References

1. Bray F, Ferlay J, Soerjomataram |, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018,68(6):394-424.
https://doi.org/10.3322/caac.21492.

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;
70(1):7-30. https;//doi.org/10.3322/caac.21590.

3. Binder H, Willscher E, Loeffler-Wirth H, Hopp L, Jones DTW, Pfister SM, et al.
DNA methylation, transcriptome and genetic copy number signatures of
diffuse cerebral WHO grade II/Ill gliomas resolve cancer heterogeneity and
development. Acta Neuropathol Commun. 2019;7(1):59. https://doi.org/1
0.1186/540478-019-0704-8.

4. Cancer Genome Atlas Research N. Comprehensive genomic characterization
defines human glioblastoma genes and core pathways. Nature. 2008;
455(7216):1061-8. https://doi.org/10.1038/nature07385.

5. Sepulveda-Sanchez JM, Munoz Langa J, Arraez MA, Fuster J, Hernandez Lain
A, Reynes G, et al. SEOM clinical guideline of diagnosis and management of
low-grade glioma (2017). Clin Transl Oncol. 2018;20(1):3-15. https://doi.org/1
0.1007/512094-017-1790-3.

6. Gittleman H, Boscia A, Ostrom QT, Truitt G, Fritz Y, Kruchko C, et al.
Survivorship in adults with malignant brain and other central nervous
system tumor from 2000-2014. Neuro Oncol. 2018,20(suppl_7):vii6-vii16.

7. Coordinators NR. Database resources of the National Center for
biotechnology information. Nucleic Acids Res. 2016;44(D1):D7-19.

8. LiuY, Sun J, Zhao M. ONGene: a literature-based database for human
oncogenes. J Genet Genomics. 2017;44(2):119-21. https://doi.org/10.1016/j.
j99.2016.12.004.

9. LiuY, Luo M, Jin Z, Zhao M, Qu H. dbLGL: an online leukemia gene and
literature database for the retrospective comparison of adult and childhood
leukemia genetics with literature evidence. Database (Oxford). 2018,2018.
https://doi.org/10.1093/database/bay062.

10.  Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG:
integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):
D545-51. https://doi.org/10.1093/nar/gkaa970.

11. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Res.
2009;37(Web Server issue):W305-11.

12. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio
cancer genomics portal: an open platform for exploring multidimensional
cancer genomics data. Cancer Discov. 2012;2(5):401-4. https://doi.org/10.11
58/2159-8290.CD-12-0095.

13. Wee Y, Wang T, Liu Y, Li X, Zhao M. A pan-cancer study of copy number
gain and up-regulation in human oncogenes. Life Sci. 2018,211:206-14.
https://doi.org/10.1016/jfs.2018.09.032.

14. LiuY, Li Z LuJ, Zhao M, Qu H. CMGene: a literature-based database and
knowledge resource for cancer metastasis genes. J Genet Genomics. 2017;
44(5):277-9. https://doi.org/10.1016/1jgg.2017.04.006.

15. Zhao M, Zhao Z. Concordance of copy number loss and down-regulation of
tumor suppressor genes: a pan-cancer study. BMC Genomics. 2016;17(Suppl
7):532.

16.  Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-
based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;
44(D1):.D1023-31. https.//doi.org/10.1093/nar/gkv1268.

17. Cavazos DA, Brenner AJ. Hypoxia in astrocytic tumors and implications for
therapy. Neurobiol Dis. 2016,85:227-33. https.//doi.org/10.1016/j.nbd.2015.
06.007.


https://doi.org/10.1186/s12864-021-07793-x
https://doi.org/10.1186/s12864-021-07793-x
http://soft.bioinfo-minzhao.org/bcgene/
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21590
https://doi.org/10.1186/s40478-019-0704-8
https://doi.org/10.1186/s40478-019-0704-8
https://doi.org/10.1038/nature07385
https://doi.org/10.1007/s12094-017-1790-3
https://doi.org/10.1007/s12094-017-1790-3
https://doi.org/10.1016/j.jgg.2016.12.004
https://doi.org/10.1016/j.jgg.2016.12.004
https://doi.org/10.1093/database/bay062
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1016/j.lfs.2018.09.032
https://doi.org/10.1016/j.jgg.2017.04.006
https://doi.org/10.1093/nar/gkv1268
https://doi.org/10.1016/j.nbd.2015.06.007
https://doi.org/10.1016/j.nbd.2015.06.007

Zhao et al. BMC Genomics (2021) 22:458 Page 11 of 11

18. Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The Role of Hypoxia in
Glioblastoma Invasion. Cells. 2017;6(4):45.

19.  Albulescu R, Codrici E, Popescu ID, Mihai S, Necula LG, Petrescu D, et al.
Cytokine patterns in brain tumour progression. Mediat Inflamm. 2013;2013:
979748.

20. de Leeuw R, McNair C, Schiewer MJ, Neupane NP, Brand LJ, Augello MA,
et al. MAPK reliance via acquired CDK4/6 inhibitor resistance in Cancer. Clin
Cancer Res. 2018,24(17):4201-14. https://doi.org/10.1158/1078-0432.CCR-18-
0410.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC



https://doi.org/10.1158/1078-0432.CCR-18-0410
https://doi.org/10.1158/1078-0432.CCR-18-0410

	Abstract
	Background
	Results
	Conclusion

	Background
	Materials and methods
	Literature search and curation
	Biological annotation and pre-calculated data
	The web interface
	Functional enrichment analysis
	Gene prioritization based on functional similarity
	Cancer genomic analysis of the 33 top-ranked genes that are mentioned in only one published article

	Results and discussion
	The literature frequency for various brain cancer subtypes
	Functional enrichment of those genes shared by different subtype groups
	Identify top-ranked genes with evidence mentioned only once in the literature

	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

