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Abstract

revealed yet.

Background: miRNA is one of the crucial roles in the complex and dynamic network that regulates the development
of skeletal muscle. The landscape of skeletal muscle miRNAs from fetus to adult in New Zealand rabbits has not been

Results: In this study, nine RNA-seq libraries of fetus, child and adult rabbits’ leg muscles were constructed. A total of
278 differentially expressed miRNAs (DEmiRNAs) were identified. In the fetus vs. child group, the main functional
enrichments were involved in membrane and transport. Pathway enriched terms of up-regulated DEmMIRNAs were
connected with the differentiation and hypertrophy of skeletal muscle, and down-regulated ones were related to
muscle structure and metabolic capacity. In the child vs. adult group, functions were associated to positioning and
transportation, and pathways were relevant to ECM, muscle structure and hypertrophy. Finally, ocu-miR-185-3p and
ocu-miR-370-3p, which had the most target genes, were identified as hub-miRNAs in these two groups.

Conclusions: In short, we summarized the highly expressed and uniquely expressed DEmiRNAs of fetus, child and
adult rabbits” leg muscles. Besides, the potential functional changes of miRNAs in two consecutive stages have been
explored. Among them, the ocu-miR-185-3p and ocu-miR-370-3p with the most target genes were selected as hub-
miRNAs. These data improved the understanding of the regulatory molecules of meat rabbit development, and
provided a novel perspective for molecular breeding of meat rabbits.
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Background

Rabbit meat is considered to be one of the healthiest
meats and a functional food due to its excellent nutrition
and dietary characteristics [1]. It contains high protein,
essential amino acids and a variety of trace elements.
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Also, its sensitization and low cholesterol levels have
also been demonstrated [1, 2]. Despite the intensification
of rabbit farming and the advent of large-scale retailing,
rabbit meat consumption is still mainly sold as loins and
hind legs cuts. Consequently, the legs are one of the
most commercially valuable parts [1]. Skeletal muscle is
composed of muscle fibers, the contraction part of the
muscle, connective tissue or extracellular matrix (ECM),
and capillaries and nerves that provide blood to the
muscle [3]. The type and characteristic of muscle fibers
in skeletal muscle development affect the quality of meat
[4]. Molecular biology and bioinformatics have become
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the basis for revealing the production performance of
meat rabbits, which makes molecular breeding of do-
mestic animals possible [5]. In recent years, the regula-
tion of non-coding RNA (ncRNA), such as microRNA
(miRNA), has also attracted considerable attention.

miRNAs are a class of small non-coding RNAs that
play key roles in controlling skeletal muscle development
[6]. In the past decade, the ability of miRNAs to bind
the 3’-UTR of target mRNAs to perform biological func-
tions has been widely accepted [7, 8]. For example, miR-
206 played a key role in enhancing slow skeletal muscle
and muscular dimorphism [9]. miR-1/133a mediated in-
hibition of DIk1-Dio3 Mega gene cluster to complete the
metabolic maturation of muscle stem cell differentiation
[10]. Besides, miR-1 was also negatively correlated with
HDAC4, which influenced the proliferation and differen-
tiation of skeletal muscle satellite cells [11, 12]. There-
fore, the potential functions of miRNAs in skeletal
muscle development are worth exploring.

The potential miRNAs and their functions in rabbit
skeletal muscles at different stages have not yet been
elucidated. We herein hypothesized that the roles of the
miRNAs in the skeletal muscles of rabbits at different
stages from fetus to adults were changing. Thence, the
miRNAs expression profiles in the leg skeletal muscles
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of fetus, child and adult New Zealand rabbits were ex-
plored in this study. Meanwhile, GO and KEGG were
used to clarify the effect of miRNAs function conversion
on development. Some potentially functional miRNA-
mRNA networks have also been revealed. These
screened data provided references for rabbit molecular
breeding.

Results

Overview of rabbit leg muscle sRNA-seq (small RNA-seq)
libraries

Nine sRNA-seq libraries were constructed to screen the
leg skeletal muscle miRNAs of New Zealand rabbits.
The 9 libraries contain three stages: fetus, child and
adult, with three replicates for each stage (Fig. 1). The 9
libraries identified raw reads ranging from 10.34 to
14.28 million with Q30 ranging from 96.96 to 97.71 %
(Table S1). After libraries were filtered, clean reads ran-
ging from 10.07 to 14.13 million were obtained (Table
S1). Subsequent to length screening, 5.99 to 13.4 million
clean reads were considered as sRNA reads, of which
94.12-96.76 % were mapped to the genome (Table S1).
The lengths of all sSRNAs were 18-35nt, most of which
were concentrated in 21-23nt (Fig. 2A). All known miR-
NAs account for the largest proportion of sRNAs at
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(HCA) and sample correlation analyses. The HCA ana-
lysis also showed that the same stage also clustered to-
gether (Fig. 3A). The sample correlation showed that the
three repetitions of each stage have the highest correl-
ation, and the fetus stages were obviously different from
the postnatal stages (Fig.3B). Then, the lengths of known
and novel miRNAs were shown in the Fig. 3C. The
lengths of the known mature miRNAs were between 20
and 27 nt, and the lengths of the novel miRNA were be-
tween 18 and 24 nt. Most miRNAs were concentrated at
22 and 23 nt (Fig. 3C). Next, the TPM distribution of
miRNAs was explored. The distribution of known miR-
NAs at each stage was balanced, with similar distribu-
tions in child and adult stages (Fig. 3D). However, the
TPM distribution of novel miRNAs at each stage was
uniform.

Differential expression analysis of miRNAs in rabbit
skeletal muscle

So as to understand the regulation of miRNAs in prenatal
and postnatal skeletal muscle, the differential expression
analysis of miRNAs in fetus, child and adult rabbits’ skeletal
muscles were performed. A total of 278 differential
expressed miRNAs were identified at all stages, including 9
novel miRNAs and 269 known miRNAs (Table S3). The
heat map clustering of DEmiRNAs indicated that the lar-
gest segmentation occurred between the fetus and child
stages (Fig. 4A). Among them, 130 and 103 DEmiRNAs
were up- and down-regulated in the fetus vs. child group;
67 and 82 DEmiRNAs were up- and down-regulated in the
child vs. adult group; 130 and 125 DEmiRNAs were up-
and down-regulated in the fetus vs. adult group (Fig. 4B).
Interestingly, the 6 miRNAs were uniquely expressed at the
fetus stage, including ocu-miR-3059-5p, ocu-miR-135a-3p,
ocu-miR-105a-2-3p, ocu-miR-105b-3p, ocu-miR-873-3p
and ocu-miR-105b-5p (Fig. 4C). In addition, the sum of the
average expression of 7 DEmiRNAs was more than 100,000
TPM (Fig. 4D). These contained vital DEmiRNAs in the
way of skeletal muscle development, such as miR-1, miR-
206, miR-26a, etc. To further understand the role of
DEmiRNAs in rabbit skeletal muscle development, target
genes of DEmiRNAs in two adjacent stages were selected
for Gene Ontology (GO) and Kyoto Encyclopedia and Ge-
nomes of Genes (KEGG).

The roles of DEmiRNAs in fetus vs. child group

The target genes’ functions and pathways of the DEmiR-
NAs that were up- and down-regulated in the fetus vs.
child group have been verified. The 130 up-regulated
DEmiRNAs’ target genes were enriched in basic func-
tions such as plasma membrane and material transport,
and enriched in skeletal muscle development-related
functions such as organelles, cell proliferation, and im-
mune response (Fig. 5A, Table S4). The functions of 103
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down-regulated DEmiRNAs in the fetus vs. child group
were also related to the plasma membrane and material
transport (Fig. 5B, Table S5). The number of muscle fi-
bers is almost unchanged after birth, so muscle cell pro-
liferation is the basis for the number of muscle fibers
[13]. Therefore, we constructed a miRNA-mRNA net-
work for “cell proliferation”. The 49 miRNAs involved in
this function target 120 genes, of which ocu-miR-185-3p
has 39 targeted genes and identified as a hub-miRNA for
this function (Fig. 5C, Table S6).

Although all KEGG pathways were not significantly
enriched (P-adj>0.05), the data with P<0.05 also
showed some interesting results. Up-regulated DEmiR-
NAs’ target genes enriched in the key signal pathways of
skeletal muscle differentiation and hypertrophy (P <
0.05), comprising MAPK signaling pathway, Notch sig-
naling path-way and PI3K-Akt signaling pathway, etc.
(Fig S1A, Table S4). At the same time, down-regulated
DEmiRNAs were concerning tissue structure and meta-
bolic capacity (Fig S1B, Table S5). Additionally, target
genes of both up-regulated and down-regulated
DEmiRNA were enriched in “ECM-receptor interaction”.
In this pathway, 41 miRNAs targeted 36 genes, of which
ocu-miR-185-3p also has the most target genes (Fig. 5D,
Table S6). Therefore, ocu-miR-185-3p might exert an
enormous function on this pathway.

The role of DEmiRNAs in child vs. adult group

The target genes of 67 up-regulated DEmiRNAs-
enriched GO terms in the child vs. adult group were re-
lated to localization, plasma membrane and transport
(Fig. 6A, Table S7). The target genes of 82 down-
regulated DEmiRNAs in the child vs. adult group
enriched GO terms related to localization, vascular de-
velopment and protein transport (Fig. 6B, Table S8).
Among them, “localization” was dynamically enriched in
child vs. adult group, which was indispensable for the
localization of substances and cellular components in
skeletal muscle. The 260 genes involved in this function
were targeted by 64 miRNAs, of which ocu-miR-370-3p
targeted 99 miRNAs. Therefore, ocu-miR-370-3p was
identified as hub-miRNA, which might play a significant
effect on this function (Fig. 6C, Table S9).

Next, KEGG pathways with P<0.05 were followed.
Enriched terms of up-regulated DEmiRNAs showed that
they were involved in the Regulation of actin cytoskeleton,
MAPK signaling pathway and Linoleic acid metabolism
and other pathways (Fig S2A, Table S7). Down-regulated
DEmiRNAS’ target genes participated in skeletal muscle-
related Focal adhesion, ECM-receptor interaction, Regula-
tion of actin cytoskeleton and other pathways (Fig S2B,
Table S8). “Regulation of actin cytoskeleton”, which re-
lated to skeletal muscle structure, was enriched in this
group. The 45 genes involved in this pathway were
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targeted by 34 miRNAs, of which ocu-miR-12093-3p and
ocu-miR-370-3p targeted 17 and 16 genes. This suggested
that they might be the key factors for regulating the cyto-
skeleton of actin. At last, ocu-miR-370-3p was identified
as hub-miRNA (Fig. 6D, Table S9).

gPCR verification of DEmiRNAs in rabbit skeletal muscle
To verify the credibility of sSRNA-seq, 14 DEmiRNAs were
subjected to qPCR, comprising the highly expressed

DEmiRNAs in the fetus vs. child (up-regulated DEmiR-
NAs: ocu-miR-206-3p and ocu-miR-1-3p; down-regulated
DEmiRNAs:ocu-miR-379-5p and ocu-miR-127-3p) and
child vs. adult (up-regulated DEmiRNAs: ocu-miR-21-5p
and ocu-miR-26a-5p; down-regulated DEmiRNAs: ocu-
miR-532-5p and ocu-miR-381-3p) groups, the highly
expressed novel DEmiRNAs (novel_38 and novel_3), the
highly expressed DEmiRNAs only in the fetal stage (ocu-
miR-873-3p and ocu-miR-105b-5p), and two hub-
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DEmiRNAs (ocu-miR-370-3p and ocu-miR-183-3p). In
addition, novel 38 and novel 3 were the two most
expressed novel DEmiRNAs, and they target 110 and 12
genes, respectively. As expected, most DEmiRNAs expres-
sion trends were similar to sRNA-sEq. In the fetus vs.
child group, ocu-miR-206-3p and ocu-miR-1-3p were up-
regulated between fetus and child stage, ocu-miR-379-5p
and ocu-miR-127-3p were down-regulated between fetus
and child stage, respectively (Fig. 7A&B). In child vs. adult
group, ocu-miR-21-5p was similar to data (Fig. 7C). How-
ever, the actual expression of ocu-miR-26a-5p, whose
sRNA-seq data was up-regulated between the child and
adult stages, slightly decreased in adulthood. Furthermore,
ocu-miR-532-5p and ocu-miR-381-3p had a high expres-
sion among down-regulated DEmiRNAs in data (Fig. 7D).

Meanwhile, 2 novel miRNAs (novel_38 and novel_3) with
a downward trend in three stages have also been verified
(Fig. 7E). Unexpectedly, sSRNA-seq showed two DEmiR-
NAs (ocu-miR-873-3p and ocu-miR-105b-5p) that were
uniquely expressed in the fetal stage, but the actual ex-
pression level showed a downward trend instead of unique
expression (Fig. 7F). Finally, the expression of the two
hub-miRNAs (ocu-miR-370-3p and ocu-miR-183-3p) also
showed the same trend as the data (Fig. 7G).

Discussion

The main goal of meat animal breeding in agriculture is
to produce as much high-quality protein food source as
possible with the least input. In this study, the differen-
tial expression profiles of miRNAs in the skeletal muscle
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of rabbit fetus, child and adult stages were obtained.
In the fetus vs. child group, the main enriched mem-
brane and transport were changing dynamically. In
the pathway, up-regulated DEmiRNAs were related to
skeletal muscle differentiation and hyper-trophy, and
down-regulated DEmiRNAs had a bearing on tissue
structure and metabolic capacity. In the child vs.
adult group, the functions were associated with
localization and transport, pathways were related to
ECM, muscle structure and hypertrophy. Among
them, the ocu-miR-185-3p and ocu-miR-370-3p with
the most target genes were selected as hub-miRNAs.
These results verify the hypothesis that the potential
role of miRNAs in rabbit skeletal muscle development
is changing.

Muscles have an incredible ability to change their
functional characteristics in order to adapt and function
optimally in response to the physiological state of the
animal (e.g., growing, maintaining, or senescing). The
regulatory non-coding RNAs at different stages of
muscle development in multiple species are gradually
being revealed, such as duck [14], sheep [15], pig [16]
and goat [17]. For example, 1,498 circRNAs were identi-
fied in the skeletal muscles of pigs at three stages after
birth. Among them, the continuous stage and unique ex-
pression differential circRNAs and their potential func-
tions have also been explored [16]. In addition, the
dynamic expressions of miRNAs and IncRNAs in 7
stages of goat was revealed, which have the potential to
affect skeletal muscle development [17, 18]. Therefore,



Jing et al. BMC Genomics (2021) 22:577 Page 8 of 13
g
A . . B ocu-miR-127-3p -miR-379-5j
ocu-miR-1-3 ocu-miR-206-3 ocu-mi P
500000+ " P 4000 25000 P 180000 1000004 100 50000 80
I
] I 80000 80 40000
400000 3000 gzooou 160000 g .3 o0 _
$ 300000 % $ 15000 140000 | |9 60000 60~% ¢ 30000 o
< 2000 & < ol |2 o g 40 O
Z 200000 3 Z 10000 1 [120000 3| |Z 40000 407 220000 b
100000 / 1000 5000{ 100000 20000 B 20 10000 \ 20
0 0 80000 o T 0 0 — 0
Fetus  Child  Adult Fetus  Child  Adult Fetus  Child  Adult Fetus  Child  Adult
C ocu-miR-26a-5p ocu-miR-21-5p ocu-miR-532-5p ocu-miR-381-3p
60000 0.15 80000 40000 4 150000
I
y — 2.0 30000 3
2 40000 g 010 o 50000 & g 2 100000 24
p 28 1573 | | £ 20000 232 2
< Q L4000 L 109 g 2 2
@ 20000 005~ ¥ S . € 0000 4 & 50000 1
v 20000 05 &
0 0.00 0 0 0 —————10 0 —~,
Fetus  Child  Adult Fetus  Child  Adult Fetus  Child  Adult Fetus  Child  Adult
novel_3 novel-38 F ocu-miR-873-3p ocu-miR-105b-5p
1000 250 500 15 6 80000 6 2.0
1.8
800 200 400 & 60000 o
= g 100 | |84 o 84 16 o
$ 1600 150 § ¢ 300 3| 40000 & < 14 8
g ~ 92 x| |=Z nZ A
Z 400 100 @ Z 200 0.5 g2 0000 Z 2 12
200 50 100 1.0
0 0 (] 0.0 0 - 0 0 0.8
Fetus Child Adult Fetus Child Adult Fetus Child Adult Fetus Child Adult
G ocu-miR-370-3p ocu-miR-185-3p
4000 20 30 06
3000 f 15 PCR
o
$ 2 §20 04 o q
< 2000 0 g p] —_
z b —_ -seq
['4
1000 5 w0 0.2
0 0 0 - 0.0
Fetus  Child  Adult Fetus  Child  Adult

F High expressed only in fetus stage. G Expression of two hub-miRNAs

Fig. 7 qPCR verification of DEmiRNAs. A-G gPCR (Bar chart, orange) and RNA-seq expression (Line chart, blue) validation of the indicated rabbit
skeletal muscle miRNAs. A-D High expressed DEmiRNAs in the fetus vs. child (A-B) and child vs. adult (C-D) gourps. E Expression of novel DEmiRNASs,

exploring the regulatory molecules of muscle physio-
logical changes at different stages is equally essential for
the breeding of meat rabbits. The top 10 DEmiRNAs
expressed in the 7 stages of the longissimus dorsi muscle
of goats include chi-miR-1, chi-miR-206, chi-miR-148a-
3p, chi-miR-381, chi-miR-127-3p, chi-let-7i-5p, chi-miR-
26a-5p, chi-miR-10b-5p, chi-miR-378-3p, chi-let-7f-5p.
Among them, 5 DEmiRNAs (ocu-miR-1, ocu-miR-206,
ocu-miR-381, ocu-miR-26a-5p, ocu-miR-378-3p) were
also highly expressed in rabbits. However, the top 10
DEmiRNAs in the 5 stages of pigs from birth to 7 years
old were miR-378-1/-2-3p, miR-127-3p, miR-191-5p,
miR-486-2-5p, miR-143-3p, miR-10a-5p, miR-148a-3p,
miR-99a-5p, miR-30e-5p and miR-199a-1/-2-5p [19].
miR-378-3p was highly expressed in the skeletal muscles
of goat, pigs and rabbits. Except for miR-378-3p, the
highly expressed DEmiRNAs of pigs and rabbits were
only miR-143-3p. This study explored the function of
DEmiRNAs and selected hub-miRNAs in the leg skeletal
muscles of rabbits at the fetus, child and adult stages.
All the identified 516 known miRNAs and 113 novel
miRNAs were concentrated on 22 and 23 nt in length.
The sample correlation and HCA verified the reliability

of the samples. From these miRNAs, we obtained 9
novel DEmiRNAs and 269 known DEmiRNAs, and per-
formed functional analysis on them. Among them, 7
DEmiRNAs have a TPM greater than 100,000, compris-
ing ocu-miR-1-3p, ocu-miR-206-3p, ocu-miR-378-3p,
ocu-miR-143-3p, ocu-miR-381-3p, ocu-miR-21-5p, ocu-
miR-26a-5p. Most of them have been verified to have an
indispensable effect on development of skeletal muscle.
In addition to miR-1 and miR-206, miRNA-143 targets
Igtbp5 to mediate senescence of muscle stem cells,
thereby affecting myogenesis [20]. miR-21, a negative
regulator of PTEN expression, leads to changes in Akt
activity, consistent with changes in insulin sensitivity in
muscles [21]. These findings suggested that miR-378-3p
and miR-26a-5p, which have not been studied in skeletal
muscle development, may also have necessary roles. In
addition, novel_3 and novel_38 were the top 2 expressed
novel DEmiRNAs, which targeted 12 and 110 genes, re-
spectively. The target genes CaMKK2 [22], CD9 [23],
BAG3 [24]and NUAK2 [25] of novel_3 are related to
muscle regeneration. Target gene of novel_38 were not
enriched in GO, but the target gene STAT5B was in-
volved in the growth hormone and JAK-STAT signaling
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pathways, which were associated with skeletal muscle
development [26, 27]. Furthermore, it was interesting
that there were 6 miRNAs that uniquely expressed in
the fetus stage, which might have unique roles. More-
over, DEmiRNAs might have distinctive regulatory ef-
fects on development at different stages, so the potential
roles of DEmiRNAs in two consecutive stages of skeletal
muscle have been explored.

In the fetus vs. child group, the all DEmiRNAs were
involved in various pathways and functions related to
skeletal muscle development. For instance, 124 genes,
targeted by up-regulated 49 DEmiRNAs, were in-
volved in the function of cell proliferation. Among
them, ocu-miR-302b-3p, ocu-miR-302c-3p, ocu-miR-
486-3p, and ocu-miR-185-3p targeted PAX7, which
was a marker of muscle stem cell that promotes pro-
liferation and commitment to the myogenic lineage
and inhibited the genes driving differentiation [28].
ECM-receptor interaction, which was enriched in
both up-regulation and down-regulation, was principal
part of skeletal muscle and plays a major role in the
force transmission, maintenance and repair of muscle
fibers (Figure S3) [3]. Ocu-miR-185-3p had the most
targeted genes in “cell proliferation” and “ECM-recep-
tor interaction “ so it was selected as the hub-
miRNA for this function and pathway. The relation-
ship between ocu-miR-183-3p and skeletal muscle has
not been studied, but it acts as a sponge of cir-
cHIPK3 to regulate myocardial atrophy [29]. These
target genes of ocu-miR-183-3p included FGF19 (It
regulated skeletal muscle mass and protect muscle
from atrophy by increasing muscle fiber size) [30],
FGF2 (It was an important stimulator of satellite
cells) [31], and WNT1 (It was a key factor in the ca-
nonical Wnt signaling pathway that is indispensable
for muscle proliferation) [32] and so on.

In the child vs. adult group, the enriched functions
of up-regulated and down-regulated DEmiRNAs were
related to localization and transport. “Localization” is
indispensable for the localization of substances and
cellular components in skeletal muscle. For example,
MYOF, targeted by ocu-miR-365-2-5p, regulates the
localization and accumulation of IGF receptors in
myoblasts and necessary for muscle growth [33].
Meanwhile, these genes also contain interesting path-
ways related to skeletal muscle such as “Regulation of
actin cytoskeleton” (Figure S4). “Actin cytoskeleton” is
the basis of muscle cell contraction and also partici-
pates in the asymmetric division of muscle stem cells
during proliferation [34, 35]. Ocu-miR-370-3p was
considered as hub-miRNA because its large number
of target genes contained in “Regulation of actin cyto-
skeleton” and “localization”. miR-370-3p inhibits the
transition of fast muscle fibers [36], and it promotes
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the proliferation and cell cycle of vascular smooth
muscle cells [37]. The genes of ocu-miR-370-3p com-
prised CRKL (it was noncatalytic adaptor proteins ne-
cessary for the formation of neuromuscular synapses
which function downstream of muscle-specific kinase)
[38], FGF6 (it reduced skeletal muscle atrophy by
relying on the ERK1/2 mechanism and enhanced the
conversion of slow muscle to fast muscle fibers) [39],
TPM1 (it had an effect on the formation of fast
muscle or slow muscle) [40]. Furthermore, the target
genes of up-regulated DEmiRNAs were also enriched
in the MAPK signaling pathway of muscle hyper-
trophy [41] MRAS targeted by ocu-miR-328-3p, was a
component of RAS, which was the main down-stream
effector of the classic MAPK signaling pathway [42].
MAPKAPK?2/3, targeted by ocu-miR-328-3p, ocu-miR-
486-3p, ocu-miR-423-5p, was a protein kinase down-
stream of the MAPK signaling pathway. And its en-
zyme activity was the considerable factor for
regulating striated muscle function [43]. These data
clarified the potential roles of DEmiRNAs at different
stages, and selected ocu-miR-185-3p and ocu-miR-

370-3p as hub-miRNAs in the two comparison
groups.
Conclusions

In this study, sSRNA-seq was used to construct a miRNA
libraries of rabbit leg skeletal muscle in fetus, child and
adult stages. Firstly, we summarized the highly expressed
and uniquely expressed DEmiRNAs. Besides, the poten-
tial functional changes of miRNAs in two consecutive
stages have also been explored. Among them, the ocu-
miR-185-3p and ocu-miR-370-3p with the most target
genes were selected as hub-miRNAs. These results pro-
vided a better understanding of the role of miRNAs in
skeletal muscle development of meat rabbits and a novel
insight into molecular breeding of meat rabbits.

Materials and methods

Sample collection

The leg muscles of this project were collected from
fetus, child and adult New Zealand rabbits which
were maintained with a unified management system.
During this period, the rabbit house was kept dry and
clean. Child (6-week-old, 0.86+0.083 kg, n=3) and
adult (6-month-old with 2 weeks gestation, 4.37 +
0.033 kg, n=3) New Zealand rabbits were euthanized
by air injection into the ear vein after anesthesia.
Two-week-old fetuses’ rabbits were taken from 6-
month-old adult rabbits. A total of 3 fetuses’ rabbits
(2-week-old, 9.14+0. 33 g) were selected, and the
mother of each fetus was different. All rabbits’ left leg
muscles were collected as samples. All collected leg
skeletal muscles were rinsed with PBS containing
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100x penicillin and streptomycin 3 times. Subse-
quently, the samples in the cryopreservation tubes
were immediately put into liquid nitrogen and trans-
ferred to the — 80C refrigerator after 24 h.

Small RNA libraries construction and sequencing

RNA was extracted with animal total RNA isolation kit
(Foregene co., Itd., Chengdu, China). In addition, the
degradation, purity, concentration and integrity of RNA
were checked by 1% agarose gel electrophoresis, Nano-
Photometer® spectro-photometer (IMPLEN, CA, USA),
and RNA Nano 6000 Assay Kit of the Agilent Bio-
analyzer 2100 system (Agilent Technologies, CA, USA),
respectively.

A total of 3 pg RNA per sample was used as input
material for library construction. Then the libraries
were constructed by NEBNext’Multiplex Small RNA
Samples Prep Kit Set for Illumina® (NEB, MA USA).
In short, based on the special structure of the small
RNA 3’ and 5 ends (the 5" end has a complete phos-
phate group and the 3’ end had a hydroxyl group),
the adaptor was directly added to the small RNA 3’
and 5. Then first-strand cDNA was synthesized
through M-MuLV Reverse Transcriptase (RNase H-).
PCR amplification was performed using LongAmp
Taq 2X Master Mix, SR Primer for Illumina and
index (X) primer. Subsequently, the PCR products
were subjected to 8% PAGE gel electrophoresis to
separate the target DNA fragments of 140 ~ 160 bp,
the products recovered by the gel cutting were the
cDNA libraries. After the library of each sample was
constructed, it was initially quantified by Qubit® RNA
Assay Kit in Qubit® 2.0 Flurometer (LifeTechnologies,
CA, USA). Subsequently, the insert size of the library
was detected with Agilent Bioanalyzer 2100 system.
Finally, the different libraries were pooled according
to the effective concentration and targeted offline data
requirements, and then sequenced by Illumina SE50.
The clustering of the index-coded samples was per-
formed on a cBot Cluster Generation System using
TruSeq SR Cluster Kit v3-cBot-HS (Illumia) according
to the manufacturer’s instructions. The libraries’ prep-
arations were sequenced on the Illumina Hiseq 2500/
2000 platform.

Data filtering and quality assessment

The raw data in fastq format was first processed by cus-
tom Perl and python scripts. The original data files have
been uploaded and published to the NCBI SRA database.
The accession number is PRJNA692651. The name is
“miRNA raw data of rabbits’ hid leg skeletal muscle in
fetus, child and adult”. At the same time, Q20, Q30, and
GC-content of the raw data were calculated. In order to
ensure the quality of analysis, raw reads were processed
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to obtain clean reads. The entire filtering steps include
removing low-quality reads (reads with a quality value of
sQ <20 that account for more than 30 % of the entire
reads), reads containing ploy-N, reads with 5 adapter
contamination, reads without 3’ adapter or insert tag,
trimming off 3’ linker sequence, reads containing poly
A/T/G/C (most poly A/T/G/C, may be due to sequen-
cing errors). Then, the 18 ~ 35 nt fragments in the clean
reads were screened for all downstream analysis.

Identifications of SRNA

Through bowtie [44], the length-screened sRNA was lo-
cated on the reference sequence of rabbit (Oryctolagus
cuniculus, Genome assembly: OryCun2.0 GCA_
000003625.1). The distribution of sRNAs without mis-
match on the reference sequences were analyzed. To
make every unique sRNA mapped to only one annota-
tion, we followed the following priority rule: known
miRNA > rRNA > tRNA (Transfer RNA, tRNA) > snRNA
(Small nuclear RNA) > snoRNA (Small nucleolar RNA) >
repeat > gene > NAT-siRNA (Natural antisense tran-
script - small interfering RNA) > gene > novel miRNA >
ta-siRNA (Trans-acting siRNA). The total rRNA propor-
tion was used a marker as sample quality indicator.

The reads mapped to the reference sequence were
aligned with the specified range sequence in miRBase20.0,
and mirdeep2 [45] and srna-tools-cli were used to obtain
the potential miRNAs and draw the secondary structures.
Custom scripts were used to obtain the miRNAs" counts
as well as base bias on the first position of identified miR-
NAs with a certain length and on each position of all iden-
tified miRNAs respectively. To remove tags originating
from protein-coding genes, repeat sequences, rRNA,
tRNA, snRNA, and snoRNA, small RNA tags were
mapped to RepeatMasker and Rfam database from the
specified species. Finally, the signature hairpin structure of
the miRNAs’ precursors was used to predict novel miR-
NAs. The miRNA collections, predicted by miRNA pre-
diction software miREvo [46] and mirdeep2 [45], were
identified as novel miRNAs in rabbits.

Expression, target genes and difference analysis of
miRNAs

The expression of known and novel miRNAs in each
sample was counted, and the expression was normal-
ized with transcripts per million (TPM) [47]. Then, the
target genes of miRNAs were performed by miRanda
[48]. Subsequently, differential expression analysis of
two stages was performed using the DESeq R package
(3.0.3). The P values was adjusted using the Benjamini
& Hochberg method. Corrected P value (P-adj) of 0.05
was set as the threshold for significantly differential
expression.
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Function and pathway analyses of target genes

GO enrichment analysis was performed on the target
gene candidates of the DEmiRNAs by GOseq [49].
KOBAS software was used to test the enrichment of tar-
get gene candidates in the KEGG pathway.

Quantitative PCR

Reverse transcription of selected miRNAs by the
GoScrip Reverse Transcriptase kit (Promega, Madison,
W1, USA) according to the manufacturer’s Guide. All of
the primer pairs (Table S10) were designed using miR-
perimer and synthesized by the synthesized by the
TsingKe biological technology company. The U6 house-
keeping gene was amplified as a control. Next, GoTaq
qPCR master mix (Aidlab, catalog number: APC6102)
was used to perform qPCR on the LightCycler 96 (ABI)
real-time PCR instrument. Each stage has 3 biological
replicates. The quantities of miRNAs were normalized
to the U6 and calculated as 272", One-way ANOVA
analysis of the normalized data was then conducted
using SPSS version 19.0 for Windows. Duncan’s multiple
comparisons were performed for testing significant dif-
ferences between mean values at different stages.
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