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Abstract

Background: Disease resilience, which is the ability of an animal to maintain performance under disease, is
important for pigs in commercial herds, where they are exposed to various pathogens. Our objective was to
investigate population-level gene expression profiles in the blood of 912 healthy F1 barrows at ~ 27 days of age for
associations with performance and health before and after their exposure to a natural polymicrobial disease
challenge at ~ 43 days of age.

Results: Most significant (q < 0.20) associations of the level of expression of individual genes in blood of young
healthy pigs were identified for concurrent growth rate and subjective health scores prior to the challenge, and for
mortality, a combined mortality-treatment trait, and feed conversion rate after the challenge. Gene set enrichment
analyses revealed three groups of gene ontology biological process terms that were related to disease resilience: 1)
immune and stress response-related terms were enriched among genes whose increased expression was
unfavorably associated with both pre- and post-challenge traits, 2) heme-related terms were enriched among genes
that had favorable associations with both pre- and post-challenge traits, and 3) terms related to protein localization
and viral gene expression were enriched among genes that were associated with reduced performance and health
traits after but not before the challenge.

Conclusions: Gene expression profiles in blood from young healthy piglets provide insight into their performance
when exposed to disease and other stressors. The expression of genes involved in stress response, heme
metabolism, and baseline expression of host genes related to virus propagation were found to be associated with
host response to disease.

Keywords: Pigs, Disease resilience, Disease challenge, Blood, Transcriptomics

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: jdekkers@iastate.edu
1Department of Animal Science, Iowa State University, Ames, Iowa 50011,
USA
Full list of author information is available at the end of the article

Lim et al. BMC Genomics          (2021) 22:614 
https://doi.org/10.1186/s12864-021-07912-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07912-8&domain=pdf
http://orcid.org/0000-0003-1557-7577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jdekkers@iastate.edu


Background
Disease resilience is a comprehensive concept that inte-
grates resistance and tolerance [1–3], which are sequen-
tial shields that protect animals from disease agents.
Resistance can be defined as the ability of the host to
limit an increase in pathogen level in the host as external
pathogen exposure increases. Tolerance can be defined
as the ability to limit the impact of an increase in patho-
gen level in the host on its performance. Disease resili-
ence can be defined as the ability to limit the impact of
an increase in external exposure to the pathogen on the
host’s performance [4]. In contrast to resistance and tol-
erance, disease resilience does not require measurement
of pathogen load at the individual level, which is very
difficult in terms of cost and labor [2, 3]. In addition,
with the large number of pathogens for pigs worldwide,
measuring resistance and/or tolerance for one pathogen
may not predict these measures for another pathogen.
Disease resilience does not require determination of
pathogen burden and also applies when multiple patho-
gens are present. Hence, disease resilience represents a
very useful concept for the improvement of animal pop-
ulations that face health challenges, such as in commer-
cial pig production.
RNA-sequencing (RNA-seq) of full length transcripts

is a widely used method to quantify gene expression
levels in blood samples and has been applied in several
studies to investigate host response to important pig
pathogens such as porcine reproductive and respiratory
syndrome virus [5–7], African swine fever virus [8],
foot-and-mouth disease virus [9], and mycoplasma [10].
In each of these studies, pigs were artificially infected
with a single dose of the targeted pathogen in order to
investige changes in gene expression after infection. In
all but one case [7], less than 100 samples were used,
reflecting the relatively high cost of full-length RNA-seq.
In addition, most studies applied depletion of globin
RNAs [5–7, 10] or of rRNA [8] prior to RNA-seq to in-
crease sensitivity. This additional step increases labor.
To overcome these limitations, we applied QuantSeq
3’mRNA sequencing (QuantSeq) with Globin-blocker
(GB) (QuantSeq, Lexogen, Austria), as described in [11].
To generate QuantSeq libraries, no prior steps for
poly(A) enrichment and rRNA depletion are needed be-
cause total RNA is used as input and starts with oligodT
priming. QuantSeq sequences only the 3’end of tran-
scripts [12] and, in combination with GB, reduces the
sequence space needed to adequately explore the tran-
scriptome of blood samples.
Gene expression levels in heterogeneous tissue sam-

ples, including whole blood, can be affected by cell com-
position of the samples, making it difficult to determine
whether differences in mRNA read counts for a gene be-
tween samples are due to differences in expression of

the gene, differences in cell composition, or both [13].
Recently, single-cell RNA sequencing has received much
attention due to it’s ability to distinguish heterogeneous
gene expression patterns in different cell types that are
present in a complex sample, as reviewed by Hwang
et al. [14]. Also, deconvolution of gene expression data
for a heterogeneous sample into estimates of gene ex-
pression levels of individual cell types have been pro-
posed, using the gene expression signatures of 64
immune and stromal cell types [15] and of 29 immune
cell types within peripheral blood mononuclear cells
[16]. However, comprehensive cell type signatures have
not been reported for the pig. Whitney et al. [17] re-
ported associations of gene expression patterns in blood
from healthy human donors with relative proportions of
specific blood cell subsets, supporting the application of
white blood cell (WBC) composition to adjust gene ex-
pression levels.
Here, we measured RNA levels in a large set of blood

samples collected on young healthy piglets, prior to their
exposure to a natural polymicrobial disease challenge, as
described in [18]. The resulting data were used to iden-
tify genes whose expression in blood in young healthy
piglets is associated with concurrent performance and
with their performance and resilience following exposure
to polymicrobial infectious agents. Expression values
were adjusted by mixed linear models with (eWI) or
without (eWO) accounting for WBC composition to ad-
dress the cellular heterogeneity of the blood samples an-
alyzed. The adjusted expression values for a gene were
then used for quantitative analysis of associations with
concurrent performance and with subsequent disease re-
silience by fitting gene expression as a covariate for con-
tinuous traits or as a response variable for binary traits
in trait-specific mixed linear models.

Results
Resilience traits under a natural disease challenge
A total of 912 pigs in 15 batches from the natural dis-
ease challenge model (NDCM) [18, 19], illustrated in
Fig. 1, were used in the current analysis. Population-
scale blood transcriptomic data from young healthy pigs
were used to determine associations with multiple
phenotypes collected before and after exposure to a
polymicrobial disease challenge. Blood samples for tran-
scriptome analysis were collected at ~ 27 days of age
while the pigs were acclimating in a biosecure quaran-
tine nursery (qNUR). Two weeks later, the pigs were
moved to a nearby natural disease challenge nursery and
finisher (cNUR and FIN), as described in [18]. Disease
resilience and performance traits were evaluated across
the nursery and finisher phases, including subjective
health scores (HS), health treatment rates (TRT), mor-
tality (MOR), growth rate, feed efficiency, and carcass
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traits. Records for mortality and treatments were also
combined into a new binary trait (MT) that classified an-
imals as died versus survived without treatment, with
animals that survived with treatment set to missing.
Summary statistics of all phenotypes are provided in
Table 1. The number of pigs evaluated differed by trait
because of mortality. Mortality rates were similar in the

challenge nursery (12%) and finisher (13%), despite the
much shorter length of the challenge nursery phase (27
days) than the finisher phase (100 days), reflecting the
higher disease pressure in the challenge nursery, where
pigs were first exposed to disease. Summary statistics for
these 15 batches were similar to the descriptive statistics
of traits across 50 batches of the NDCM (3285 pigs) as

Fig. 1 Illustration of the natural disease challenge model

Table 1 Descriptive statistics of the evaluated phenotypes by trait category and growth phase

Category Phase Trait abbreviation (units) # of pigs Mean Standard deviation

Subjective
health score

Quarantine nursery qNurHS1 912 4.85 0.36

qNurHS2 912 4.86 0.35

Challenge nursery NurHS 894 4.46 0.69

Finisher FinHS 761 4.78 0.49

Treatment rate Challenge nursery NurTRT (per 27 days) 903 1.07 1.09

Finisher FinTRT (per 100 days) 746 0.28 0.70

Nursery + finisher AllTRT (per 180 days) 778 1.26 1.34

Mortality plus treatments Challenge nursery NurMT 427 0.51 0.87

Finisher FinMT 694 0.31 0.72

Nursery + finisher AllMT 482 0.89 1.00

Mortality Challenge nursery NurMOR 912 0.12 0.32

Finisher FinMOR 803 0.13 0.34

Nursery + finisher AllMOR 912 0.24 0.42

Growth rate Quarantine nursery qNurADG (kg/day) 912 0.31 0.09

Challenge nursery NurADG (kg/day) 910 0.28 0.16

Finisher FinADG (kg/day) 707 0.89 0.13

Feed intake Finisher ADFI (kg/day) 704 2.22 0.33

ADFD (min/day) 713 60.4 11.5

FCR (kg/kg) 704 2.62 0.20

RFI (kg) 703 0.04 0.12

Carcass Carcass CWT (kg) 653 91.3 10.0

DRS (%) 651 77.6 2.0

LYLD (%) 613 61.3 1.7

CBF (mm) 615 16.9 3.8

CLD (mm) 615 59.4 6.0

Abbreviations: HS subjective health score on a 1 to 5 healthy scale, TRT the number of treatments adjusted by the day that pigs stayed, ADG average daily gain,
ADFI average daily feed intake, ADFD average daily duration, FCR feed conversion ratio, RFI residual feed intake, CWT carcass weight, DRS dressing proportion,
LYLD lean yield, CBF carcass backfat, CLD carcass loin depth
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presented in [19], which included the 15 batches used
here.

Population-level blood transcriptome data prior to
challenge
Gene expression levels in blood collected from the 912
pigs in the qNUR, prior to their exposure to disease,
were quantified by 3’mRNA sequencing with a globin
block [11]. Descriptive statistics for the expression data
are in Table 2. After trimming the raw reads, on average,
6.1 million (M) clean reads per sample were obtained.
To assign reads to gene regions, annotation of 25,580
genes from the Ensembl SSC11.1.92 gene build was
merged with gene annotation information obtained from
Iso-seq data by Beiki et al. [20] (see Fig. S1). Use of the
Iso-seq data resulted in 3’end extensions of genes that
were annotated by Ensembl and the addition of another
12,491 genes. The merged annotation provided not only
more accurate 3’end borders of genes, which increased
the accuracy of gene expression quantification, but also
data on additional genes for further downstream ana-
lysis. On average, 73.8% of all reads were uniquely
mapped to the genome, of which 62.4% were assigned to
gene coordinates, and 11.8% to the HBA and HBB gene
regions. The latter were excluded from further analysis
because globin block was applied in library construction.
Only genes that had non-zero read counts in at least
80% of the samples (Fig. S2) were kept for further ana-
lyses, leaving data on 15,872 of the original 38,371 genes.
Normalized (by the trimmed mean of M values) and

log2 transformed counts (Fig. S3) were adjusted for sys-
tematic effects using mixed linear models (Table S1)
with (eWI) or without (eWO) accounting for the WBC
composition of the sample. Comparing models with and
without WBC composition, 17% (n = 2791) of genes
showed a lower Bayesian Information Criterion (BIC)
value for the model that included WBC composition, in-
dicating that the observed level of expression of these
genes was significantly affected by WBC composition.

Almost all of these genes (n = 2715) were significantly
associated with the proportion of lymphocytes, of which
876 were significant only for the proportion of lympho-
cytes. (Fig. S4). The numbers of genes whose expression
was significantly (q < 0.10; Fig. S4) affected by only one
of the other WBC types were 14, 4, 1, and 0 for mono-
cytes, eosinophils, neutrophils, and basophils,
respectively.

Association of gene expression with phenotypes
Residuals of the expression values that were obtained for
each gene for the 912 pigs from the eWO and eWI
models, ResWO and ResWI, respectively, were used for
quantitative analysis of associations of gene expression
with concurrent (qNUR) and subsequent (cNUR and
FIN) performance and resilience phenotypes. For most
traits, there was no significant difference in their associ-
ation with ResWO versus ResWI of gene expression
based on a likelihood ratio test at p < 0.05 (Table S2).
However, 193 genes were found to be significant for this
test for feed conversion rate (FCR) and even more for
MT (3816, 2033, and 3198 genes in the challenge nur-
sery, the finisher, and across both phases, respectively).
Note that the analyses for MT included only pigs that
fell in the extremes in terms of mortality and treatment
(died versus survived without treatment), which may
affect the distributional assumptions of the likelihood
ratio test.
To compare the sign and magnitude of associations

with ResWO versus ResWI, and across phenotypes, esti-
mates of the regression coefficients of phenotype on
ResWO and ResWI were standardized by expressing
them as the number of standard deviations of change in
the phenotype that was associated with a one standard
deviation change in expression. Signs of the estimates
were reversed for resilience traits for which lower values
are favorable (i.e. for TRT, MT, MOR, FCR, RFI, and
back fat), such that a positive estimate always refers to a
favorable change in the trait associated with an increase
in expression. The resulting standardized estimates of
regression coefficients obtained from regression on
ResWO versus ResWI were highly correlated (0.92 to 1
across traits, Table 3), indicating that adjustment of ex-
pression for WBC did not result in large changes in as-
sociations of expression with phenotypes. Results for
both ResWO and ResWI are presented (e.g. Fig. S5) but
only results using ResWO will be described in the text.
Comparison of estimates of regression coefficients on

gene expression between phenotypes recorded in each
phase (Fig. S5) showed relationships that were consistent
with the phenotypic correlations that were estimated be-
tween these traits in the whole NDCM population by
Cheng et al. [19]. For example, in the challenge nursery,
health score was phenotypically negatively correlated

Table 2 Descriptive statistics for RNA quality and 3′ mRNA
sequencing data on 912 pigs

Item Mean SD Min Max

RNA integrity number (RIN) 7.9 1.0 4.1 9.9

Total reads/sample (millions) a 6.2 2.3 0.2 26.7

Aligned reads/sample (%) b 98.6 1.4 67.2 99.5

Uniquely mapped reads/sample (%) b 73.8 5.3 44.5 85.7

Gene reads (%) b 62.4 10.5 30.5 85.7

HBA/HBB reads (%) b 11.8 5.6 0.6 38.5

Non-globin reads (%) b 50.6 7.5 27.0 70.7

Abbreviations: SD standard deviation, Min minimum, Max maximum, HBA
hemoglobin subunit alpha, HBB hemoglobin subunit beta
a The number of reads after trimming by Bbduk
b The proportion to the total reads (%)
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with both MOR (r = − 0.50) and TRT (r = − 0.30) [19],
corresponding to the favorable relationship between
standardized estimates of regression coefficients for
these traits (Fig. S5 b).
Table 3 shows the numbers of genes that were signifi-

cantly associated with phenotypes after correction for
multiple testing (q < 0.20). The levels of gene expression
were most strongly associated with traits that were

measured during the qNUR, which is when the blood
samples analyzed were collected. The number of signifi-
cant genes for health scores (qNurHS1 and qNurHS2)
and growth rate in the quarantine nurserywere 395, 173,
and 856, respectively. A total of 14 genes were signifi-
cant for all three traits recorded in the quarantine nur-
sery (Table 4). Table 3 also provides the estimated
number of genes that did not follow the null-hypothesis

Table 3 The number of genes with expression levels in blood of young healthy pigs that were significantly (q < 0.20) associated
with observed phenotypes, with or without accounting for blood cell composition, the estimated number of genes that did not
follow the null-hypothesis, and the relationship of adjusted estimates from two expression residuals across all genes

Trait measured during
each phase a

Number of genes from expression residuals with or without adjustment for cell composition Correlation
of
estimates

Without With With+Without b

Quarantine Nursery

qNurHS1 395 (1656) c 29 (1106) 395 0.92

qNurHS2 171 (982) 101 (0) 173 0.93

Growth rate 744 (3224) 830 (3357) 856 1.00

Challenge Nursery

Health score 0 (0) 0 (0) 0 0.94

Treatment rate 0 (0) 0 (0) 0 0.96

Mortality + treatments 347 (3138) 170 (2956) 349 0.99

Mortality 7 (2592) 2 (2649) 7 1.00

Growth rate 0 (0) 0 (0) 0 0.98

Challenge Finisher

Health score 0 (1048) 6 (1632) 6 1.00

Treatment rate 0 (176) 0 (48) 0 0.99

Mortality + treatments 0 (2014) 0 (1907) 0 0.99

Mortality 0 (2900) 0 (2787) 0 0.99

Growth rate 0 (0) 0 (0) 0 0.97

Feed intake 0 (270) 0 (0) 0 0.98

Feed intake duration 0 (0) 0 (0) 0 0.97

Feed conversion rate 422 (2768) 1 (1373) 422 0.95

Residual feed intake 0 (1892) 0 (1569) 0 0.97

Overall Challenge

Treatment rate 0 (0) 0 (0) 0 0.98

Mortality + treatments 40 (2663) 0 (2152) 40 0.99

Mortality 1725 (5152) 1458 (5298) 1794 0.99

Carcass

Carcass weight 0 (353) 0 (0) 0 0.96

Dressing proportion 0 (0) 0 (0) 0 0.96

Lean yield 42 (3912) 3 (2593) 42 0.97

Carcass backfat 18 (3555) 1 (2827) 18 0.97

Carcass loin depth. 0 (290) 0 (395) 0 0.99

Abbreviations: qNurHS1 and qNurHS2, health scores in the quarantine nursery
a Health score was recorded by 1 (pigs in perfect health) and 0 (pigs with clinical signs); Mortality with treatments was recorded by 0 (pigs that survived without
any treatment) and 1 (pigs that died during a given period); Mortality was recorded by 0 (survival) and 1 (death)
b The number of genes that were significant for at least one of the models with or without accounting for blood cell composition
c The number of significant genes (q < 0.20) from expression residuals with or without adjustment for cell composition and, within parentheses, the estimated
number of genes that did not follow the null-hypothesis using the method descibed in [21]
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of no association with resilience, based on the method
described in [21]. Sizable numbers of associated genes
were estimated for most traits.
For traits that were recorded during the challenge

phase, most significant associations were found for
MOR, MT, and for FCR (Table 3). Gene expression was
more strongly associated with mortality across the chal-
lenge nursery and finisher (AllMOR) than with mortality
within each phase (NurMOR or FinMOR): 1794 genes
were significantly associated with AllMOR, of which
only 7 genes were associated with NurMOR and none
with FinMOR. In contrast, the number of genes that
were significantly associated with MT was higher in the
challenge nursery(n = 349) than across the challenge
nurseryand finisher (n = 40). Among feed-related traits,
only FCR showed a significant association with gene ex-
pression levels (n = 422). The numbers of genes whose
expression was significantly associated with carcass traits
were 42 for lean yield and 18 for back fat thickness.
Among the 14 genes that showed significant associa-

tions with all three qNUR traits (Table 4), five genes
were also significantly associated with subsequent resili-
ence traits (q < 0.20): CD163, which encodes the receptor
for PRRS virus entry and replication in alveolar marco-
phages [22], was associated with NurMT and AllMOR
(estimates of associations with all phenotypes are in
Table S3); family with sequence similarity 111 member A
(FAM111A) was associated with MT in the challenge
nursery and with FCR (only measured in the finisher);
toll like receptor 2 (TLR2) and asparaginase and

isoaspartyl peptidase 1 (ASRGL1) were associated with
FCR; and PDZK1 interacting protein 1 (ENSS
SCG00000020872) was associated with lean yield. The
signs of the associations of these genes with traits
reflected the phenotypic correlations between the traits
[19], with higher expression of CD163 and FAM111A
being unfavorably associated with both qNUR traits and
with MT in the cNUR; higher expression of FAM111A,
TLR2, and ASRGL1 was unfavorably associated with
qNUR traits and favorably with FCR; and higher expres-
sion of ENSSSCG00000020872 was favorably associated
with qNUR traits and with lean yield.

Gene set enrichment analysis of expression associations
with phenotypes
The limited statistical power to detect associations of
the expression of an individual gene with a phenotpe
can be overcome by analyzing associations for groups of
genes. Here, associations across genes were leveraged by
GO-term gene set enrichment analysis (GSEA) of associ-
ation results obtained for all 15,872 genes. For this pur-
pose, for each trait, genes were ranked based on their
standardized regression coefficient estimates and ana-
lyzed for GO-term enrichment using the GSEA_4.0.3
software [23]. Significance (−log10(FDR)) and direction
of associations of the expression of genes with a given
GO term for each trait are shown in heat maps in Figs. 2,
3, 4 and 5. GO terms in the heat maps were ordered by
hierarchical clustering based on the signed significance
(−log10(FDR)) of their enrichment across traits and

Table 4 Genes that showed significant association across all quarantine nursery traits in single-gene association analysis (q < 0.20)

Gene Quarantine nursery traits

Ensembl ID Symbol GO term of the direct biological process Health
score 1

Health
score 2

Growth
rate

Resilience

ENSSSCG00000003586 EPB41 blood circulation WO+ BOTH+ BOTH+

ENSSSCG00000008820 TEC innate and adaptive immune response WO- WO- BOTH-

ENSSSCG00000009002 TLR2 inflammatory response, immune response WO- WO- BOTH- FCRWO+

ENSSSCG00000010025 LIMK2 spermatogenesis WO- WO- BOTH-

ENSSSCG00000010445 ANKRD22 – WO- WO- BOTH-

ENSSSCG00000012880 CPT1A regulation of insulin secretion, eating behavior BOTH- WO- BOTH-

ENSSSCG00000013065 ASRGL1 proteolysis WO- WO- BOTH- FCRWO+

ENSSSCG00000013556 ADGRE1 adaptive immune response WO- WO- BOTH-

ENSSSCG00000017126 NARF – WO+ BOTH+ BOTH+

ENSSSCG00000020872 – – BOTH+ BOTH+ BOTH+ LYLD WO+

ENSSSCG00000033146 CD163 acute-phase response, viral entry into host cell WO- WO- BOTH- NurMTBOTH-AllMORWO-

ENSSSCG00000033190 – – WO+ BOTH+ BOTH+

ENSSSCG00000033703 FAM111A defense response to virus WO- WO- BOTH- NurMTBOTH-FCRWO+

ENSSSCG00000035182 SDR42E1 steroid biosynthetic process WO- WO- BOTH-

Abbreviation: WO and WI, the significant association (q < 0.20) between observed phenotypes and gene expression levels with or without accounting for with
blood cell composition, respectively; BOTH, the significant associations of both expressions with and without accounting for blood cell composition, with observed
phenotypes; + and -, the favorable and unfavorable direction of relationship with observed phenotypes, respectively; FCR, feed conversion rate; LYLD, lean yield;
NurMT, mortality with treatment during challenge nursery; AllMOR, mortality across whole period
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across associations with or without adjustment of gene
expression residuals for WBC composition. The
enriched terms for gene expression residuals with or
without adjustment for WBC composition showed a
similar trend in the direction of associations across
traits.
Figure 2 shows two clear clusters of biological pro-

cesses (n = 57) that were significantly (FDR < 0.001)
enriched for associations with at least one qNUR trait.
Biological processes in the first cluster, which included
heme metabolism-related terms and the hydrogen per-
oxide catabolic process, were favorably associated with
qNurHS2 and with growth rate in the qNUR, as well as
with HS and TRT in the finisher. The second cluster
showed unfavorable associations with qNUR traits and
also with phenotypes under challenge, except with FCR
and RFI. This indicates that increased expression of
genes in these biological processes in blood in the

quarantine nursery was associated with poorer perform-
ance, both before and during the challenge. Predominant
in this cluster were immune-related terms such as re-
sponse to virus or bacterium, myeloid leukocyte activa-
tion, phagocytosis, inflammatory response, cytokine
production (interleukin, interferon-alpha/−gamma, toll
like receptor, tumor necrosis factor), and cell chemo-
taxis. This cluster also included biological processes
related to muscle apoptosis.
Although pigs were expected to be free of major dis-

eases at the time of blood collection, they had been ex-
posed to non-disease stressors, such as weaning,
transportation, and mixing. Thus, genes involved in
stress-related biological processes were further examined
in terms of their association with traits recorded in the
quarantine nursery. In total, 12 stress-related biological
processes tended to be associated with qNUR traits
(FDR < 0.20) (Fig. 3). These processes showed a similar

Fig. 2 Biological processes (n = 57) that were significantly (FDR < 0.001) enriched among genes ranked based on the magnitude of the
association of their expression with at least one quarantine nursery trait based on gene set enrichment analysis and the signed significance
(−log10(FDR)) of the enrichment of these biological processes with disease resilience traits, with or without adjustment of gene expression for
cell composition. Green/Red = an increase in expression of genes in that biological process is favorably/unfavorably associated with disease
resilience (e.g. less/more mortality, treatments, higher/lower growth rate, feed intake, etc.)
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pattern of associations with phenotypes under challenge
as cluster 2 in Fig. 2. Similar to the immune-related
terms in cluster 2 of Fig. 2, the significant stress-related
terms showed an opposite direction of associations for
FCR and RFI.
Figure 4 shows biological processes that were signifi-

cantly enriched for at least one feed efficiency trait at
FDR < 0.001. Most biological processes that were signifi-
cantly enriched among genes with favorable associations
with feed efficiency traits were related to immune re-
sponse and showed unfavorable associations with other
resilience traits. However, the term of ribosome assem-
bly in cluster 1 was favorably enriched not only for feed
efficiency traits, with limited impacts on other resilience
traits, but also for HS2 during the qNUR.
Figure 5 shows biological processes that were signifi-

cantly enriched for at least one phenotype recorded dur-
ing the challenge, other than FCR and RFI (FDR <
0.025). Among these, three clusters were identified with
distinct patterns of significance across resilience traits.
The signs of the associatons for enriched terms within
each cluster were similar for ResWO and ResWI, al-
though their significance levels differed, depending on
the cluster. Cluster 1 included immune-related GO
terms that were unfavorably associated with traits in
both the quarantine nursery (growth rate and HSs) and
under challenge, except for FCR and RFI. Cluster 1 also
included GO terms for aortic/semi-lunar valve develop-
ment and regulation of nuclease activity, with unfavor-
able associations with resilience traits. Cluster 1 also
included GO terms with favorable associations with re-
silience traits, such as HS and TRT in the challenge nur-
sery(synapse vesicle endocytosis, BMP signaling
pathway), and TRT in the finisher (histone methylation,
and pseudouridine synthesis). GO terms in cluster 2

contained heme metabolism-related terms that were
shown in Fig. 2 to be favorably associated with HS and
TRT in the finisher, both with and without adjustment
of gene expression for WBC composition, with weak
and non-significant unfavorable associations with other
resilience traits. Cluster 3 included GO terms that were
unfavorably associated with most resilience traits, as well
as with carcass traits, but that were favorably associated
with FCR and TRT in the finisher. This cluster included
protein localization, nonsense-mediated decay, and viral
gene expression. In contrast to most GO terms in cluster
1, GO terms in cluster 3 had weak associations with
qNUR traits.

Discussion
Blood transcriptome of young healthy pigs
The objective of this study was to investigate the bio-
logical basis of gene expression patterns of young
healthy pigs that are associated with their future disease
resilience, rather than to understand host response to
specific pathogens. Most previous studies using blood
transcriptome profiling in relation to disease used artifi-
cial infection of animals with specific pathogens and
blood samples collected at multiple time points to quan-
tify gene expression and/or pathogen burden in the host
[5–10]. Compared to those studies, the current study is
novel in several respects. First, we applied a natural poly-
microbial disease challenge model to cover common
pathogens seen in commercial pig farms and natural ex-
posure to these pathogens, instead of applying an artifi-
cial infection challenge with one or a limited number of
pathogens. The objective was to mimic a commercial en-
vironment with high disease pressure. Detailed pheno-
types related to disease resilience were collected on a
large number of animals, including mortality, health

Fig. 3 Stress-related biological processes (n = 12) that were significantly (FDR < 0.20) enriched among genes ranked based on the magnitude of
the association of their expression with at least one quarantine nursery trait based on gene set enrichment analysis and the signed significance
(−log10(FDR)) of the enrichment of these biological processes with disease resilience traits, with or without adjustment of gene expression for
cell composition. Green/Red = an increase in expression of genes in that biological process is favorably/unfavorably associated with disease
resilience (e.g. less/more mortality, treatments, higher/lower growth rate, feed intake, etc.)
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treatments, health scores, growth rate, feed efficiency,
and carcass traits. Second, blood for gene expression
analysis was collected prior to exposure to the natural
disease challenge in order to identify gene expression
patterns in young healthy pigs that were associated with
subsequent resilience. As a result, the gene expression
experimental design did not include a treatment group
and the focus of the analyses was to evaluate differences
in gene expression between healthy animals and how
these differences were related to subsequent disease re-
silience following exposure to the polymicrobial chal-
lenge. Last, we applied a quantitative association
approach for the gene expression analysis based on the
population-level blood transcriptome data from 912 bio-
logical replicates, as this was not a treatment versus
control design.

Adjustment of gene expression patterns for cell
composition
Cellular heterogeneity is an issue for bulk RNA-seq ana-
lysis of blood samples and several deconvolution
methods have been proposed to predict and account for
cell composition [15, 16]. Dong et al. [24] used predic-
tions of cell composition based on the RNA-seq data to
account for cellular heterogeneity in differential gene ex-
pression analysis in tonsil for persistent porcine repro-
ductive and respiratory syndrome virus (PRRSV)
infection. Cellular heterogeneity of the tonsil samples
was found to have a large effect on gene expression
levels. In the current study, we used WBC composition
data to account for cell type proportion heterogeneity
across blood samples; residuals from a mixed linear
model with or without accounting for the proportions of

six cell types were used for analysis of associations with
recorded phenotypes. In total, the expression levels of
2791 genes were significantly affected by WBC compos-
ition (lower BIC and q < 0.10; Fig. S4). Because of this,
associations of gene expression with disease resilience
were evaluated both with and without adjustment of
gene expression for WBC composition (ResWI and
ResWO). In general, however, the estimates of regres-
sion coefficients on ResWO versus ResWI were highly
correlated (Table 3) and association results with disease
resilience traits were minimally impacted by adjustment
for WBC composition (Table S2). However, GSEA ana-
lysis of association results for ResWO showed higher
significance levels for enrichment of immune-related
biological processes than results for ResWI (Fig. 5). This
implies that WBC proportions do not only affect gene
expression levels in blood but can also be directly associ-
ated with the measured phenotypes. Bai et al. [25], who
analyzed associations of WBC proportions with disease
resilience using data from 42 batches of the NDCM, re-
ported that WBC composition of blood collected during
the quarantine nursery(at the same time as used here)
did not differ significantly between animals that differed
in resilience. To add to these results, and to confirm the
effect of WBC composition on qNUR traits, we investi-
gated the relationship of these WBC proportions with
qNUR traits, using data from the whole NDCM popula-
tion (n = 2819). Results revealed that the proportion of
lymphocytes was significantly associated with health
scores in the quarantine nursery(p < 0.01; data not
shown), supporting the effects of WBC composition on
gene expression levels quantified during the same phase.
Adjustment of gene expression levels for WBC

Fig. 4 Biological processes (n = 29) that were significantly (FDR < 0.001) enriched among genes ranked based on the magnitude of the
association of their expression with at least one feed efficient trait based on gene set enrichment analysis and the signed significance
(−log10(FDR)) of the enrichment of these biological processes with disease resilience traits, with or without adjustment of gene expression for
cell composition. Green/Red = an increase in expression of genes in that biological process is favorably/unfavorably associated with disease
resilience (e.g. less/more mortality, treatments, higher/lower growth rate, feed intake, etc.)
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composition (ResWI) resulted in the identification of
additional significant genes (q < 0.20) in the single-gene
association analyses (Table 3) and several non-immune
related biological processes showed stronger associations
with resilience traits in the GSEA results (Fig. 5), includ-
ing cotranslational protein targeting the membrane and
protein localization to the endoplasmic reticulum. These
findings support the usefulness of evaluating the effects
of adjustment of gene expression for cell composition
when conducting transcriptome profiling in heteroge-
neous tissues.

Associations of gene expression with phenotypes
collected on young healthy pigs
Pigs were sourced from high health multiplier farms and
were kept in a biosecure environment prior to the dis-
ease challenge. During the 3-week acclimation period in
the qNUR, none of the pigs used in this study (n = 912)
received a therapeutic treatment. In addition, most pigs
were in good health 2 weeks into the quarantine nur-
sery(86% of pigs had a HS of 5), although some lower
health scores were observed 6 days after arrival in the
quarantine nursery(16% with a score of 4), which is
when blood samples for RNA-seq were taken. The ex-
pression of 1207 genes was associated (q < 0.20) with
health scores and/or growth rate in the qNUR, as shown

in Table 3. The expression of five immune-related genes
was unfavorably associated with all three qNUR traits
(Table 4): tec protein tyrosine kinase (TEC), TLR2, adhe-
sion G protein-coupled receptor E1 (ADGRE1), CD163,
and FAM111A (Table 4). TLR2 recognizes many bacter-
ial, fungal, viral, and certain endogenous substances, and
is involved in activation of innate immunity [26, 27];
ADGRE1 is the marker gene for myeloid differentiation
in pigs [28]; expression of CD163 is increased during in-
fection with A. pleuropneumoniae [29] and H. parasuis
[30]; FAM111A plays a role in inhibiting viral genome
replication [31]. In addition, GSEA showed that genes
for which an increase in expression was unfavorably as-
sociated with qNUR traits were enriched for GO terms
related to immunity (FDR < 0.001; Fig. 2) and stress re-
sponse (FDR < 0.20; Fig. 3), indicating pigs that had
higher expression levels of genes involved with immune-
and stress-related biological processes had lower health
scores and growth rates in the qNUR. This suggests that
the differences in blood transcriptome that were ob-
served in the quarantine nurserymay reflect responses to
subclinical or minor infectious disease and/or to non-
infectious stressors such as weaning, transportation, and
mixing. For example, He et al. [32] reported that the un-
folded protein response pathway related to endoplasmic
reticulum stress was activated in the small intestine of

Fig. 5 Biological processes (n = 45) that were significantly (FDR < 0.025) enriched among genes ranked based on the magnitude of the
association of their expression with at least one resilience trait except for feed efficiency traits based on gene set enrichment analysis and the
signed significance (−log10(FDR)) of the enrichment of these biological processes with disease resilience traits, with or without adjustment of
gene expression for cell composition. Green/Red = an increase in expression of genes in that biological process is favorably/unfavorably
associated with disease resilience (e.g. less/more mortality, treatments, higher/lower growth rate, feed intake, etc.)
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pigs due to weaning. As reviewed by Gimsa et al. [33],
the immune system and stress response are closely asso-
ciated in pigs.
The CD163 gene, one of the genes that was significantly

associated with all three qNUR traits, encodes the receptor
required for PRRS virus to attach to and infect macrophages
[22]. Pigs that had higher CD163 expression in blood on
average had poorer health scores and lower growth rates in
the qNUR. The CD163 gene encodes a scavenger receptor
that leads to the removal of the haptoglobin-hemoglobin
complex from blood [34]. The CD163 gene is expressed pre-
dominantly in monocytes and macrophages in pigs [35] and
soluble CD163 suppresses proliferation of lymphocytes [36].
Cell type-specific expression patterns of CD163 are consist-
ent with the significant effects of WBC composition on
CD163 expression observed in our study (q < 0.001; Table
S4), which showed positive and negative associations of
CD163 expression levels with the proportions of monocytes
and lymphocytes, respectively. In addition, CD163 expression
residuals showed significant associations with growth rate in
the quarantine nurseryand with MT in the challenge nur-
sery(q < 0.20, Table 4) both with and without accounting for
WBC composition, indicating that the higher expression of
CD163 may come from a combination of a higher propor-
tion of monocytes, as well as from activation of CD163 gene
expression within monocyte cells. The level of soluble
CD163 has been suggested as an indicator for autoimmune
disorders such as systemic lupus erythematosus [37]. CD163
also functions as a sensor of innate immune response and in-
flammation by binding some pathogenic bacteria [38] and vi-
ruses, such as swine fever virus [39] and PRRS virus [22].
CD163 knockout pigs created by gene editing are completely
resistant to the PRRS virus [40–42]. In addition, Dong [43]
showed that natural variants in the CD163 gene are associ-
ated with resistance to PRRS. Based on the biological features
of CD163, healthy pigs with abnormally high CD163 levels
due to over-expression or high levels of monocytes may ex-
hibit autoimmune abnormalities, abnormal iron metabolism,
or subclinical infections, which could trigger excessive
macrophage activation. This can lead to lower resilience
when these pigs are exposed to disease, because many viral
and bacterial pathogens, including PRRSV, PCV2, Salmon-
ella spp, and Mycoplasma hypopneumoniae, replicate within
macrophages [35]. This is supported by the unfavorable asso-
ciations of CD163 expression residuals (without or with
WBC composition adjustment) prior to exposure to disease
with multiple resilience phenotypes in the challenge nur-
sery(p < 0.06) (Table S3).

Associations of gene expression prior to exposure with
phenotypes collected after exposure
Only some phenotypes collected during the challenge
(MOR, MT, and FCR) showed significant associations
with gene expression in blood collected prior to the

challenge for a substantial number of genes (Table 3),
likely because of limited statistical power of the single
gene association analyses. Compared to MOR, MT
showed a greater number of significant genes (q < 0.20,
Table 3), although MT results were based on less data.
Compared to contrasting pigs that survived versus died,
MT compared pigs that survived without treatment to
those that died, providing a clearer contrast. The level of
expression in blood prior to exposure to disease of the
guanylate binding protein 5 (GBP5) gene, a candidate
gene for host response to PRRS virus infection [44–46],
was not significantly associated with resilience traits but
tended to be favorably associated with mortality in the
challenge nursery(both for ResWO and ResWI, p = 0.02).
Despite the small number of significant genes, the num-
ber of genes that were estimated to not follow the null-
hypothesis of no association with resilience was sizeable
for most traits (Table 3), including for traits that did not
show any significant associations. This suggests that
blood gene expression profiles in healthy pigs prior to
the challenge were associated with their future disease
resilience, although few genes showed significant associ-
ations in the single gene analyses, because of limited
power. This was confirmed by the GSEA results, which
showed that many GO terms were enrichment among
genes whose expression was associated with resilience
traits. The GSEA analysis essentially evaluates the rela-
tionship of groups of genes, based on GO terms, with re-
corded phenotypes, rather than one gene at a time. In
the following, we will first discuss GO terms that were
enriched among genes whose expression was associated
with both phenotypes collected prior to and during the
challenge, followed by discussion of GO terms that were
associated only with phenotypes collected during the
challenge.

Biological processes associated with phenotypes collected
before and during the challenge
Biological processes related to the immune/stress re-
sponses and heme metabolism (clusters 1 and 2, respect-
ively, in Fig. 5) were associated not only with phenotypes
in the quarantine nursery but also with responses under
disease challenge, with biological processes related to
immune/stress response in cluster 1 showing unfavor-
able associations with phenotypes, and biological pro-
cesses related to heme metabolism in cluster 2 showing
favorable associations. It is generally accepted that an in-
crease in expression of immune-related genes following
exposure to pathogens is associated with higher disease
resistance. This hypothesis has been supported by previ-
ous gene expression studies with artificial infection that
targeted differences in the resistance or susceptibility be-
tween breeds in pigs [47] or between inbred lines of
chickens [48, 49]. However, our results suggest that
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piglets that had greater expression of immune- and
stress-related genes in blood prior to exposure tended to
be less resilient to disease upon exposure. It should be
noted, however, that the current study focused on differ-
ences in gene expression prior to disease exposure, while
most previous studies have analyzed changes in gene ex-
pression after or during infection as a response to dis-
ease. However, the expression of genes with GO terms
that were enriched for immune- and stress-related bio-
logical processes also had an unfavorable association
with phenotypes measured in the quarantine nursery
(growth rate and health scores). This suggests that the
expression levels of these genes reflect responses to sev-
eral stressors that the pigs were exposed in the week
prior to blood collection, including weaning, transporta-
tion, and new feed ingredients. It is well known that
weaning and transportation cause acute stress in pigs
[33, 50]. In addition, exposure to new feed ingredients
may tax mucosal immune response [51]. This suggests
that pigs that are more impacted by those stressors and,
as a result, have greater expression of those genes, are
also more susceptible to disease under a severe
challenge.
It is also notable that the GO terms in cluster 1 of Fig.

5 tended to be favorably associated with FCR (measured
only in the finisher) and, to a lesser extent, with carcass
traits. This result is, however, consistent with the ob-
served phenotypic correlations of FCR with growth rates
in the different phases across 50 batches of the NDCM,
which was negative (− 0.28) for ADG in the finisher,
which was as expected, but positive with ADG in the
quarantine nursery (0.22) and in the challenge nursery
(0.35). However, the biological process of ribosome as-
sembly had a favorable association with feed efficiency
traits, without deleterious impacts on other resilience
traits (Fig. 4). This implies that the ribosome assembly
process could be a target for improving feed efficiency
under challenge without decreasing resilience. This is
consistent with results of Bottje et al. [52], who reported
that proteins that showed greater levels in breast mus-
cles of chickens with high feed efficiency were enriched
for the ribosome assembly process.
In contrast to immune-related terms in cluster 1 of

Fig. 5, pigs with higher expression of genes that
belonged to the heme metabolism-related biological pro-
cesses in cluster 2 were associated with better health sta-
tus and growth rate prior to exposure disease and also
with better health status and lower treatment rate in the
finisher. Note that disease pressure was lower in the fin-
isher than in the challenge nursery and many pigs recov-
ered from disease in the finisher, suggesting that the
impact of heme metabolism-related biological processes
may be limited during severe disease pressure or may re-
flect the ability to recover from the diseases. Heme, a

ferrous iron protoporphyin IX complex, is involved in
many essential biological processes as a prosthetic group
in diverse hemoproteins (reviewed by Lin and Wang
[53]). Previous studies in pigs revealed that heme iron
supplement is favorably associated with body weight and
mortality [54] and counteracts iron deficiency anemia
[55]. Jointly, these results suggest that the expression of
genes related to heme metabolism, especially synthesis,
may have favorable impacts on disease resilience.

Biological processes only associated with phenotypes
collected during the challenge
Biological processes in cluster 3 in Fig. 5 showed stron-
ger associations with phenotypes collected during the
challenge than prior to the challenge. These included
processes related to protein localization and viral gene
expression, which were unfavorably associated with phe-
notypes after exposure. Viruses typically enter host cells
via attachment factors and/or viral receptors, after which
the virus particles are localized to an appropriate site in
the cell for viral gene expression and genome replication,
which is a part of the general life cycle of viruses
(reviewed by Ryu [56]). Transcription of most DNA and
RNA viruses takes place in the nucleus and in the cyto-
plasm of the host cell, respectively (reviewed by Gale
et al. [57]). Park et al. [58] reported that subcellular lo-
calizations of viral proteins were directly correlated with
disease phenotypes in humans. Furthermore, viruses rely
on host transcription and translation machinery to
propagate and to produce progeny viruses (reviewed by
Gale et al. [57]). This suggests that gene sets related to
protein localization and viral gene expression have bio-
logical implications for response to disease. As noted,
GO terms in cluster 3 showed limited associations with
phenotypes prior to the challenge compared with the
terms in clusters 1 and 2, suggesting that the expression
levels observed for the genes in cluster 3 were baseline.
Based on this, we can hypothesize that young healthy
pigs that have a lower baseline expression of genes in
cluster 3 are more resilient when exposed to disease.

Conclusions
This study on the integration of quantitative analysis of
population-level blood transcriptome data prior to ex-
posure to disease with performance prior to and after
exposure provides insight into the biological basis be-
hind gene expression patterns in blood of young healthy
pigs and how this is associated with their concurrent
performance and with their resilience when exposed to
disease. Our results suggest that gene expression in
blood of recently weaned piglets in high-health herds in
part reflects their susceptibility and response to various
stressors that they are exposed to, even in biosecure
conditions, such as weaning, transport, and mixing, as
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well as the effects of exposure to new dietary ingredients,
which may affect mucosal immune response, and that
these gene expression patterns are phenotypically associ-
ated with disease resilience. This included genes related
to immune and stress responses, and heme metabolism,
which are, therefore, candidate genes for stress and dis-
ease resilience. Our results also identified biological pro-
cesses based on gene expression in blood of young
healthy pigs that were associated with disease resilience
but not with performance prior to exposure. These in-
cluded host machinery genes involved in viral transloca-
tion, transcription, and translation. This implies that
variation in the baseline expression of these genes prior
to exposure could have an impact on disease resilience.
Single gene association analyses revealed that higher ex-
pression of the CD163 gene in blood prior to the disease
challenge was closely associated with mortality after ex-
posure, which included the PRRS virus. Taken together,
significant relationships between blood transcriptome in
healthy weaned piglets and their resilience following ex-
posure to a natural polymicrobial disease were identified,
implicating their possible use as early disease resilience
indicators, at least at the phenotypic level. Subsequent
studies will focus on genetic analyses of these data.

Methods
Ethical statement
The protocol of this project was approved by the Animal
Protection Committee of the Centre de recherche en sci-
ences animales de Deschambault (15PO283) and the
Animal Care and Use Committee of the University of
Alberta (AUP00002227), and was based on the Canadian
Council on Animal Care guidelines (CCAC; https://
www.ccac.ca/en/certification/about-certification). Com-
prehensive supervision of animal care was provided by
the Centre de développement du porc du Québec
(CDPQ) and the herd and project veterinarians. If
needed, pigs in the natural disease challenge were hu-
manely euthanized (n = 87). Following CCAC guidelines,
electrocution was used in the nursery and cranial captive
bolt during the finisher period. Pigs that reach slaughter
weights were stunned by electrocution at a commercial
slaughter facility to enter the food chain, followed by
exsanguination, using standard approved industry
protocols.

Study design
A total of 912 pigs in 15 batches from the NDCM were
used in the current study of population-scale transcrip-
tome analysis targeting disease resilience (Fig. 1). Details
of the NDCM were described in [18, 19]. Briefly, single-
sourced batches of 60 or 75 healthy weaned barrows
(Yorkshire x Landrace) from one of seven breeding pro-
grams, which provided batches in rotation, were

transported to an experimental facility at ~ 21 days of
age. They were acclimated for 3 weeks in a healthy quar-
antine nursery (phase 1) and then moved to a nearby
natural disease challenged nursery (phase 2; 3 ~ 4 weeks)
and finisher (phase 3; up to slaughter at ~ 180 days of
age). The challenge nursery-finisher aimed to mimic a
commercial farm with high disease pressure. Pigs were
exposed to a natural polymicrobial disease challenge that
included common viruses and bacteria that are present
across commercial farms, including PRRSV, porcine cir-
covirus type 2, M. hyopneumoniae, Streptococcus suis,
and others. Pigs received no vaccinations, except for a
procine circovirus type 2 vaccine (Circoflex, Boehringer
Ingelheim, St. Joseph MO), which was given at the same
time that blood for RNA-seq and WBC composition
were collected.

Measurements of resilience
Performance traits relevant to disease resilience, includ-
ing subjective health scores, therapeutic treatment rates,
mortality, growth rate, feed efficiency, and carcass traits
were collected. Subjective health scores (HS) were
assigned to each pig at four time points; on the day of
blood collection at day 5 post entry into the quarantine
nursery (qNurHS1), at the end of the quarantine nursery
(qNurHS2), two weeks post entry into the challenge nur-
sery (NurHS), and 6 weeks post entry into the challenge
nurseryat the finisher (FinHS). Health scores were re-
corded on a 1 to 5 scale, as described in [19] (1 = severe
clinical signs with wasting; 2 = severe clinical signs with-
out wasting; 3 =mild to moderate clinical signs with or
without wasting; 4 =mild clinical signs without wasting
or light wasting without any other clinical signs; 5 = in
perfect health). Health scores were converted into binary
variables (0/1; 1 = pigs in perfect health; 0 = others) for
the single gene association analysis. The number of indi-
vidual therapeutic treatments was adjusted to 27 days for
the challenge nursery (cNurTRT), to 100 days for the
challenge finisher (cFinTRT), and to 180 days for whole
challenge period (AllTRT), as described in [19]. Pigs that
exhibited clinical signs of pneumonia, diarrhea, lame-
ness, arthritis, meningitis, dermatitis, pallor, lethargy,
weight loss, unthriftiness, cyanosis, or conjunctivitis
were treated with 1 of 10 antibiotics based on a treat-
ment protocol that outlined primary and secondary (if
needed) treatments for each ailment. For some clinical
signs, one of two anti-inflammatory drugs was also ad-
ministered, while batch-level water medication was used
during periods of severe illness, including a water-
soluble anti-inflammatory drug to treat batches that suf-
fer from severe respiratory disease (primarily PRRS). All
individual and group treatments were recorded [18].
Mortality (recorded as 0 for pigs that survived and 1 for
pigs that that died) was recorded during the challenge
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nursery (cNurMOR), the finisher (cFinMOR), and across the
challenge nurseryand finisher (AllMOR). Mortality combined
with individual therapeutic treatment (MT, recorded as 0 for
pigs that survived with no individual therapeutic treatment, 1
for pigs that that died, and missing for all other pigs) was de-
fined for the challenge nursery (cNurMT), the finisher
(cFinMT), and across the challenge nurseryand finisher
(AllMT). Average daily gain (ADG) was computed as de-
scribed in [19] for the quarantine nursery (qNurADG), the
challenge nursery (cNurADG), and for the finisher (cFi-
nADG). Average daily feed intake (ADFI), average daily feed-
ing duration (ADFD), FCR, and RFI were recorded in the
finisher, as described in [19]. Carcass weight (CWT), dress-
ing proportion (DRS), lean yield (LYLD); carcass backfat
(CBF), and carcass loin depth (CLD) were recorded as
described in [19].

Blood RNA extraction and white blood cell count
measurement
Blood samples were collected in the quarantine nurser-
yat ~ 27 days of age, using Tempus Blood RNA Tubes
(Thermo Fisher Scientific, USA) and then stored at −
80 °C until RNA extraction. The RNAs were isolated
using Preserved Blood RNA Purification Kit I (Norgen,
Canada) according to the manufacturer’s instructions.
The RNA integrity number (RIN) of each extracted
RNA was assessed by the 2100 Bioanalyzer (Agilent
Technologies, USA) using the Eukaryote total RNA 6000
Nano kit. The RIN score was on average 7.9 and ranged
from 4.1 to 9.9 (Table 2). WBC differentials were quanti-
fied on whole blood samples in K2 ethylenediaminetetra-
acetic acid (EDTA) tubes (Thermo Fisher Scientific,
USA) taken at the same time, using the flow cytometry-
based hematology analyzer (ADVIA®2120i Hematology
System, Simens Healthineers, Germany) according to the
manufacturer’s instructions [59]. The log2 transformed
proportion of each WBC type was used to adjust gene
expressions levels for blood cell composition (see later).

3′ mRNA sequencing with globin blocking
RNA-seq libraries were generated from ~ 500 ng of total
RNA, using the QuantSeq 3′ mRNA-Seq Library Prep
Kit FWD for Illumina with the RNA Removal Solution
Globin Block, Sus scrofa, according to the manufac-
turer’s protocol (Lexogen, Austria), as described by Lim
et al. [11]. The first-strand cDNA was synthesized by re-
verse transcription with oligo-dT priming. Prior to
second strand synthesis, porcine HB-specific oligo-
nucleotide mixtures that are present in the globin block
bind to the first strands that were generated from
mRNAs of HBA and HBB, thereby preventing second
strand synthesis. The constructed QuantSeq libraries
were multiplexed using mRNA from up to 96 samples
and sequenced with single-end 50 bp using the Illumina

HiSeq 3000 Sequencing System (Illumina, USA). Each li-
brary was sequenced on two lanes and the sequence
reads obtained from the two lanes were combined.

RNA-seq read processing
The raw QuantSeq reads were first processed using
BBDuk (https://jgi.doe.gov/data-and-tools/bbtools/bb-
tools-user-guide/bbduk-guide/) to trim the adapter se-
quences, poly-A tails, and low-quality bases, and to filter
out reads with a length less than 20 bp after trimming.
Read quality before and after trimming was assessed
using FASTQC 0.11.5 [60]. Then, trimmed reads were
mapped to the Sus Scrofa reference genome sequence
(SSC11.1; Ensembl, http://www.ensembl.org/) using
STAR 2.5.3a [61]. To overcome the high sensitivity of
3’mRNA sequencing to 3’end gene annotation, we added
3’UTR information and used windows for 3’end exten-
sion and for the exon region. For gene annotation, we
used both the pig reference genome sequence assembly
(Ensembl release 92; ENS) and the Iso-seq based annota-
tion (ISO) developed by Beiki et al. [20], which includes
information on 3’end extensions. In addition, to obtain
read counts for GBP5, which is not annotated in
Ensembl SSC11.1, three (ENSSSCT00000065307, ENSS
SCT00000060466, and ENSSSCT00000044130) of nine
transcripts that were annotated as guanylate binding
protein 1 (GBP1) were assigned to GBP5 based on the
location of the WUR SNP (rs80800372) and of the puta-
tive causative GBP5 intronic SNP (rs340943904), as
identified by Koltes et al. [46]. The final gene annotation
file contained 38,371 genes, comprising 14,815 ENS-
specific genes, 12,491 ISO-specific genes, and 11,065
genes that were present in both the Ensembl and the
ISO-seq annotated lists of genes (Fig. S1). Then, two
modified gene annotation files were generated, with
3’end extension windows up to 1 kb for each transcript
and with all exons included, or only the last exon (Fig.
S6). Based on these two annotation files, a QuantSeq-
specific read count method was implemented to count
reads for each gene, using an in-house Python script
(Fig. S7) using HTseq modules [62]. First, unique-
mapping reads were counted for each gene based on the
annotation file that included all exons and the 3’end ex-
tension window. Then ambiguous unique-mapping reads
and multiple-mapping reads were counted if they were
mapped to the annotation file that included only the last
exon and the 3’end extension window.

Gene expression normalization and standardization
Reads that mapped to the globin genes HBA and HBB
and to genes that had a zero-count in more than 80% of
the samples were filtered out. Remaining read counts
were normalized across the 912 samples by the trimmed
mean of M values (TMM) using the EdgeR package in R
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[63]. Then, a log2 transformation was applied to the
normalized counts plus 1 to obtain scaled expression
values for further analyses.
The normalized and scaled expression values were ad-

justed for nuisance factors using mixed linear models with
(eWI) or without (eWO) accounting for WBC composition
(Table S1), separately for each gene. The eWO model in-
cluded batch as a fixed effect, pen in the quarantine nursery
as a random effect, and RIN and age (days) when pigs en-
tered the quarantine nursery as covariates. The eWI model
additionally included the log2 transformed proportions of six
WBC types as covariates: lymphocytes, monocytes, neutro-
phils, eosinophils, basophils, and large unstained cells. Bayes-
ian information criterion values between the eWO and eWI
models were compared to evaluate the significance of WBC
composition on the observed expression of each gene. The
resulting standardized residuals of the single gene expression
values from the eWO or eWI models were use in subse-
quent analyses of associations with phenotypes.

Association analysis of gene expression with phenotypes
To identify associations of gene expression of young
healthy piglets in blood with recorded phenotypes, both
in the quarantine nurseryand during the challenge, for-
ward and reverse analyses were applied for the analysis
of continuous and categorical resilience traits, respect-
ively. In the forward analysis, for growth rate, TRT, feed
intake, and carcass traits, residuals of gene expression
from the eWO and eWI models were fitted as covariates,
one-by-one, in a mixed linear model for analysis of each
trait. The models used in the forward analysis are sum-
marized in Table S1. Briefly, all models included batch
as a fixed effect, age of entry into the quarantine nurser-
yand expression residuals of a single gene as covariates,
and litter and pen as random effects. In the model for
carcass traits, slaughter date was added as a fixed effect,
and age and weight at slaughter were added as covari-
ates. For phenotypes across the challenge nurseryand
finisher, such as AllTRT, only pen in the challenge nur-
serywas fitted since the pigs that died in the nursery did
not have a finisher pen. For binary traits, i.e. health
scores, mortality, and mortality combined with treat-
ment, logistic regression analyses were attempted but
failed to converge in a number of cases. For these traits,
instead, a reverse analysis was applied, in which the ex-
pression residuals of a gene were used as the response
variable and the binary trait was included as a fixed ef-
fect in the association model. The resulting estimates of
the binary trait effect were then converted to estimates
of the regression of the resilience on expression using
the variances of the binary trait and expression residuals.
All mixed linear models were fitted in R using the

lmer function from the lme4 package [64]. To compare
the goodness-of-fit between the association models with

gene expression residuals from the eWO and eWI
models, a likelihood ratio test with 1 degree of freedom
was conducted for each gene. For the reverse analysis,
this test was conducted by fixing the estimate of the ef-
fect of the binary trait when analyzing residuals with
(without) WBC composition adjustment to the estimate
obtained from analysis of residuals without (with) WBC
composition adjustment by subtracting that estimate
from the response variable. For multiple testing correc-
tion, the number of true null hypotheses was estimated
by using the histogram-based estimator for the obtained
p-values [21]. Tests with q-values less than 0.2 were con-
sidered to be statistically significant.
Estimates of the regression coefficients obtained from

the association analyses were scaled to units of SD of the
resilience trait per SD of gene expression by dividing es-
timates by the SD of each trait. Also, signs of the esti-
mates were reversed for phenotypes for which lower
values are favorable, i.e. for TRT, MT, MOR, FCR, RFI,
and back fat. The resulting adjusted estimates were used
to compare results for traits that were measured in the
same phase and for GSEA.
Gene set enrichment analyses were conducted using

the GSEA_4.0.3 software [23], with gene sets of Gene
Ontology biological processes (c5.bp.v7.1.symbols.gmt).
Gene symbols were converted using human ortholog
genes and biological processes with 10 or less genes in
the data set or with 500 or more genes were filtered out,
resulting in 9118 genes and 3824 terms remaining for
analysis. The GSEA analyses were conducted separately
for each analyzed phenotype using a gene list that was
ranked by the adjusted regression coefficient estimates
from the single gene association analyses, with the fol-
lowing options: number of permutations = 1000; col-
lapse/remap to gene symbol = no_collapse; enrichment
statistics = weighted. These analyses resulted in a nor-
malized enrichment score and FDR for enrichment for
each GO term and phenotype trait. GO terms that had
FDR below chosen thresholds for at least one trait were
then clustered based on their signed -log10(FDR) of en-
richment for each trait, where the sign was based on
whether an increase in expression of core genes in the
GO term was associated with a favorable (+) or unfavor-
able (−) change in the trait. The resulting clusters and
signed -log10(FDR) values were used to create heatmaps
for the association of biological processes across
resilience traits, using the pheatmap package in R [65].

Abbreviations
RNA-seq: RNA-sequencing; QuantSeq: QuantSeq 3’mRNA sequencing;
GB: Globin-blocker; WBC: white blood cell; eWO: mixed linear models
without accounting for WBC composition for the adjustment of expression
levels; eWI: mixed linear models with accounting for WBC composition for
the adjustment of expression levels; SD: standard deviation; NDCM: the
natural disease challenge model; qNUR: quarantine nursery; cNUR: challenge
nursery; FIN: challenge finisher; HS: subjective health score; TRT: therapeutic
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treatment rate; MOR: mortality; M: million; ResWO: Residuals of the
expression values that were obtained from the eWO models;
ResWI: Residuals of the expression values that were obtained from the eWI
models; FCR: feed conversion rate; GO: gene ontology; GSEA: gene set
enrichment analysis; FDR: false discovery rate; RFI: residual feed intake;
PRRSV: porcine reproductive and respiratory syndrome virus.;
qNurHS1: health score on the day of entry into the quarantine nursery.;
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cFinHS: health score on 6 weeks after entry into the challengefinisher;
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cFinTRT: number of therapeutic treatments per pig in challengefinisher;
AllTRT: number of therapeutic treatments per pig in challenge nursery and
finisher; cNurMOR: mortality rate for pigs in challenge nursery;
cFinMOR: mortality rate for pigs in challengefinisher; AllMOR: mortality rate
for pigs in challenge nursery and finisher; cNurMT: MT in challenge nursery;
cFinMT: MT in challengefinisher; AllMT: MT across the challenge nursery and
finisher; ADG: average daily gain; qNurADG: average daily gain in the
quarantine nursery; cNurADG: average daily gain in challenge nursery;
cFinADG: average daily gain in challenge finisher; ADFI: average daily feed
intake; ADFD: average daily feed intake duration; RFI: residual feed intake;
CWT: carcass weight; DRS: dressing percentage; LYLD: lean yield; CBF: carcass
back fat; CLD: carcass lion depth; RIN: RNA integrity number; TMM: trimmed
mean of M values; NES: normalized enrichment score
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