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Abstract

Background: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins
expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica
virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to
hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood.

Results: Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all
growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome.
Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant
differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among
these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-
expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and
transport, were, in part, shared among transcripts that changed significantly following exposures to the
entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in
common between Bt and entomopathogen treatments encode proteins in general stress response pathways,
including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases,
pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among
transcripts uniquely up-regulated following exposure to either Bt protein.
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Conclusions: Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic
progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt
maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for
future investigations of resistance mechanisms.
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Background
The efficacy of pesticidal agents that control feeding
damage on agriculturally-important crop plants become
reduced following repeated exposures and selection for
resistance within target arthropod pest populations [1–
3]. A diversity of bacterial pore-forming pesticidal pro-
teins have been described including B. thuringiensis (Bt)
crystalline (Cry), toxin-10 like (Tpp) and AeGerolysin
like pesticidal proteins (Gpp) [4]. Transgenic maize hy-
brids that express pesticidal proteins are widely used by
growers in the United States and several other countries
worldwide [5]. The number of insect species with docu-
mented resistance continues to increase [3, 6].
The western corn rootworm, Diabrotica virgifera virgi-

fera (Insecta: Coleoptera: Chrysomelidae), causes exten-
sive damage to cultivated maize, Zea mays, throughout
the major production regions of North America and
Europe [7, 8]. This univoltine species diapauses over the
winter months as eggs in the soil. At high population
densities, maize root feeding by larvae which hatch dur-
ing early summer can reduce yields through both
physiological and mechanical damage [9, 10]. Adult bee-
tles emerge and feed mainly on maize silk and pollen.
Larval damage was historically controlled by soil insecti-
cides applied at planting [11]. In some regions, adults
are sprayed aerially with insecticides to reduce egg-
laying and hence larval populations the following year
[12]. After its first detection in 2009 [13], a high propor-
tion of D. v. virgifera larvae in field populations in the
United States now show resistance to Cry3Bb1 [14]
along with cross-resistance to the structurally similar
mCry3A [15] and eCry3.1Ab proteins expressed by
maize hybrids [16, 17]. Resistance to transgenic Cry34/
35Ab1 (Gpp34/Tpp35Ab1 according to new nomencla-
ture by Crickmore et al. (2021)) [4] maize is also docu-
mented in D. v. virgifera field populations, but these
phenotypes show no cross-resistance to Cry3 proteins
[18–20]. Analogous lack of Gpp34/Tpp35Ab1cross-re-
sistance with mCry3Aa was shown in laboratory selected
D. v. virgifera [21]. This resistance occurred to trans-
genic hybrids that express a “low-dose” of Bt proteins
[22] and adversely impacts crop production [23, 24].
Ingested pesticidal proteins cause disruption of gut cell

integrity in susceptible insects, leading to lethargic be-
havior, cessation of feeding, and death [25]. Midgut cells
of susceptible D. v. virgifera larvae fed diet containing

Cry3Aa1 and Gpp34/Tpp35Ab1 swell and shed micro-
villi and other cell debris into the gut lumen [26]. A pro-
posed mode of action involves sequential binding of Bt
pesticidal proteins to membrane-bound protein recep-
tors on the apical side of midgut epithelial cell (entero-
cyte) membranes [27–29]. Within this model, receptor
binding precedes the formation of an ion pore channel
that generates an osmotic imbalance due to an influx of
extracellular Ca2+ [30], leakage of gut contents, and
eventual death of the insect. This model further pro-
poses that ingested monomeric Cry toxins interact with
the midgut apical membrane-bound receptor protein,
cadherin, causing a conformational change in the pesti-
cidal protein that leaves it liable to cleavage by gut pro-
teases. Cleavage in turn facilitates subsequent
oligomerization into a pre-pore structure [31] which in-
serts into the enterocyte membrane following interac-
tions with cell surface aminopeptidase N [32] or alkaline
phosphatase [33]. ATP binding cassette (ABC) trans-
porters are also implicated as receptors for Cry proteins
[34–36], and hypothesized to facilitate Cry protein
oligomerization and membrane pore insertion [37, 38].
Additional gut proteins have been identified as putative
Bt protein receptors in insects [39–42], including the
glycosyl hydrolase, α–amylase, from Tenebrio molitor
[43], but their roles in Bt intoxication remains unknown.
An alternative model for Cry protein mode of action

proposes a Mg2+-dependent G protein-mediated cell sig-
nalling pathway. In this model, binding of Cry proteins
to cadherin directly triggers an intracellular adenylate
cyclase signalling cascade that activate protein kinase A
(PKA) and cell death (apoptosis) [44, 45]. This model
hypothesizes a mechanism independent of other recep-
tors or requirments for pore formation [46].
Mechanisms of resistance often implicate structural or

functional changes in a midgut receptor protein that puta-
tively disrupts the Bt mode of action, but are mainly from
studies on Bt resistant species of Lepidoptera. This in-
cludes alteration of cadherin receptor protein structure by
transposon-mediated insertional knockout or point muta-
tions, that result in reduced Cry1A binding [47–50]. An
amino acid change in a transmembrane domain of tetra-
spanin 1 is associated with Helicoverpa armigera resist-
ance to Cry1Ac [51]. Cry1A resistance is also associated
with reduced expression of one or more aminopeptidase
N paralog in Spodoptera exigua [52], Trichoplusia ni [53]
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and Ostrinia nubilalis [54], and alkaline phosphatase in
Heliothis virescens [55]. The ABC transporter subfamily C
member, abcc2, is linked or associated with lepidopteran
resistance to Cry1Ac in H. virescens [34], Plutella xylos-
tella [56], Bombyx mori [57], and T. ni [58], Cry2Ab2 in
Pectinophora possypiella [59], and Cry1Fa in O. nubilalis
[60] and Spodoptera frugiperda [61]. An ABC subfamily B
member in in the coleopteran Chrysomela tremula is
linked to Cry3Aa resistance, and is capable of mediating
cell disruption via ectopic expression in S. frugiperda Sf9
cells [62]. An abcb gene is also located in proximity to a
single QTL for Cry3Bb1 resistance in D. v. virgifera [63].
Alternatively, enhanced repair of damaged midgut cells

in response to Cry protein-mediated damage contributes
to Cry1Ac resistance in H. virescens [64, 65], suggesting
that stress-induced cell regeneration or degradation
mechanisms are involved in physiological responses [66].
Conversely, transcripts encoding proteins involved in
apoptosis (programmed cell death) are significantly up-
regulated in Manduca sexta cells by Cry1Ac [67], and in
the midgut of S. exigua by exposure to the Bt vegetative
insecticidal protein (Vip) 3A protein [68]. Apoptosis was
induced in Choristoneura fumiferana cells by a mechan-
ism involving the mitogen activated protein kinase
(MAPK) protein p38 following Cry1Ac exposure [69],
and RNAi-mediated knockdown of MAPK p38 in Chilo
suppressalis led to increased larval susceptibility to
Cry1Ca [70].
Despite these insights, Bt mode(s) of action, mecha-

nisms of cellular intoxication, and intracellular responses
are not fully understood. In D. v. virgifera, mCry3A
binding to midgut receptors is reduced among larvae se-
lected for mCry3A resistance [21]. Kinetic data demon-
strate that Cry3Bb binds strongly to specific domains of
the cadherin protein and enhances toxicity in D. v. virgi-
fera [71] and other Coleoptera [72]. However, cadherin
is not considered a receptor in vivo since RNAi-based
transcript knockdown does not alter D. v. virgifera sus-
ceptibility to Cry3Aa or Gpp34/Tpp35Ab1 [73]. Esti-
mates of differential gene expression shows no
significant induction of cadherin in susceptible com-
pared to resistant larvae fed Cry3Bb1 [74], eCry3.1Ab
[75], or between susceptible larvae exposed and not ex-
posed to Cry3Bb1 [74] or Gpp34/Tpp35Ab1 [76]. Al-
though a suite of ABC transporters and aminopeptidase
N transcripts are differentially-regulated in constitutive
or induced fashions between Bt resistant and susceptible
D. v. virgifera larvae to Cry3Bb1 [74] and eCry3.1Ab
[75], paralogs are also differentially-regulated in suscep-
tible larvae exposed to Cry3Bb1 and Gpp34/Tpp35Ab1
[74, 76]. Furthermore, these transcriptome-wide com-
parisons have implicated a relatively large number of dif-
ferentially expressed transcripts including those
encoding proteins in general stress response pathways

(e.g. cytochrome P450 monooxygenases, esterases, oxi-
dases, and peroxidases) and those with transporter func-
tion [74].
A better understanding of how Bt intoxication affects

gene expression among susceptible arthropods may re-
veal points at which mechanistic disruption could lead
to resistance. To this end, we developed an inbred strain
of Bt susceptible D. v. virgifera, Ped12, and used it for
assembly of a comprehensive reference transcriptome,
which was then applied to estimate transcript quantity
differences following exposures to Cry3Bb1, Gpp34/
Tpp35Ab1, and non-Bt maize within a common genetic
background. Furthermore, transcripts differently expressed
by Ped12 larvae following exposures to one or both Cry3Bb
and Gpp34/Tpp35Ab1 maize, and exposures to an entomo-
pathogenic fungus and nematode, were associated with
generalized stress and immune response pathways. A fil-
tered set of differentially expressed transcripts not shared
with entomopathogens encoding candidate Bt receptor pro-
teins, metabolic and detoxification enzymes, and proteins
putatively determining cell fate (pro-survival or -death)
were focused upon. This study contributes to an under-
standing of mechanisms potentially involved in determining
cell fate (death or survival) which may inform future re-
search into processes involved in Bt intoxication or resist-
ance mechanisms.

Results
Samples, treatments, and collections
Samples of Ped12 D. v. virgifera were collected from all de-
velopmental stages and different exposure conditions to
create a reference transcriptome assembly (C1 to C20;
Table 1). Among replicate treatments used in the down-
stream analysis of differential gene expression (T1 to T8;
Table 2), Ped12 2nd instars were recovered from transgenic
Cry3Bb1 (VT3; T8) and Gpp34/Tpp35Ab1 (Hx; T5) maize
treatments after 48 h exposure. Approximately 1/3 of larvae
were dissected from inside Cry3Bb1-expressing roots (T8),
whereas none were found burrowing inside the roots of
Gpp34/Tpp35Ab1 hybrid maize (T5). All D. v. virgifera lar-
vae in the control non-Bt maize Corteva Pioneer hybrid
38B85 treatment (T7) were feeding within roots. Larvae ex-
posed for 48 h to M. anisopliae (T3) and H. bacteriophora
(T6) were lethargic, but none were moribund.

Complementary DNA libraries, sequencing and data
processing
A total of 769.6 million reads were obtained after trim-
ming, and nearly 600 million (78%) remained PE reads
(Table 3a). Among all reads, 249.7 million (97.4 paired
and 55.0 singletons) were produced from the normalized
Pooled library (Supplementary Table S1). 21.7 ± 8.5
(mean + SE; range: 8.3 to 34.2) million reads were
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generated from among replicates of the non-normalized
RNA-seq libraries. All resulting trimmed reads were
used in the construction of the D. v. virgifera reference
transcriptome, and the non-normalized libraries were
used to estimate read counts as a proxy for predicting
differentially expressed transcripts (Fig. 1). All raw
Illumina read data were submitted to GenBank Sequence
Read Archive (SRA) database under accessions

ERR2791371 to ERR2791395 (Table 2; BioProject
PRJEB28633; BioSample SAMEA4896309).

De novo reference transcriptome assembly and
annotation
The D. v. virgifera reference transcriptome was assem-
bled from all trimmed reads from the normalized cDNA
library conditions (C1 to C20: Table 1) and non-

Table 1 Developmental stages and conditions (single replicates) in the normalized reference transcriptome from Diabrotica virgifera
virgifera inbred line Ped12

ID Stage Stage or condition Description

C01 Adult Heat (30 min at 37 °C) Heat shock

C02 Adult Starved 72 h Starvation

C03 Adult Mated females Post-mating

C04 Adult Mated males Post-mating

C05 Adult Unmated females Virgin

C06 Adult Unmated males Virgin

C07 1st instar Larval development; early-stage Larval instar

C08 2nd instar Larval development; mid-stage Larval instar

C09 3rd instar Larval development; late-stage Larval instar

C10 Adult Unmated adults; mixed sex Adult (early; virgin)

C11 Egg (< 1 day) Embryonic; early development Embryonic (early)

C12 Egg (12–16 day) Embryonic; late development Embryonic (late)

C13 2nd and 3rd instar Exposed to mCry3A maize Event MIR604 A Insecticidal protein toxin

C14 1st and 2nd instar Exposed to Cry3Bb1 maize Event MON88017 B Insecticidal protein toxin

C15 1st and 2nd instar Exposed to Gpp34/Tpp35Ab1 maize Event DAS-59122-7 C Insecticidal protein toxin

C16 1st and 2nd instar Exposed to drought conditions Weather stress

C17 2nd and 3rd instar Exposed to Heterorhabditis bacteriophora Entomopathogen (nematode)

C18 2nd and 3rd instar Exposed to Metarhizium anisopliae Entomopathogen (fungus)

C19 Adult Exposed to Thiomethoxam insecticide Chemical insecticide

C20 Adult Exposed to Curcurbitacin feeding stimulant Semiochemical attractant

A. Syngenta, Basel, Switzerland;
B. Bayer Crop Sciences/Monanto Company, St. Louis, MO, USA
C. Corteva/Pioneer, Indianapolis, IN, USA

Table 2 Treatments performed in triplicate on Diabrotica virgifera virgifera inbred line Ped12 prior to RNA-seq library construction
and sequencing

ID Treatment Treatment (exposure) description Libraries (SRA Accessions)

T1 DiapEgg Eggs diapause conditions. LibA, LibB, LibC (ERR2791371–27913713)

T2 1st-Instar 1st instars. LibD, LibE, LibF (ERR2791374–2791376)

T3 Ma 2nd and 3rd instars exposed to Metarhizium anisopliae (Ma). LibG, LibH, LibI (ERR2791378–2791380)

T4 Gut 3rd instars exposed to the non-Bt hybrid Pioneer 38B85; fore-, mid- and hindgut LibJ, LibK, LibL (ERR2791381–2791383)

T5 Hx 3rd instars exposed to maize Event DAS-59122-7; Herculex® XTRA Mycogen hybrid
2 T789 (Gpp34/Tpp35Ab1) for 2 days.

LibM, LibN, LibO (ERR-2791384-2,791,386)

T6 Hb 2nd and 3rd instars infected with Heterorhabditis bacteriophora (Hb). LibP, LibQ, LibR (ERR2791387–2791389)

T7 Cn 3rd instars exposed to non-Bt hybrid 38B85 (control). LibS, LibT, LibU (ERR2791390–2791392)

T8 VT3 3rd instars exposed to Event MON88017; DeKalb VT TriplePro® hybrid (Cry3Bb1) for 2 days. LibV, LibW, LibX (ERR2791393–2791395)

Library read data used for estimates of differential gene expression are highlighted gray. All experimental accessions are located under BioSample ERS2715388;
BioProject PRJEB28633
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normalized RNA-seq treatments (T1 to T8: Table 2), that
used 82.5 million in silico normalized sequences (Table
3a). The multiple k-mer assembly approach was used (k =
61, 71, 81, 91) to generate a total of 228,885 redundant
transcripts (Fig. 1a). After reduction in sequence redun-
dancy and implementing a size cutoff ≥200 bp, a total of
116,070 transcripts comprised the final D. v. virgifera ref-
erence transcriptome (Fig. 1a; Table 3a), and were submit-
ted to the NCBI Transcript Sequence Assembly (TSA)
database (accession ERZ1775117.1).
Completeness was estimate by the presence of Core

Eukaryotic Genes Mapping Approach (CEGMA) genes
and BUSCO scores. Among the 248 CEGs, 98% were
present in D. v. virgifera reference transcriptome (n =
243; mean 2.16 transcripts per CEG; 5 CEGs present as
partial transcripts). A BUSCO score of 91.7% was ob-
tained: 978 complete (821 complete single copy and 157
complete duplicated), 35 fragmented, and 53 missing
BUSCOs were predicted.

Protein coding sequences were predicted within
56,656 of the 116,070 non-redundant D. v. virgifera tran-
scripts, of which 23,728 received PFAM annotations
(Table 3a). Among the 116,070 transcripts, 410 (0.35%),
107 (0.09%), and 65 (0.06%) were predicted to be puta-
tive Wolbachia, Heterorhabditis and Metarhizium tran-
scripts, respectively (remaining data not shown).
BLASTx searches resulted in matches to protein models
from D. melanogaster (n = 17,322), T. castaneum (n =
24,543), D. ponderosae (n = 26,965), and A. glabripennis
(n = 25,340), as well as in the SwissProt database (n =
20,961) (Table 3b; Supplementary Fig. S1). These results
predicted that 7568 distinct D. v. virgifera transcripts to
be “putative full-length” (proportional coverage lengths =
1.0) and 14,574 were “near complete (proportional
coverage lengths ≥ 0.8 and < 1.0; Table 3b).

Estimates of quantitative differences in transcript
expression
A total of 520.2 million reads (86.3%) were aligned to
transcripts within the D. v. virgifera reference transcrip-
tome (65.0 ± 21.5 million across treatments; 21.7 ± 8.5
million across replicates within treatments). Reads with
multiple alignments, and those for which the mate-pair
was aligned to a different target were discarded. Ap-
proximately half (52.1%) mapped properly (range 0.4036
and 0.5906; Supplementary Table S2). From these align-
ments, estimates of significant differences in read count
(proxy for gene expression) for each transcript were gen-
erated from among replicates between control maize
(Cn) relative to exposure treatments Cry3Bb1 (VT3; T8;
Supplementary Table S3) and Gpp34/Tpp35Ab1 (Hx;
T5; Supplementary Table S4), as well as entomopatho-
gens H. bacteriophora (Hb; T6; Supplementary Table S5)
and M. anisopliae (Ma; T3; Supplementary Table S6).
Data from the comparison between T7 (control maize;
Cn) and T8 (Cry3Bb1 maize; VT3) treatment groups,
produced a DESeq2 adjusted read count for each tran-
script fitted to a dispersion around an empirically esti-
mated mean (Supplementary Fig. 2A) and this was used
to determine the significance of differences between
treatments. Outliers within this dispersion were not fit-
ted and not used in further DESeq2 analyses. MA-plots
of estimated mean read counts normalized by size factor
and transformed on a Log2(fold-change) scale showed
that 2710 transcripts had differences in quantity that
surpassed a Benjamini and Hochberg adjusted signifi-
cance threshold (FDR) of ≥ 0.05. Among these tran-
scripts, a greater number were up-regulated (n = 2503)
than down-regulated (n = 207; Supplementary Fig. S2B;
Supplementary Table S3). EdgeR estimated 1228
differentially-expressed transcripts for the same com-
parison between T7 and T8 with a greater number up-
regulated (n = 1014) than down-regulated (n = 214).

Table 3 Representation of the de novo assembled Diabrotica
virgifera virgifera reference transcriptome

A) Assembly and predictions

Number of trimmed reads 769,834,956

Paired end reads 598,089,648

Single end reads 171,745,308

Number of in silico normalized reads 82,501,989

Paired end reads 51,579,260

Single end reads 30,922,729

Total assembled transcripts (≥ 200 bp) 228,885

Non-redundant assembled transcripts* 116,070

Minimum transcript length (nt) 200

Maximum transcript length (nt) 33,331

Total assembly size (bases) 101,481,135

N50 1197

Mean transcript size (nt) 875

Transcripts with predicted peptide 56,656

Predicted peptides with PFAM annotation 23,728

B) Comparative analyses

Transcripts with a BLASTx hit**

SwissProt database (v2015-02-04) 20,961

Drosophila melanogaster peptides v5.46 17,322

Tribolium castaneum proteins v3.0 24,543

Dendroctonus ponderosae proteins 26,965

A. glabripennis proteins 25,340

Overall+ covering ≥80% of subject length 14,574

Overall+ putative full-length 7568

* after redundancy suppression;
** E-value threshold = 10−7 and HSP cut-off = 25 (AA);
+ independent and non-overlapping set
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There was a strong correlation between Log2(fold-
change) estimates between DESeq2 and EdgeR methods
(R2 = 0.9806; Fig. 2a).
The comparison of read count data between replicate

libraries from control maize (Cn; T7) versus transgenic
Gpp35/Tpp35Ab1 maize exposed larvae (Hx; T5) simi-
larly resulted in adjusted dispersions fitted to the mean
(Supplementary Fig. S2C), and a final distribution of
Log2(fold-change) in an MA plot (Supplementary Fig.
S2D). DESeq2 output predicted 2389 transcripts that
surpassed an adjusted significance threshold (FDR ≤ 0.05;
Supplementary Table S4). EdgeR analysis of the same
data predicted 1690 differentially expressed transcripts.
Overall estimates of Log2(fold-change) were highly cor-
related between EdgeR and DESeq2 (R2 = 0.9758; Fig.
2a). Significant levels of differential expression (FDR ≤
0.05) were predicted between Cn and Hb treatments for
1818 and 2376 transcripts using DESeq2 and EdgeR,

respectively (Supplementary Table S5). Similarly, signifi-
cant levels of differential expression (FDR ≤ 0.05) were
predicted between Cn and Ma treatments for 1583 and
1684 transcripts by DESeq2 and EdgeR, respectively
(Supplementary Table S6). No other comparisons were
conducted or evaluated.

Differential expression following Cry3Bb1 and Gpp34/
Tpp35Ab1 exposure
Our pipeline defined differential expression occurring
only among transcripts having an adjusted P-value
(FDR) ≤ 0.05 in both DESeq2 and EdgeR analyses (Fig. 1
b). Furthermore, any differentially expressed transcripts
after entomopathogen exposures and pesticidal protein
treatments were subtracted to account for putative gen-
eral stress response genes. Specifically, 1562 transcripts
showed significant differential expression among D. v.
virgifera exposed to H. bacteriophora compared to

Fig. 1 Transcriptome assembly and gene expression pipelines. Strategies for A) de novo assembly of the reference Diabrotica virgifera virgifera
transcriptome, and B) estimation of mRNA quantities (using library read counts) and determination of statistical significance of any differences
between treatments
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control larvae in both DESeq2 and EdgeR analyses, of
which 1269 and 293 were up- and down-regulated, re-
spectively (Table 4; Supplementary Table S5). Analo-
gously, 1199 differentially expressed transcripts were
predicted between M. anisopliae exposure and control
treatments, with 639 and 563 transcripts up- and down-
regulated, respectively (Table 4; Supplementary Table S6).
Among the most prevalent PFAM annotations assigned to
predicted differentially-regulated transcripts in both Hb
and Ma treatments were those with cytochrome P450,
transporter, and protease and protease inhibitor domains
(Supplementary Table S7; Supplementary Table S8).
Comparison between T7 (control maize; Cn) and T8

(Cry3Bb1 maize; VT3) treatments predicted a total of
1064 differentially expressed transcripts by both DESeq2
and EdgeR (Table 4; Supplementary Table S3). Subse-
quent BLASTx results showed 4 and 5 of these transcripts

putatively originated from Wolbachia sp., and the ento-
mopathogens Hb and Ma, respectively. Among the
remaining 1055 transcripts 942 and 113 were up- and
down-regulated, respectively (Table 4; Fig. 2a). Compari-
son showed that 257 endogenous transcripts differentially
expressed between Cry3Bb1 and controls were also differ-
entially expressed in Hb and/or Ma treatments compared
to controls (Fig. 2b). GO enrichment analyses of these
shared transcripts predicted secretory vesicle (category
CC), C-N bonding forming ligase activity (MF), and pur-
ine compound biosynthesis process (BP) among the most
significantly overrepresented (Supplementary Fig. S3A).
After removal of these 257 transcripts shared with Hb and
Ma treatments 798 endogenous transcripts were unique
to the Cry3Bb1 response. Of the 775 unique PFAM do-
main annotations assigned to 609 of these 798 differen-
tially expressed transcripts (76.3%), cathepsin inhibitor

Fig. 2 Prediction and filtering of putatively differentially expressed transcripts among susceptible Diabrotica virgifera virgifera larvae exposed to
maize roots expressing Bacillus thuringiensis (Bt) pesticidal proteins. A) Correlation between Log2(fold-change) estimates between DESeq2 and
EdgeR statistical packages for predicted differentially-expressed transcripts among larvae exposed roots that express Cry3Bb1 (T8; VT TriplePro®
(VT3) hybrid) or Gpp34/Tpp35Ab1 (T5; Herculex® XTRA (Hx) hybrid) compared to non-Bt control maize (T7; Cn). Venn diagrams indicate the
number of predicted differentially-expressed transcripts by DESeq2 and EdgeR surpassing significance thresholds (FDR≤ 0.05), where the
intersections (green up-regulated; red down-regulated) indicate those significant within both analyses. B) Comparison of differentially expressed
transcripts between Bt and entomopathogen treatments, Heterorhabditis bacteriophora (Hb) and Metarhizium anisopliae (Ma). Differentially
expressed transcripts within the intersection of Bt and entomopathogen treatments were subtracted to arrive at final filtered sets for Cry3Bb1 (T8;
VT3) and Gpp34/Tpp35Ab1 (T5; Hx) maize treatments (green up-regulated; red down-regulated)
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(Inhibitor_I29), papain (Peptidase_C1) and trypsin prote-
ases functional domains were most prevalent (Table 5).
Transcripts encoding alkaline phosphatase, aminopepti-
dase, or cadherin domains were not among those that
were differentially expressed. Annotations did indicate
that three transcripts up-regulated in Cry3Bb1 treatments
encoded putative ABC transporter-like proteins from sub-
families ABCG (n = 1) and ABCC (n = 2) (Table 6), while
a single transcript was annotated with a tetraspanin do-
main (DIAVI021979). Transcripts putatively encoding six
apoptosis-related proteins, including two caspases, one
IAP, and the BAX-domain containing protein BI-1 were
up-regulated by Cry3Bb1 exposed larvae (Table 7). The
most significantly enriched GO terms assigned at level 2
to differentially expressed transcripts in the Cry3Bb1
treatment were in extracellular space and microbody (cat-
egory CC), coenzyme binding and channel regulator activ-
ities (MF), and small molecule catabolism and drug
metabolism processes (BP) (Fig. 3a).
Comparisons between control (Cn; T7) and Gpp35/

Tpp35Ab1 maize (Hx; T5) treatments predicted signifi-
cant differences for 1387 transcripts by both DESeq2
and EdgeR (Table 4; Supplementary Table S4). Among
these transcripts, 13 showed top BLASTx hits to Wolba-
chia sp. (n = 7), H. bacteriophora (n = 1), or other micro-
bial protein database sources (n = 5), and were removed
from the dataset. This filtered set of 1374 D. v. virgifera
transcripts (Table 4; Fig. 2a) contained 295 that were
also differentially expressed in one or both of the Hb
and/or Ma treatments (Fig. 2b). GO enrichment analyses
predicted the most significant over-representation was
for secretory vesicle (category CC), coenzyme binding
activity (MF), and organophosphate biosynthesis process
(BP) (Supplementary Fig. S3B). Following removal of
these 295 transcripts shared with Hb and Ma responses,
a total of 1079 were retained in the dataset of

endogenous transcripts uniquely responding to Gpp34/
Tpp35Ab1 (Fig. 2b). A total of 1066 PFAM domain an-
notations were assigned to 837 of these 1079
differentially-expressed transcripts (77.6%), with sugar
transporter (Sugar_tr), cytochrome P450 (p450), and lec-
tin C-type domain (Lectin_C) numerically greatest
(Table 5). No alkaline phosphatase, aminopeptidase, or
cadherin domains were annotated among differentially
expressed transcripts. PFAM domains for ABC trans-
porter were assigned to four up-regulated transcripts,
one assigned to each of the ABCB, C, G, and E subfam-
ilies (Table 6). By comparison, a total of 6 and 5 tran-
scripts encoding ABCC subfamily members were
differentially regulated in H. bacteriophora and M. aniso-
pliae treatments, respectively (Table 6), but none were
predicted in common with those in the Cry3Bb1 or
Gpp34/Tpp35Ab1 treatments. A set of nine apoptosis-
related protein-encoding transcripts were up-regulated
in Gpp34/Tpp35Ab1 exposed larvae, of which five were
in common with those also up-regulated in Cry3Bb1
maize (Table 7). Transcripts uniquely up-regulated fol-
lowing exposure to Gpp34/Tpp35Ab1 maize included
one putatively encoding a BI-1 ortholog, and a different
IAP1 isoform (X1) than the IAP1 isoform X5 up-
regulated in Cry3Bb1 treatments. Enrichment at GO
level 2 showed greatest significance within in microbody
and secretory vesicle (category CC), coenzyme binding
activity (MF), and small molecule catabolism processes
(BP) in the Gpp34/Tpp35Ab1 treatment (Fig. 3b).
A set of 696 differentially-expressed endogenous tran-

scripts were shared between both Cry3Bb1 and Gpp34/
Tpp35Ab1 treatments (Supplementary Table S9; Fig. 4a).
The Log2(fold-change) estimates for these transcripts
were highly correlated between DESeq2 and EdgeR ana-
lyses (R2 ≥ 0.8524; Fig. 4a). Following removal of 133
transcripts that were also differentially expressed in Hb

Table 4 Count of differentially expressed transcripts between treatment pairs (FDR ≤ 0.05 in DESeq2 and EdgeR)

ID/Treatment (as in Table 2)

T7-T8 T7-T5 T7-T3 T7-T6

Transcript partitions Cn v. VT3 Cn s. Hx Cn v. Ma Cn v. Hb

Total differentially expressed 1064 1387 1199 1562

total up-regulated 950 1296 638 1269

total down-regulated 114 91 563 293

total with PFAM domains 773 1031 658 820

total with signal peptide 293 366 212 204

Endogenous* (total/Bt only)# 1055/ 798 1374/1079 NA NA

up-regulated (total/Bt only)# 942/ 771 1291/1059 636/NA 1269/NA

down-regulated (total/Bt only)# 113/ 27 83/ 20 563/NA 293/NA

* no significant BLASTx hits to Wolbachia, Heterorhabditis bacteriophora (Hb), or Metarhizium anisopliae (Ma) protein databases (E-values > 1.0− 7)
# Bt only values obtained by filtering differentially expressed transcripts from Cry3Bb1 or Gpp34/Tpp35Ab1 datasets which were also differentially expressed in Hb
and Ma treatments
NA Not applicable
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Table 5 Predicted PFAM domains encoded by transcripts differentially-expressed in susceptible Diabrotica virgifera virgifera Ped12

Comparisons

PFAM domain name T7-T5 T7-T8 Both

PFAM domain description PFAM_ID InterPro_ID Hx v Cn VT3 v Cn ∩

Sugar_tr Sugar transporter PF00083 IPR005828 26 17 14

p450 Cytochrome P450 PF00067 IPR001128 22 17 15

Lectin_C Lectin C-type domain PF00059 IPR001304 21 12 11

Inhibitor_I29 Cathepsin propeptide inhibitor domain PF08246 IPR013201 19 22 14

Trypsin Trypsin PF00089 IPR001254 19 20 9

Peptidase_C1 Papain family cysteine protease PF00112 IPR000668 18 21 13

CBM_14 Carbohydrate binding module PF01607 IPR002557 17 15 12

LRR_8 Leucine-rich repeat PF13855 IPR001611 15 11 10

COesterase Carboxyesterase, type B PF00135 IPR002018 14 18 10

adh_short Short chain dehydrogenase PF00106 IPR002347 13 5 3

EcKinase Ecdysteroid kinase PF02958 IPR004119 11 12 8

UDPGT UDP glycosyltransferases PF00201 IPR002213 11 11 8

Kunitz_BPTI Kunitz/Bovine pancreatic PF00014 IPR002223 10 3 3

MFS_1 Major facilitator superfamily PF07690 IPR011701 10 10 7

DUF1397 Unknown function PF11901 IPR024518 9 3 3

Serpin Serpin serine protease inhibitor PF00079 IPR026796 9 3 3

Abhydrolase_1 Alpha/beta hydrolase fold PF00561 IPR000073 8 11 6

Glyco_hydro_18 Glycosyl hydrolase family 18 PF00704 IPR001223 7 5 4

LRR_5 BspA type Leucine rich repeat region PF13306 IPR026906 7 4 4

EF-hand_7 EF-hand domain pair PF13499 IPR002048 6 3 3

Fibrinogen_C Fibronectin PF00147 IPR002181 6 7 4

GST_C Glutathione S-transferase, C-terminal PF00043 IPR004046 6 7 5

PBP_GOBP PBP/GOBP family PF01395 IPR006170 6 2 2

ADH_zinc_N Zinc-binding dehydrogenase PF00107 IPR013149 5 3 2

Aldo_ket_red Aldo/keto reductase PF00248 IPR023210 5 6 3

Ank_2 Ankyrin repeats PF12796 IPR020683 5 4 3

Far-17a_AIG1 Far-17a_AIG1-like protein PF04750 IPR006838 5 4 4

GILT γ-interferon-inducible lysosomal thiol PF03227 IPR004911 5 5 4

Glyco_hydro_1 Glycosyl hydrolase family 1 PF00232 IPR001360 5 14 5

Ig_2 Immunoglobulin domain PF13895 IPR007110 5 0 0

JHBP Juvenile hormone-binding protein PF06585 IPR010562 5 10 4

Lipase Lipase PF00151 IPR013818 5 4 3

Ras Ras family PF00071 IPR001806 5 3 3

7tm_2 7 transmembrane receptor PF00002 IPR000832 4 4 4

ABC2_membrane ABC-2 type transporter PF01061 IPR013525 4 2 1

ABC_tran ABC transporter PF00005 IPR003439 4 2 1

Abhydro_lipase Alpha/beta hydrolase lipase region PF04083 IPR006693 4 6 2

Asp Eukaryotic aspartyl protease PF00026 IPR033121 4 3 2

DUF3421 Protein of unknown function PF11901 IPR024518 4 4 3

GST_N Glutathione S-transferase, N-terminal PF02798 IPR004045 4 5 3

I-set Immunoglobulin I-set domain PF07679 IPR013098 4 4 3

Lys C-type lysosome/alpha-lactalbumin PF00062 IPR001916 4 0 0
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and/or Ma treatments, a set of 535 endogenous tran-
scripts were shared and responding to both Cry3Bb1
and Gpp34/Tpp35Ab1 (Supplementary Table S9; Fig.
4b). Predicted PFAM domains showed that of putative
cytochrome P450 (p450), cathepsin inhibitor (Inhibitor_
I29), sugar transporter (Sugar_tr), papain cysteine prote-
ase (Peptidase_C1), and carbohydrate binding module
(CBM_14) were the five most prevalent (Table 5). GO
enrichment at level 2 for differentially expressed tran-
scripts shared in pesticidal protein exposures was great-
est within CC categories microbody, secretory vesicle,
and extracellular space (Fig. 5). Additionally, enrichment
was greatest for coenzyme binding activity (MF), and

small molecule catabolism, monocarboxylic acid metab-
olism, and drug metabolism processes (BP) (Fig. 5). An
ABCC subfamily member putatively orthologous to the T.
castaneum ABCC-ST gene was significantly up-regulated
in the Cry3Bb1 and Gpp34/Tpp35Ab1 treatment (Table
6). Five apoptosis-related proteins were up-regulated in
both Cry3Bb1 and Gpp34/Tpp35Ab1 treatments (Table
7). The transcript DIAVI004770, encoding a putative
tetraspanin-like protein, was up-regulated in both
Cry3Bb1 and Gpp34/Tpp35Ab1 exposure treatments.
Overall, these results show that after filtering,

differentially-expressed transcripts in separate Cry3Bb1
and Gpp34/Tpp35Ab1 treatments encode proteins

Table 5 Predicted PFAM domains encoded by transcripts differentially-expressed in susceptible Diabrotica virgifera virgifera Ped12
(Continued)

Comparisons

Sina Seven in abstensia protein family PF03145 IPR018121 4 4 3

SVWC von Willebrand factor type C PF15430 IPR029277 4 4 4

Tetraspannin Tetraspannin family PF00335 IPR018499 4 2 2

Counts predicted within translated products for differentially-expressed transcripts for Bt susceptible D. v. virgifera Ped12 larval exposures to transgenic maize
roots that express Gpp34/Tpp35Ab1 (T5; Herculex® (Hx) hybrid) and Cry3Bb1 (T8; VT TriplePro® (VT3) hybrid) compared to control (T7). The intersection of
differentially-expressed transcripts in both Cry3Bb1 and Gpp34/Tpp35Ab1 treatments also indicated. All counts representative of transcripts after in silico
subtraction of those also differentially-expressed in exposures to the entomopathogens Heterorhabditis bacteriophora (Hb) and Metarhizium anisopliae (Ma). Values
provided for instances when ≥4 transcripts received an annotation within at least one of the treatments. InterPro identification (InterPro_ID) are also given

Table 6 Candidate Bacillus thuringiensis (Bt) insecticidal protein receptors differentially in susceptible Diabrotica virgifera virgifera
Ped12 larvae

Log2(fold-change)

Putative Bt maize Entmopathogens Tribolium castaneum ortholog

Transcript Dvir_v2.0 Protein model(s)# annotation T7-T8 T7-T5 T7-T6 T7-T3 (Assn; GLEAN; Ortholog; ID/Aligned L)

DIAVI009217 XP_028139024.1 & 25.1 ABC subfamily G + 2.42 NS NS NS XP_973526.1; 07047; TcABCG-4H; 53%/ 646

DIAVI012990 XP_028134948.1 to 52.1 ABC subfamily C + 2.41 + 2.28 NS NS XP_969781.1; 14,775; TcABCC-ST; 57%/ 439

DIAVI001032 XP_028145606.1 ABC subfamily C + 2.07 NS NS NS XP_8193834.1; 14,403; TcABCC-SR; 44%/1374

DIAVI006431 XP_028139807.1 ABC subfamily B NS + 1.98 NS NS XP_974441.2; 15,192; TcABCB-6A; 77%/ 612

DIAVI025188 XP_028135097.1 ABC subfamily G NS + 1.96 NS NS XP_008198312.1; ND; ND; 36%/ 156

DIAVI008609 XP_028129515.1 & 16.1 ABC subfamily E NS + 1.58 NS NS XP_968009.1; 10,519; TcABCE-3A; 91%/ 557

DIAVI001096 XP_028128982.1 ABC subfamily C NS NS + 0.81 NS XP_972534.1; 09892; TcABCC-7B; 63%/1280

DIAVI001196 XP_028139572.1 ABC subfamily C NS NS + 2.39 + 2.13 XP_971802.2; 14,383; TcABCC-5 N; 44%/1260

DIAVI001308 XP_028155748.1 ABC subfamily C NS NS + 1.57 NS XP_971908.1; 14,385; TcABCC-5P; 46%/1266

DIAVI001589 XP_028142713.1 ABC subfamily C NS NS + 1.16 + 1.03 XP_971802.2; 14,383; TcABCC-5 N; 45%/1280

DIAVI001763 XP_028131534.1 ABC subfamily C NS NS + 1.11 + 1.22 XP_971802.2; 14,383; TcABCC-5 N; 48%/1258

DIAVI001938 XP_028155747.1 ABC subfamily C NS NS −1.38 −2.05 XP_971908.1; 14,385; TcABCC-5P; 47%/1240

DIAVI012237 XP_028137191.1 to 93.1 ABC subfamily C NS NS NS −2.17 XP_971802.2; 14,383; TcABCC-5 N; 47%/ 587

DIAVI021979 XP_028140422.1 Tetraspanin + 2.48 + 2.34 NS NS XP_969428.111703; CD63 antigen;53%/ 271

DIAVI004770 XP_028137187.1 & 88.1 Tetraspanin NS + 1.84 NS NS XP_966752.212071; Tetraspanin33: 91%; 291

Fold-change and direction (+ or -) of differential expression among transcripts is indicated within exposures to roots of maize hybrids that express Bt pesticidal
proteins Cry3Bb1 (T8; VT TriplePro® (VT3) hybrid) and Gpp34/Tpp35Ab1(T5; Herculex® (Hx) hybrid), or entomopathogens Heterorhabditis bacteriophora (T6) and
Metarhizium anisopliae (T3), compared to the non-Bt maize control treatment (T7)
# Protein models in RefSeq accession GCF_003013835.1 annotated from assembly accession GCA_003013835.2 under BioProject PRJNA432972; NS: not significant
with FDR > 0.05; ND: not determined; Accn: GenBank accession; GLEAN: Tribolium castaneum GLEAN protein nomenclature; Ortholog: T. castaneum. ABC
transporter classification according to Broehan et al. (2013) and putative annotation as defined by Adepipe et al. (2019); ID: identity from BLASTp alignments;
Aligned L: length of BLASTp alignment
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Table 7 Differential expressed apoptotic and autophagy-related protein-encoding transcripts

Log2(fold-change)

Transcript Putative annotation T7-T8 T7-T5 T7-T6 T7-T3

DIAVI022989 Initiator caspase-like (orthologs: STRICA or DAMM) + 3.21 + 3.05 ns ns

DIAVI027204 Effector caspase-like (ortholog: DECAY) + 3.00 + 2.47 ns ns

DIAVI057195 Stress-associated endoplasmic reticulum protein 2 + 2.26 + 2.13 ns ns

DIAVI029891 Lifeguard 4-like (BAX inhibitor domain protein) + 2.02 + 1.76 ns ns

DIAVI013501 Autophagy-related gene 13 (atg13)-encoded protein + 2.20 + 1.71 −1.42 −1.52

DIAVI011561 Programmed cell death protein 4 ns + 1.67 ns ns

DIAVI026079 BAX inhibitor 1 (BI-1) ns + 1.52 ns ns

DIAVI011972 Inhibitor of apoptosis 1 (IAP1) isoform X1 ns + 2.22 ns ns

DIAVI007715 Inhibitor of apoptosis 1 (IAP1) isoform X5 + 4.36 ns ns ns

Response among susceptible Diabrotica virgifera virgifera Ped12 larvae exposed to Bacillus thuringiensis (Bt) maize roots and entomopathogens. Fold-change and
direction (+ or -) of differential expression for transcripts is indicated for treatments with exposures to maize roots that express Bt pesticidal proteins Cry3Bb1 (T8;
VT TriplePro® (VT3) hybrid)) and Gpp34/Tpp35Ab1 (T5; Herculex® (Hx) hybrid), and to the entomopathogens Heterorhabditis bacteriophora (T6) and Metarhizium
anisopliae (T3), compared to non-Bt control (T7). Transcripts differentially expressed in the intersection of both Bt maize treatments are highlighted in gray. #
Putative homologs from protein models in RefSeq accession GCF_003013835.1 annotated from genome assembly accession GCA_003013835.2 under the
BioProject PRJNA432972: DIAVI022989 = XP_028132548.1; DIAVI027204 = XP_028144295.1; DIAVI057195 = XP_028135864.1; DIAVI029891 = XP_028155171.1; DIAV
I013501 = XP_028130453.1; DIAVI011561 = XP_028128855.1 and XP_028128856.1; DIAVI026079 = XP_028141533.1; DIAVI011972 and DIAV
I007715 = XP_028141650.1 to 58.1

Fig. 3 Enriched Gene Ontology (GO) terms among transcripts differentially expressed in susceptible Diabrotica virgifera virgifera larvae exposed to
maize roots expressing Bacillus thuringiensis pesticidal proteins. For independent A) Cry3Bb1* and B) Gpp34/Tpp35Ab1 treatments* significantly
over-represented GO terms are shown within the categories of biological process (BP) and cellular component (CC) (FDR≤ 1.0E− 5), and molecular
function (MF) at level 2 (FDR ≤ 1.0E− 6; gray bars). Categories listed by GO ID and GO term in order of highest significance (bottom) to lowest
significance (top). Number of transcripts encoding each PFAM domain within each functional category are indicated (black bars). * Filtered
differentially expressed transcripts following in silico subtraction that removed those shared with transcripts also differentially expressed within
entomopathogen treatments (Hb and Ma)
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putatively most enriched for those localized in the extra-
cellular space, secretory vesicles, and microbodies, and
having coenzyme binding function and are involved in
small molecule catabolism (Fig. 3). These same categor-
ies are also most significantly enriched among differen-
tially expressed transcripts share in both treatments (Fig.

5). Of the putative Bt receptor proteins, only two were
differentially expressed across Bt maize exposure larvae
(Table 6), whereas five transcripts putatively encoding
apoptosis and cell stress-related proteins were upregu-
lated in both Cry3Bb1 and Gpp34/Tpp35Ab1 treatments
(Table 7).

Fig. 4 Prediction and filtering of the intersection of transcripts putatively differentially expressed among susceptible Diabrotica virgifera virgifera
larvae exposed within independent treatments to maize roots expressing different Bacillus thuringiensis (Bt) pesticidal proteins. A) Correlation
between estimated Log2(fold-change) among differentially-expressed transcripts from DESeq2 and EdgeR (FDR≤ 0.05) between larvae exposed to
non-Bt control hybrid maize roots (T7) with maize roots that express Bt Cry3Bb1 (T8; VT TriplePro® (VT3) hybrid) and Gpp34/Tpp35Ab1 (T5;
Herculex® (Hx) hybrid). Venn diagram indicates the number of predicted differentially-expressed transcripts by DESeq2 and EdgeR surpassing
significance thresholds (FDR≤ 0.05), where the intersections (green up-regulated; red down-regulated) indicate those significant within both
analyses. B) Comparison of differentially expressed transcripts between Bt and entomopathogen treatments, Heterorhabditis bacteriophora (Hb)
and Metarhizium anisopliae (Ma). Differentially expressed transcripts within the intersection of those shared by both Bt and entomopathogen
treatments, that were subtracted to arrive at final filtered set shared transcripts uniquely differentially expressed in both Cry3Bb1 (T8; VT3) and
Gpp34/Tpp35Ab1 (T5; Hx) maize root treatments (green up-regulated; red down-regulated)
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Phylogenetics and structural annotations
BLASTp results showed that 7 D. v. virgifera transcripts
(this study) and 9 D. v. virgifera gene models surpassed
E-value thresholds against D. melanogaster caspases:
DRONC, death regulator Nedd2-like caspase (FlyBase
ID: FBgn0026404); DRED, Death related ced-3/Nedd2-
like caspase (FBgn0020381), DAMM (FBgn0033659),
STRICA, Ser/Thr-rich caspase (FBgn0033051), DECAY,
Death executioner caspase related to Apopain/Yama
(FBgn0028381), DCP-1, death caspase 1 (FBgn0010501),
and DRICE, death related ICE-like caspase (FBgn001997;
data not shown). A 197 amino acid consensus alignment
was generated for a partial enzymatic domain region
among seven D. melanogaster and putative D. v. virgifera
caspases (Supplementary Fig. S4). Percent identity

among aligned sequences ranged from 17.12 to 100.00,
with catalytic histidine (H) and cysteine (C) residues
100% conserved. The LG +G + I model maximized the
BIC score at 4496.352, and was implemented as the
“Best Model” for subsequent phylogenetic reconstruc-
tion. The subsequent unrooted ML-based phylogeny had
a G of 2.7553 and I of 6.77% that minimized at the log
likelihood score of − 2224.28, resulting in a consensus
tree of total branch length of 10.157 (Fig. 6). Two major
clades comprised of effector and initiator caspases were
supported by 65% of 1000 bootstrap pseudo-replicates of
the data. Clade was defined based on phylogenetic pos-
ition of D. melanogaster effector (DRICE, DCP-1 and
DECAY) and initiator caspases (DRONC, DRED, STICA
and DAMM), and predicted the effector DECAY and

Fig. 5 Enriched Gene Ontology (GO) terms among transcripts within the intersection of differentially expressed in susceptible Diabrotica virgifera
virgifera larvae independently exposed to maize roots expressing different Bacillus thuringiensis (Bt) pesticidal proteins*. Significantly over-
represented GO terms within the categories of biological process (BP), cellular component (CC) (FDR ≤ 1.0E− 5), and molecular function (MF) at
level 2 (FDR≤ 1.0E− 6; gray bars). Categories listed by GO ID and GO term in order of highest significance (bottom) to lowest significance (top).
Number of transcripts encoding each PFAM domain within each functional category are indicated (black bars). * Set of 563 transcripts with
estimated significant levels of differential expression between D. v. virgifera larvae exposed to hybrid maize roots that express Bt Cry3Bb1 (T8; Hx)
and Gpp34/Tpp35Ab1 (T5; Hx) compared to non-Bt control maize roots (T7; Cn) within independent treatments (intersection). These shared
transcripts were further filtered by in silico subtraction to remove differentially expressed transcripts that were also differentially expressed within
entomopathogen treatments (Heterorhabditis bacteriophora (Hb) and Metarhizium anisopliae (Ma))
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initiators STRICA or DAMM as nearest orthologs to
up-regulated D. v. virgifera caspases DIAVI027204 and
DIAVI022989, respectively (Fig. 6). Overall, each tran-
script within the assembled transcriptome showed a one-
to-one phylogenetic correspondence with a Dvir_v2 pro-
tein model, with the exception of a lack of homologous
transcripts for XP_028140498.1 and XP_028140499.1.
Local BLASTn and BLASTp searches of D. v. virgifera

gene models using corresponding sequences from puta-
tive apoptosis- or cell stress-related proteins encoded by

the differentially expressed transcripts, IAP, BI-1, and
LFG, resulted in identification of nearest homologs.
Queries of the CDD with proteins encoded by DIAV
I007715 and DIAVI011972 differentially expressed fol-
lowing D. v. virgifera exposure to Cry3Bb1 or Gpp34/
Tpp35Ab1, respectively, allowed classification of both as
IAP family 1 (IAP1) members based on presence of two
baculoviral inhibition of apoptosis protein repeat (BIR)
domains (Supplementary Fig. S5A). BLASTn results
indicated that DIAVI011972 and DIAVI007715 were

Fig. 6 Phylogenetic relationship and orthology of putative Diabrotica virgifera virgifera caspases. Maximum-likelihood (ML) analysis of a partial
enzymatic domain alignment between putative D. v. virgifera caspases with seven known caspases from Drosophila melanogaster (Supplementary
Fig. 5). The D. v. virgifera transcripts (DIAVI0NNNNN) and protein models (XP 0281NNNNN.1) from RefSeq accession GCF_003013835.1 for the draft
genome assembly accession GCF_003013835.1 Dvir_v2 are integrated for homolog estimation. Caspase-encoding transcripts DIAVI027204 and
DIAVI022989 up-regulated in both Cry3Bb1 and Cry34/35Ab1 exposed larvae (Table 7) are enclosed in boxes. Clades corresponding to effector
and initiator classes are indicated by brackets. The ML of the constructed tree using the LG model of protein sequence evolution (Le and Gascuel
2008) [77] with a gamma shape parameter (G) = 2.7553 and 6.77% of sites defined as evolutionarily invariable (I) was minimized at a log likelihood
of − 2224.28, and resulted in a tree with a total branch length of 10.157. Node support obtained using 1000 bootstrap pseudo-replications of the
aligned protein sequence data
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derived from Dvir_v2.0 LOC114335598, and represent
splice variants XM_028285849.1 (isoform X1; protein
translation XP_028141650.1; E-value = 0.0, %ID = 100.0)
and XM_028285854.1 (isoform X5; protein XP_
028141655.1; E-value = 0.0, %ID = 100.0), respectively. By
comparison, FPAM and CDD results predicted that the
non-differentially expressed transcript DIAVI011430
(homolog of XP_028283750.1; Dvir_v2.0 LOC114333756
E-value = 0.0, %ID = 100.0), encoded three BIR domains
which is structurally similar to Drosophila DIAP2 ortho-
logs (Supplementary Fig. S5B). Alignments of D. v. virgi-
fera IAP1 and IAP2 BIR domains with D. melanogaster
orthologs DIAP1 and DIAP2 showed ≥ 22.39%
and ≥ 26.47% identities, respectively (Supplementary Fig.
S5C). Analogous results were obtained for BAX
inhibitor-like, BI-1 (Supplementary Fig. S6A) and Life-
guard 4 (LFG4) (Supplementary Fig. S6B), and SERP2-
like proteins (Supplementary Fig. S7).
These results showed that in Cry3Bb1 and Gpp34/

Tpp34Ab1 treatments the two upregulated caspases
belonged in two separate clades corresponding to initi-
ator and effector caspases (Fig. 6), that function at differ-
ent stages to propagate apoptosis-related proteolytic
cascades. Transcripts upregulated in both treatments
also included a IAP2 class protein that correspondingly
repressed progression of caspase cascade, and the
remaining upregulated transcripts BI-1, LGF4 and
SERP2 show homology to related peptides with putative
function in repression of cell death and promotion of
cell survival.

Discussion
Transcriptome responses to Bt pesticidal protein
exposures
The modes by which Bt intoxication evokes changes that
elicit cell death or recovery, tissue damage or repair, and
organismal mortality or survival are not yet fully under-
stood [46, 66, 78]. Several studies demonstrate a role for
gut membrane-bound protein receptors in mediating Bt
intoxication, but uncertainties remain regarding molecu-
lar mechanisms underlying subsequent physiological and
cellular changes. Specifically, pore-formation/osmotic
imbalance, signal transduction, or hybrid models suggest
different causes [27]. Studies comparing transcriptome-
wide expression differenes between susceptible insects
exposed or unexposed to Bt proteins can provide valu-
able mechanistic insights, but such studies tend to iden-
tify hundreds or thousand of differentially-expressed
genes [74–76, 79–82]. This phenomenon is also ob-
served as part of insect responses to chemical insecticide
exposures [83] and pathogen infections [84]. Such out-
comes not only impose challenges for interpreting re-
sults, but also in formulating hypotheses to guide future
reseach.

In the current study we aimed to reduce the genetic
component of variation in responses of D. v. virgifera by
using an inbred strain Ped12. Additionally, we removed
any transcripts from further consideration that were not
identified by both DESeq2 and EdgeR packages, resulting
in substantial reductions of 63.1 and 49.1% in candidate
transcripts for Cry3Bb1 and Gpp34/Tpp35Ab1 expo-
sures, respectively. Of the remaining transcripts, we per-
formed in silico subtraction to remove transcripts that
also were differentially expressed following exposures to
entomopathogens (Hb or Ma), which was hypothesized
to eliminate transcripts in shared general stress response
pathways. These subtraction measures reduced the num-
ber of significantly differentially expressed transcripts in
susceptible D. v. virgifera larvae exposed to transgenic
Cry3Bb1 and Gpp34/Tpp35Ab1 maize to 798 and 1079,
respectively (≥ 24.4% reduction) (Table 4; Fig. 2). Simi-
larly, among the 696 differentially expressed transcripts
shared between the two Bt maize treatments, an add-
itional 133 (19.1%) were also differentially regulated in
Hb and Ma treatments, leaving 563 after removal
(Fig.4b). Among the filtered transcripts, are those encod-
ing candidate Bt receptor proteins, metabolic and de-
toxification enzymes, and proteins putatively involved in
cell fate (pro-survival or -death) were over represented,
and these were focused upon in our further
investigations.

Up-regulation of putative B. thuringiensis receptors
Transcripts predicted to encode previously identified re-
ceptor proteins were differentially-expressed among sus-
ceptible D. v. virgifera exposed to Cry3Bb1 and/or
Gpp34/Tpp35Ab1 compared to controls. For example,
tetraspanin encoding transcripts were up-regulated in
response to Cry3Bb1 (transcript DIAVI021979) and
Gpp34/Tpp35Ab1 (transcripts DIAVI004770 and DIAV
I021979; Table 6). A non-synonymous change in the
transmembrane domain in the H. armigera tetraspanin
gene, HaTSPAN1, was linked to Cry1Ac resistance in
strain AY2 [51]. The HaTSPAN1 transcript levels are in-
creased 2.7-fold in AY2, but did not alter Cry1Ac bind-
ing. The means by which structural changes and up-
regulation of tetraspanin interrupts the Bt mode of ac-
tion in H. armigera AY2 [51], or role of tetraspanin-like
transcripts in Cry3Bb1 and Gpp34/Tpp35Ab1 responses
by susceptible D. v. virgifera remains unknown. Alter-
nate midgut receptors in resistant insects have been pro-
posed to sequester Bt proteins, thereby reducing binding
to membrane-bound proteins functionally involved in
pore formation [85, 86], such as ABC transporters,
cadherin, aminopeptidase N or alkaline phosphatases.
Regardless, a potential protein sequestering role of tetra-
spanin remains to be investigated.
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The involvement of ABC transporters in Bt intoxica-
tion has been demonstrated through linkage or associ-
ation with resistance among species of Lepidoptera to
subfamily members abcc2 [34, 56, 57, 60], abca2 [87],
and abcg [88, 89]. In the current study of Bt susceptible
D. v. virgifera larvae, five transcripts encoding putative
ABC transporters were significantly up-regulated in re-
sponse to Bt maize proteins (Table 6), and agree with re-
sults from a prior study for a eCry3.1Ab resistant strain
of this species [75]. These contrast with other studies of
D. v. virgifera where ABC transporter expression was
not significantly different following exposures of suscep-
tible larvae to Cry3Bb1 or Gpp34/Tpp35Ab1 pesticidal
proteins [76], or where transcripts were not detectable
in gut tissues [74]. Differences in ABC transporter tran-
scription may be dependent upon environmental condi-
tions or genetic background of strains being compared,
although using an inbred strain may have minimized
effects of the latter in our study.
Evidence from other systems indicate that ABC trans-

porters are involved in pro-survival stress response
mechanisms among mammals [90, 91]. Specifically,
ABCC subfamily members function with glutathione S-
transferases (GSTs) and UDP-galactosyl transferases
(UGTs) to enhance drug and carcinogen efflux in cellu-
lar maintenance of homeostasis in human and mouse
[92–94]. Our predicted up-regulation of transcripts en-
coding GST, UGT, and ABCC transporter domains in D.
v. virgifera following Cry3Bb1 and Gpp34/Tpp35Ab1 ex-
posure (Table 5), and significant enrichment for GO MF
category drug metabolism and BP category drug metab-
olism (Fig. 3; Fig. 5), could suggest increased cellular
transport may be involved in responses to Bt intoxica-
tion. ABC transporters also have other cellular functions
within insects including immune responses [95], consist-
ent with up-regulation of unique ABCC members in re-
sponses to entomopathogens (Table 6). Although
mutations in a specific ABC transporter may inhibit
pesticidal protein pore formation in resistant insects,
proteins in the same superfamily may mediate other cel-
lular responses following pore formation in susceptible
insects. It may be possible that modulation of ABC
transporter expression impacts cellular efflux capacities
in response to increased solute influx through pores, but
this hypothesis requires additional investigation.

Modulation of metabolic and detoxification pathways
Our analyses showed that the most significantly enriched
GO terms among differentially expressed transcripts fol-
lowing exposure of D. v. virgifera to Cry3Bb1 maize
encompassed extracellular space and microbody (cat-
egory CC), binding and transport functions (MF), and
small molecule catabolism and drug metabolism (BP)
(Fig. 3a). Transcripts significantly differentially-expressed

in the Gpp34/Tpp35Ab1 maize treatment were most
enriched for terms microbody, ER membrane, and extra-
cellular space (category CC), coenzyme binding (MF),
and small molecule catabolism (BP) (Fig. 3b). In con-
junction with prior studies [75, 76], our results suggest
an increase in metabolic processes may be a common re-
sponse among D. v. virgifera to Bt intoxication. In other
organisms, metabolic rates increase during instances of
cellular repair and survival [96, 97], which might be con-
served and potentially explanatory of the observed in-
crease in metabolic pathway gene expression in
susceptible D. v. virgifera responses to Cry protein in-
toxication. Also, enrichment of GO terms for extracellu-
lar space shared between Cry3Bb1 and Gpp34/
Tpp35Ab1 treatments here and in eCry3.1Ab resistant
D. v. virgifera [75], might suggest a role of secreted fac-
tors in intoxication responses.
Even though no GO enrichment analyses were con-

ducted in a prior investigation of Cry3Bb1 maize expos-
ure among susceptible D. v. virgifera larvae [74], these
authors described significant differential expression of
transcripts putatively encoding proteins involved in
xenobiotic stress responses and detoxification (cyto-
chrome P450 monooxygenase, esterase, oxidase, and
peroxidase) functions, and transporter activities. Our
study similarly predicted PFAM domains for sugar trans-
porter and detoxification enzymes (cytochrome P450,
carboxyesterase, glutathione S transferase, and UDP gly-
cosyltransferases) are prevalent among transcripts differ-
entially regulated in Cry3Bb1 exposed larvae (Table 5).
Our data also show that sugar transporter and cyto-
chrome P450 domains encoded by transcripts
differentially-regulated in the Gpp34/Tpp35Ab1 treat-
ment are shared between the Cry3Bb1 treatment. Coin-
cidence of these functions between this prior study [74]
and our current study suggest a role for these proteins
in cellular intoxication response. Cytochrome P450s are
involved in a large breadth of insect cellular functions
[98], including regulation of insect ecdysone and juvenile
hormone pathways [99], cuticle formation [100], and xe-
nobiotics detoxification [101]. Uncoupling of P450 oxy-
genation reactions results in production of reactive
oxygen species (ROS), hydrogen peroxide and super-
oxide [102]. Cellular homeostasis can become disrupted
during times of cell stress when excess ROS is produced
due to high P450 activity. ROS can trigger apoptosis
[103], or act as second messengers that modulate other
cellular processes [104]. Stress responses triggered by
ROS during high metabolic states are intimately tied to
increased ABC transporter activities [105], suggesting a
possible basis for our predicted up-regulation of ABC
transporters in Cry protein and entomopathogen re-
sponses (Table 6). This also highlights the value of iden-
tifying transcripts putatively involved in general (i.e. not
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Bt-specific) cellular stress. Moreover, we hypothesize
that increases in metabolic, transport, and detoxification
pathways following Bt exposure of susceptible insects
may be connected with the increased energy demands of
cellular repair or death/survival processes. Despite the
tantalizing connections, further research is required to
demonstrate the roles of these pathway components for
cellular or organismal survival.

Up-regulation of cell survival pathways
The current study predicts that two D. v. virgifera tran-
scripts putatively encoding orthologs of D. melanogaster
effector caspase DECAY and initiator caspase STRICA
or DAMM (Fig. 6) are up-regulated following feeding on
Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots (Table 7).
Although DRONC and effectors DRICE and DCP1 are
the main caspases involved in apoptosis, DECAY and
DAMM may represent redundancies or have yet un-
known functions [106]. Regardless, the up-regulation of
caspase-encoding transcripts in D. v. virgifera following
Bt intoxication could suggest an apoptotic response.
This is in partial agreement with prior studies showing
significant up-regulation of transcripts encoding cas-
pases in Manduca sexta cells following Cry1Ac exposure
[67] and in midgut tissues of S. exigua following a sub-
lethal exposure to the Bt Vip3A protein [68].
Because caspase activation by the apoptosome is a crit-

ical step in determining cell fate, this process is tightly
regulated. In mammals, caspase translation occurs as in-
active pro-peptides that undergo autocatalysis in re-
sponse to pro-apoptotic stimuli [107]. However,
evidence suggests D. melanogaster caspases are trans-
lated in active forms but are suppressed following re-
versible binding by inhibitor of apoptosis protein (IAP)
family members [108]. Although several mechanisms
function to regulate pro-apoptotic signals, only the evo-
lutionarily conserved IAPs inhibit caspase function
through direct binding [108, 109]. Paralogs IAP1 or
IAP2 are each sufficient to inhibit cell death in lepidop-
teran cells [110], suggesting their functional conserva-
tion. IAPs are up-regulated in response to cell stress
conditions [111], as was observed here following expo-
sures of susceptible D. v. virgifera to Cry3Bb1 and
Gpp34/Tpp35Ab1 (Table 7). Interestingly, the up-
regulation of caspase- and IAP-encoding transcripts was
concurrent, perhaps suggesting an intimate balance be-
tween pro- and anti-apoptotic signals within cells follow-
ing Bt intoxication. For example, caspase-mediated
apoptosis could be partially suppressed through the up-
regulation of IAPs. Although Drosophila IAP1 transcrip-
tion is regulated by factors including those in the Hippo
pathway [112], the conservation of this regulatory frame-
work across arthropods remains unknown. Future inves-
tigation of the basis and consequences of IAP up-

regulation in D. v. virgifera may clarify the role of apop-
tosis in determining cell fate, and organismal survival
following low-dose Cry intoxication.
Transcripts encoding anti-apoptotic proteins including

structurally and functionally conserved transmembrane
B-cell-lymphoma protein 2 (Bcl-2)-associated X (BAX)
inhibitor 1 motif (TMBIM)-containing protein family
members, the BAX inhibitor 1 (BI-1) and Lifeguard 4
(LFG4) [113], are significantly up-regulated in Cry3Bb1
and Gpp34/Tpp35Ab1 exposed susceptible D. v. virgifera
larvae (Table 7). Similarly, the serine protease inhibitor,
stress-associated ER protein 2 (SERP2), is also up-
regulated. These factors function in cellular adaptation
to stress in the mitochondrion, Golgi or endoplasmic
reticulum (ER), thereby suppressing apoptosis. Specific-
ally, Bcl-2 protein family members are critical for regula-
tion of the intrinsic pathway of apoptosis in mammals
[114]. In this system, pro-apoptotic Bcl-2 proteins, in-
cluding the BAX protein, can oligomerize under cell
stress conditions to form mitochondrial outer membrane
pores that release cytochrome c and other factors, which
in turn cause caspase activation. In Drosophila, there is a
single pro-apoptotic Bcl-2 protein, decbl, that is a func-
tional BAX ortholog [115], but evidence suggests it has a
limited role in triggering apoptosis [116]. TMBIM pro-
teins modulate stress through several intracellular mech-
anisms [117]. For example, BI-1 does not inhibit BAX
via direct protein-protein interaction [118, 119], but in-
stead inhibits ROS production in the mitochondrion. In
the ER, BI-1 remediates the unfolded protein response
(UPR) and H+ antiporter activity, counteracting cyto-
solic acidification characteristic of apoptosis [120]. This
may be important because prolonged presence or high
accumulation of misfolded proteins can lead to pro-
apoptotic signaling, and the UPR can restore ER homeo-
stasis [121]. Therefore, BI-1 promotes cell survival path-
ways by suppressing factors that would otherwise
promote apoptotic signaling [122]. SERP also functions
within the UPR by enhancing protein stability [123,
124]. Somewhat analogously, LFG4 remediates stress
in the Golgi and ER [117], where the single ortholog
in D. melanogaster interacts with the anti-apoptotic
Bcl-2 protein, buffy, resulting in organismal survival
via repression of pro-apoptotic decbl [125]. BI-1 and
LFG4 structure and function are remarkably con-
served, where ectopic expression of viral orthologs
can rescue knockdown phenotypes in mammalian
cells [113], suggesting retention of ortholog function
in D. v. virgifera. Although the up-regulation of tran-
scripts encoding TMBIM members BI-1 and LFG4, as
well as SERP4, in susceptible D. v. virgifera following
Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposure
(Table 7) suggests activation of pathways to counter-
act cell death by apoptosis or related mechanisms,
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additional investigations are required to determine in-
dividual contributions and impacts on cellular and
organismal outcomes.

Conclusions
A greater understanding of cellular responses among
susceptible insects to pesticidal protein exposure can in-
form future research into mechanisms that lead to re-
sistance. To date mutations in cell surface receptors
have mainly been implicated in pesticidal protein resist-
ance among insects, although some evidence suggests al-
teration of intracellular signaling or cell recovery
mechanisms may have a role (see Introduction). Only a
few prior studies demonstrated apoptotic pathways in Bt
protein response among insects, specifically involving
up-regulation of caspases [67, 68] or the MAPK p38
pathway [69, 70]. We provide evidence for an apoptotic
response in susceptible D. v. virgifera larvae following
exposure to transgenic maize roots expressing either Bt
Cry3Bb1 or Gpp34/Tpp35Ab1. Interestingly, the pat-
terns we observed in differential expression suggest
counteracting pathways may simultaneously remediate
cell stress and suppress apoptosis, possibly through
modulating a balance between opposing pathways to de-
termine cell fate. Because we used whole larvae, we can-
not predict any possible tissue- or cell type-specific
responses. In general, exposure level has a role in cell re-
sponse to pore forming proteins suggesting a “high-
dose” leads to death by oncosis (cell swelling and bleb-
bing due to osmotic imbalance) as opposed to a “low-
dose” that tends to trigger apoptosis [126]. Therefore,
the responses of D. v. virgifera to the “low-dose” pesti-
cidal protein exposures characteristic of current trans-
genic Bt maize hybrids commercialized for their control
may not be comparable to responses among species of
Lepidoptera that feed on crop tissues that provide a
“high-dose”. Regardless, this work provides a framework for
understanding cellular responses to Bt pesticidal protein
exposure in the most devastating maize pest in the United
States, and suggests that mechanisms promoting and
counteracting apoptosis may characterize these responses.

Methods
Samples, treatments, and collections
A Bt susceptible non-diapausing strain of D. v. virgifera
[127] maintained at the United States Department of
Agriculture, Agricultural Research Service, North Cen-
tral Agricultural Research Laboratory (USDA-ARS,
NCARL), Brookings, SD, USA was used to generate an
inbred line, Ped12. Ped12 was initiated from a single
mated pair, followed by inbreeding for 9 generations:
single pair full-sib mating in the F1 to F5; (generations
G1 to G5), followed by en masse mating among siblings
within G6 and G7, then single pair full-sib mating in the

subsequent generations (G7 to G9). Ped12 was main-
tained thereafter as a closed colony of approximately
1000 individuals for 8 generations prior to use in this
study.
Ped12 individuals were sampled at different develop-

mental stages or following different exposure conditions.
Different developmental stages (conditions C1 through
C12; Table 1) were sampled among Ped12 individuals
reared using standard laboratory methods [128] at
USDA-NCARL. For conditions C13 to C16 (Table 1)
maize seedling mats were germinated from seeds of hy-
brids expressing modified mCry3A (Event MIR604; Syn-
genta, Basel, Switzerland;), Cry3Bb1 (Event Mon88017
by Bayer Crop Sciences/Monsanto Company, St. Louis,
MO, USA in VT TriplePro, VT3 hybrid DCK61–69 from
DeKalb Seed, DeKalb, IL, USA), Gpp34/Tpp35Ab1
(Event DAS-59122-7 by Corteva/Pioneer, Indianapolis,
IN, USA in HerculexXtra hybrid 2 T789 from Mycogen
Seeds, San Diego, CA, USA), or no Bt (hybrid 38B85,
Corteva/Pioneer). In brief, recently laid Ped12 D. v. virgi-
fera eggs were suspended in a 0.15% agar solution and
dispensed into 15 by 10-cm plastic containers (708 ml;
The Glad Products Company, Oakland, CA) at a rate of
500 eggs per container. Containers with eggs were filled
with 20ml of water and 150 ml of the soil mixture de-
scribed previously. After 1 wk., 50 maize seeds were
added to containers and covered with an additional 300
ml of soil mixture and 80 ml of water. Containers were
held in a controlled environmental chamber (Powers
Scientific Inc., Pipersville, PA) at constant 25 °C and a
photoperiod of 14:10 (L:D) h, as described previously
[129]. Four weeks after infestation of eggs, larvae of each
treatment were recovered from seedling mats, placed in
tin foil packages, flash frozen in liquid nitrogen, and
stored at − 80 °C. Seedling mats in treatments C13 to
C15 received regular watering. Condition C16 simulating
drought stress of hybrid 38B85 (Corteva/Pioneer) re-
ceived no water (Table 1).
Additionally, Ped12 larvae were separately exposed to

the entomopathogenic nematode Heterorhabditis bacter-
iophora (Hb) strain BU (Becker Underwood, Ames, IA,
USA; C17 in Table 1), and the entomopathogenic fun-
gus, Metarhizium anisopliae (Ma) strain F52 (provided
by Stefan Jaronski, USDA-ARS; C18 in Table 1). In brief,
300 μl of a 510 Hb ml− 1 suspension was aliquoted onto
filter paper in 10 cm Petri plates, and six 2nd and 3rd in-
stars were added and exposed for 48 h. Analogously,
300 μl of 1.5 × 107Ma conidia ml− 1 in 0.1% Tween 20
was aliquoted onto filter paper in 10 cm Petri plates, and
six 2nd and 3rd instars exposed for 48 h (C18). Adults
were exposed in a modified glass scintillation vial expos-
ure assay [130]. For this, 20 ml vials were coated with
sublethal levels of the neonicotinoid insecticide, thia-
methoxam (Poncho, Bayer Crop Sciences, Leverkusen,
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Germany; C19 in Table 1) or the adult attractant cucurbita-
cin (Sigma-Aldrich, St. Louis, MO, USA; C20 in Table 1).
Ten Ped12 adults were exposed per vial for 24 h. In all
cases, individuals were pooled as a single replicate per con-
dition, flash frozen in liquid nitrogen, and stored at − 80 °C.
Ped12 individuals were also subjected to different

treatments in triplicate and sampled for quantitative
analyses of transcript expression (Table 2) and inclusion
within the reference transcriptome assembly (Fig. 1).
Pooled samples were collected from Ped12 eggs in dia-
pause (treatment 1; T1), and 1st (T2) and 3rd instars
(T7; Table 2) reared under standard laboratory condi-
tions [128] at USDA-NCARL. Second instar Ped12 were
exposed to maize seedling roots expressing Gpp34/
Tpp35Ab1 (Herculex® XTRA Corteva/Pioneer Event
DAS-59122-7 in hybrid 2 T789 from Mycogen Seed, San
Diego, CA, USA; T5), Cry3Bb1 (VT TriplePro; Bayer
Crop Sciences/Monsanto Company; T8), or the non-Bt
hybrid 38B85 (Corteva/Pioneer; T7) as described above.
Treatment 4 (T4; Table 2) consisted of larval midgut tis-
sue dissected and pooled from approximately 50 3rd in-
stars feeding on the non-Bt hybrid 38B85. Treatments 3
(T3) and 6 (T6) were from Ped12 larvae exposed to M.
anisopliae and H. bacteriophora respectively, as de-
scribed above. All pooled samples were flash frozen in
liquid nitrogen separately within replicates for each
treatment, and stored at − 80 °C.

Complementary DNA libraries, sequencing, and data
processing
Total RNA was purified by replicate for each condition
(C1 to C20 in Table 1), and triplicates within each treat-
ment (T1 to T8 in Table 2). Each sample was ground in
liquid nitrogen and then 10.0 mg of tissue added to
250 μl TriZol Reagent (Life Technologies, Grand Island,
NY, USA). Purification was conducted using the Direct-
zol RNA MiniPrep kit (Zymo Research, Irvine, CA,
USA), which included a 15 min DNase I digestion per-
formed according to manufacturer instructions. Total
RNA extracts were quantified using Qubit dsDNA HS
Assay Kits (Life Technologies) on a Qubit 2.0 Fluorim-
eter (Thermo-Fisher, Wilmington, DE), and quality de-
termined by electrophoresis on a 10 cm 2% denaturing
agarose gel in 1X MOPS buffer run at 70 V for 45 min.
Normalized cDNA was prepared from an equimolar

pool of total RNA isolated across 20 different conditions
(C1 to C20; Table 1) using the Trimmer-2 cDNA
Normalization Kit according to manufacturer instructions
(Evrogen, Moscow, Russia). Resulting cDNA was quanti-
fied on a Nanodrop2000 (Thermo-Fisher). Non-
normalized cDNA was prepared separately from 1.0 μg of
purified RNA for each of the three replicates per treat-
ment (T1 to T8 in Table 2) using the SMARTer cDNA
Synthesis Kit (Life Technologies) according to

manufacturer instructions. Long-range PCR of SMARTer
cDNA products was carried out using Advantage Taq
Polymerase according to manufacturer instructions (Life
Technologies, Carlsbad, CA), which included 18 amplifi-
cation cycles according to manufacturer instructions on a
Tetrad2 thermocycler (BioRad, Hercules, CA, USA) with
10min extension at 65 °C. All amplified cDNAs were
quantified using dsDNA HS Assay Kits (Life Technolo-
gies) on a Qubit 2.0 Fluorometer (Thermo-Fisher).
The normalized and non-normalized cDNA samples

were sent to the Laboratoire de Sequencage, Institute de
Genomique, France, where uniquely indexed RNA-seq
libraries were prepared using TruSeq RNA library Prep
Kit V.1 (Illumina Inc., San Diego, CA, USA). Sequencing
was performed on an Illumina HiSeq2000 platform (Illu-
mina, Inc.) in 100 bp paired-end (PE) mode. Non-
normalized libraries (8 conditions × 3 biological repli-
cates per condition; n = 24; Table 2) were run on three
different lanes of the same flow cell, with one replicate
from each condition per lane. The normalized pooled li-
brary was run on a single lane of a separate Illumina
HiSeq2000 flow cell. All raw reads were trimmed to re-
move Illumina adaptor and low-quality sequences with
Phred33 bases quality scores (q) < 20 using Trimmo-
matic v 0.32 [131]. Long poly(A/T) stretches were re-
moved using SEQCLEAN (Dana-Farber Cancer
Institute, Boston, MA, USA; https://sourceforge.net/
projects/seqclean/files/) with the -l option to retain
trimmed reads ≥30 bp. Ambiguous nucleotide bases (‘N’)
were removed using a custom in-house PERL script.

De novo reference transcriptome assembly and
annotation
The D. v. virgifera reference transcriptome assembly
pipeline used an iterative approach with in silico read
normalization (Fig. 1 a). Specifically, trimmed reads from
the pooled normalized library (n = 1) and each replicate
of all non-normalized RNA-seq libraries (n = 24) were
combined into PE and single end (SE) read groups. In
silico normalization was conducted separately for each
using the script insilico_read_normalization.pl (available
in TRINITY v2014-07-17 software package [132] with
parameter --max_cov 30. This normalization step was
performed to reduce the coverage of highly expressed
transcripts, thereby improving the ability to assemble
transcripts expressed at low levels. In silico normalized
trimmed PE and SE reads were then merged across all li-
braries into a single fastq file, and used in a multiple k-
mer assembly approach with VELVET 1.2.03 [133] and
OASES 0.2.06 [134]. K-mer hashes were prepared for
k = 61, 71, 81 and 91 with in silico normalized SE and
PE reads applied as Short and Short Paired fastq input
classes, respectively. After each single k-mer assembly,
CD-HIT-EST [135] was used to remove shorter
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redundant transcripts when entirely covered by other
transcripts with > 99% identity. Transcripts ≥ 100 bp
from the four k-mer runs were then merged into a
combined assembly using kmerge. CD-HIT-EST was
once again used to remove the shorter redundant
transcripts (same parameters as previously). To re-
move additional residual redundancy, we used a cus-
tom tool which merges two sequences using
successive iterations of CAP3 [136] and NRCL tools
with a progressive reduction in the stringency param-
eters [137]. The final threshold included shared
≥ 94% identity with ≥ 100 bp overlap and overhangs
< 40 bp. The final set of transcripts were filtered to
remove those < 200 bp to satisfy NCBI Transcriptome
Shotgun Assembly (TSA) minimum requirements.
Completeness of the de novo D. v. virgifera reference

transcriptome was evaluated by ortholog identification
using the Core Eukaryotic Genes Mapping Approach
(CEGMA) [138]. Transcripts were mapped to 248 CEGs,
and the set of 1066 universal single copy orthologs from
Arthropoda obtained from OrthoDB v 9 [139] as identi-
fied using BUSCO v 3 [140] (E-value cutoff ≤ 0.05).
Assembled transcripts were annotated by comparing

to the SWISSPROT database, and to predicted protein
databases from gene models for insects (Tribolium cas-
taneum v3.0, Dendroctonus ponderosae, A. glabripennis,
Drosophila melanogaster r5.46), nematode (H. bacterio-
phora), fungus (M. anisopliae), and NCBI Wolbachia
protein sequences. In all cases the BLASTx algorithm
[141] was used for querying, and the results filtered for
those with an E-value ≤ 10− 7 and high-scoring segment
pairs (HSP) length ≥ 25 amino acids. Putative transcript
origin of H. bacteriophora, M. anisopliae, or Wolbachia
were predicted according to the lowest E-value obtained
from the set of database query results. Transcripts were
considered “full-length” if query match lengths covered
the entire sequence of the best-hit protein. Twenty miss-
ing amino acids were allowed in HSPs at both ends of
the subject if the query length was compatible with the
complete the sequence. Among the remaining D. v. vir-
gifera transcripts, a “near complete” bin was defined as
those with a best HSP that covered ≥ 80% of the subject
length. Putative peptide-coding region (CDS) and de-
rived protein sequences were predicted among all as-
sembled D. v. virgifera transcripts using FRAMEDP
[142]. Putative protein family domains were assigned by
searches of the PFAM A database v. 27.0 [143, 144]
using the program HMMSEARCH [145] with derived
D. v. virgifera proteins as the queries.

Estimates of quantitative differences in transcript
expression
Transcript abundances (gene expression levels) were es-
timated by comparing non-normalized read counts

among treatments (T1 to T8; Table 2), which relied on
an experimental design and analysis pipeline that
accounted for variance among replicates within and be-
tween treatment (Fig. 1 b). To accomplish this, trimmed
non-normalized read data from 3 replicates within treat-
ment (T1 to T8; Table 2; n = 24) were mapped separ-
ately to the de novo assembled D. v. virgifera reference
transcriptome (above) using the BOWTIE2 aligner
v2.1.0 [146] with parameters --all (report all alignments),
--end-to-end (entire read must align), and --sensible (0
mismatches allowed in a seed of 22 bp). Mapped reads
were filtered using “high stringency” parameters (PE and
SE reads were retained if mapped properly on only one
transcript. In the case of PE reads, both left and right
reads were required to map in opposite directions on
the same transcript at a distance compatible with the ex-
pected mean size of the fragment). The resulting output
files were parsed by an in-house script to count the
number of reads that mapped to each transcript.
Significant differences in aligned read counts (gene ex-

pression) were predicted for the comparisons of treat-
ment T7 (Cn maize) with treatments T3 (Ma), T6 (Hb),
T5 (Hx) or T8 (VT3) using the R packages DESeq2
v1.6.3 [147] and EdgeR v3.8.6 [148]. Other possible com-
parisons were not conducted. DESeq2 fit the dispersion
of read counts for each transcript to an empirical mean,
and performed independent filtering (default alpha = 0.1)
to remove transcripts with low read counts (baseMean),
which are subject to greater uncertainty and influence
the results of multiple testing. P-values were adjusted in
both packages for a false discovery rate (FDR) among
multiple comparisons using the Benjamini-Hochberg
(BH) method [149]. For each comparison with an FDR ≤
0.05 were considered significant for DESeq2 and EdgeR,
and the final set of differentially expressed genes was de-
fined as those with an FDR ≤ 0.05 using both statistical
methods.

Differential expression following Cry3Bb1 and Gpp34/
Tpp35Ab1exposure
Linux awk and uniq commands were used to compile a
dataset of transcripts differentially expressed in both
Cry3Bb1 and Gpp34/Tpp35Ab1 treatments compared to
controls (Cn). The same methods were used to identify
and filter transcripts that were differentially expressed in
entomopathogen Hb and/or Ma treatments compared to
controls, and that were also shared with those differen-
tially expressed in one or more of the treatments 1)
Cry3Bb1 vs Cn 2) Gpp34/Tpp35Ab1 vs Cn, and 3) both
Cry3Bb1 and Gpp34/Tpp35Ab1 vs Cn. This filtering ex-
cluded transcripts not specific to Bt toxin Cry responses.
Putative cellular component (CC), molecular function

(MF), and biological process (BP) categories were
assigned to differentially expressed transcripts using the
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PFAM domains to retrieve corresponding gene ontol-
ogies (GOs). This was accomplished using the dcGOR
1.0.6 package [150]. Subsequent enrichment analyses by
dcGOR 1.0.6 at GO level 2 applied significance thresh-
olds of E-values ≤ 1.0− 5 for CC and MF terms, and ≤
1.0− 6 for BP. Corresponding E-values and total number
of transcripts represented within each GO category at
level 2 were plotted for the comparisons 1) Cry3Bb1 vs
Cn, 2) Gpp34/Tpp35Ab1 vs Cn, and 3) both Cry3Bb1
and Gpp34/Tpp35Ab1 vs Cn. Differentially expressed
transcripts with ABC transporter PFAM domains were
assigned putative orthologs as described previously
[151]. Putative tetraspanin-like proteins translated from
differentially expressed transcripts DIAVI004770 and
DIAVI021979 were used as BLASTp queries to the
NCBI nr protein database and flybase [152]. This was
repeated for H. armigera TSPAN1.

Phylogenetics and structural annotations
Protein sequences of Drosophila melanogaster caspases
were downloaded from FlyBase [152] by gene name
search: DRONC, DRED, DAMM, STRICA, DECAY,
DCP-1, and DRICE, [153]. The 28,061 RefSeq proteins
derived from gene models in the annotated draft D. v.
virgifera genome assembly GCA_003013835.2 Dvir_v2
(NCBI GenBank Accession PXJM00000000.2) were
downloaded in fasta format, and loaded into a local
BLAST database. This database was queried with protein
sequences for D. melanogaster caspases using the
BLASTp algorithm [141] (E-value cutoffs ≤ 10− 20). An
analogous search was conducted against the 56,656 pro-
teins predicted from all assembled transcripts. A mul-
tiple protein sequence alignment was generated among
D. melanogaster and D. v. virgifera caspase catalytic do-
mains using the Clustal W algorithm [154] within the
MEGA8.0 alignment utility [155] (default parameters).
The LG +G + I model of protein sequence evolution
[77] maximized the BIC score when alignment gaps were
ignored, and was subsequently used to construct a ML-
based phylogeny with a consensus built from among
1000 bootstrap pseudo-replicates using MEGA8.0 [155].
Sequences from up-regulated transcripts encoding pu-

tative inhibitor of apoptosis proteins (IAPs; DIAV
I011972 and DIAVI007715), B-cell-lymphoma protein 2
(Bcl-2)-associated X (BAX) inhibitor (BI) proteins BI-1
(DIAVI026079) and Lifeguard 4-like (LFG4; DIAV
I029891), and stress-induced endoplasmic reticulum
protein 2 (SERP2) were used to query the local database
of 28,061 Dvir_v2 RefSeq proteins using the BLASTp
algorithm [140] (E-value cutoffs ≤ 10− 60). In addition to
PFAM and GO annotations (above), further structural
annotation and position of functional domains and resi-
dues were predicted by query of the conserved domain
database (CDD) [156] using default parameters. Multiple

protein sequence alignments were also generated for D.
v. virgifera IAP, and BI-1 and LFG4 proteins with ortho-
logs from D. melanogaster, and other coleopteran spe-
cies (Tribolium castaneum, Dendroctonus ponderosae, A.
glabripennis and Leptinotarsa decemlineata) using the
Clustal W algorithm. Classification of D. v. virgifera IAP
protein families were based on that defined for D. mela-
nogaster orthologs [109]. Prediction of transmembrane
region (TMR) for D. v. virgifera BI-1 and LFG4 applied a
Hidden Markov Model using the default parameters of
the application, TMHMM 2.0 [157].
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Bt: B. thuringiensis; BI-1: B-cell-lymphoma protein 2 (Bcl-2)-associated X (BAX)
inhibitor-1; Cry: crystalline protein; Gpp: AeGerolysin-like pesticidal protein;
LFG4: Lifeguard 4 ; SERP2: stress-associated ER protein 2; Tpp: toxin-10-like
pesticidal protein
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Additional file 1: Supplementary Table S1.. Trimmed reads obtained
from Illumina sequencing libraries.

Additional file 2: Supplementary Fig. S1. Putative orthology of
assembled transcripts in the Diabrotica virgifera virgifera reference
transcriptome. Results based on BLASTx hits to protein models from
Drosophila melanogaster (Dm), Tribolium castaneum (Tc), Dendroctonus
ponderosae (Dp), and Anaplophora glabripennis (Ag). Number of unique D.
v. virgifera derived proteins with shared evidence across all comparisons
(n = 12,474) and all coleopteran species (n = 3883) are highlighted. A total
of 34,684 assembled D. v. virgifera transcripts had ≥ 1 hit across all sets of
reference protein models.

Additional file 3: Supplementary Table S2. Number of trimmed
Illumina single-end (SE) and paired-end (PE) reads that aligned to the Dia-
brotica virgifera virgifera reference transcriptome across replicates of each
RNA-seq library. 1X = reads that aligned uniquely; > 1X = reads that
aligned to greater than once location.

Additional file 4: Supplementary Table S3. Transcripts with
significant differences in read counts (expression) between Diabrotica
virgifera virgifera larvae feeding on transgenic maize expressing the
insecticidal B. thuringiensis (Bt) Cry3Bb1 toxin (T8; Table 2) compared to
control non-Bt maize (T7). For each transcript, indication of differential ex-
pression also being shared when larvae were exposed to Heterorhabditis
bacteriophora (Hb) and Metarhizium anisopliae (Ma) is indicated with a “1”.
Standard output are shown for DESeq2 (baseMean = the average of the
normalized counts taken over all samples; log2FoldChange = log2 fold
change between the groups; lfcSE = standard error of the log2Fold-
Change; stat = Wald statistic; pvalue = Wald test P-value; BH_padj = Benja-
mini-Hochberg adjusted p-value) and EdgeR (logFC = log2 fold change
between the groups; logCPM = the average log2-counts-per-million; PVa-
lue = the two-sided P-value; BF_FDR = Bonferroni adjusted P-value). Lack
of significance for any given transcript in DESeq2 or EdgeR results shown
as “-”. The 1055 transcripts differentially expressed in both DESeq2 and
EdgeR estimates are shown above the horizonal line. Transcript annota-
tions include presence (Y) or absence (N) of signal_peptide probability
(signalp_prob) threshold of > 0.700 shown only for “complete” proteins
(match length = 1.0 to Drosophila melanogaster (Dm) or Trobiolium casta-
neum (Tc) protein models). PFAMSCAN_PfamA search results (format tran-
script query start, transcript query end: frame, strand (+ or -), range of hit
to PFAM domain/PFAM domain name/ E-value/percent identity). Pre-
dicted protein information given (transcript start: transcript end: frame:
strand (+ or -): amino acid sequence). BLASTx query results to indicated
databases shown in standard output format with “/” indicating no values
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for queries receiving of hits. The 9 transcripts in blue italicized text are
putatively derived from Hb or Ma.

Additional file 5: Supplementary Table S4. Transcripts with
significant differences in read counts (expression) between Diabrotica
virgifera virgifera larvae feeding on transgenic maize expressing the
insecticidal B. thuringiensis (Bt) Gpp34/Tpp35Ab1 toxin (T5; Table 2)
compared to control non-Bt maize (T7). For each transcript, indication of
differential expression also being shared when larvae were exposed to
Heterorhabditis bacteriophora (Hb) and Metarhizium anisopliae (MA) is indi-
cated with a “1”. Standard output are shown for DESeq2 (baseMean = the
average of the normalized counts taken over all samples; log2Fold-
Change = log2 fold change between the groups; lfcSE = standard error of
the log2FoldChange; stat = Wald statistic; pvalue = Wald test P-value;
BH_padj = Benjamini-Hochberg adjusted P-value) and EdgeR (logFC =
log2 fold change between the groups; logCPM = the average log2-
counts-per-million; PValue = the two-sided P-value; BF_FDR = Bonferroni
adjusted P-value). Lack of significance for any given transcript in DESeq2
or EdgeR results shown as “-”. The 1374 transcripts differentially expressed
in both DESeq2 and EdgeR estimates are shown above the horizonal line.
Transcript annotations include presence (Y) or absence (N) of signal_pep-
tide probability (signalp_prob) threshold of > 0.700 shown only for
“complete” proteins (match length = 1.0 to Drosophila melanogaster (Dm)
or Trobiolium castaneum (Tc) protein models). PFAMSCAN_PfamA search
results (format transcript query start, transcript query end: frame, strand
(+ or -), range of hit to PFAM domain/PFAM domain name/ E-value/per-
cent identity). Predicted protein information given (transcript start: tran-
script end: frame: strand (+ or -): amino acid sequence). BLASTx query
results to indicated databases shown in standard output format with “/”
indicating no values for queries receiving of hits. The 13 transcripts in
blue italicized text are putatively derived from Hb or Ma.

Additional file 6: Supplementary Table S5. Transcripts with
significant differences in read counts (expression) between Diabrotica
virgifera virgifera larvae infected with Heterorhabditis bacteriophora (Hb)
(T6; Table 2) compared to control non-Bt maize (T7). For each transcript,
standard output are shown for DESeq2 (baseMean = the average of the
normalized counts taken over all samples; log2FoldChange = log2 fold
change between the groups; lfcSE = standard error of the log2Fold-
Change; stat = Wald statistic; pvalue = Wald test P-value; BH_padj = Benja-
mini-Hochberg adjusted P-value) and EdgeR (logFC = log2 fold change
between the groups; logCPM = the average log2-counts-per-million; PVa-
lue = the two-sided P-value; BF_FDR = Bonferroni adjusted P-value). Lack
of significance for any given transcript in DESeq2 or EdgeR results shown
as “-”. The 1562 transcripts differentially expressed in both DESeq2 and
EdgeR estimates are shown above the horizonal line. Transcript annota-
tions include presence (Y) or absence (N) of signal_peptide probability
(signalp_prob) threshold of > 0.700 shown only for “complete” proteins
(match length = 1.0 to Drosophila melanogaster (Dm) or Trobiolium casta-
neum (Tc) protein models). PFAMSCAN_PfamA search results (format tran-
script query start, transcript query end: frame, strand (+ or -), range of hit
to PFAM domain/PFAM domain name/ E-value/percent identity). Pre-
dicted protein information given (transcript start: transcript end: frame:
strand (+ or -): amino acid sequence). BLASTx query results to indicated
databases shown in standard output format with “/” indicating no values
for queries receiving of hits.

Additional file 7: Supplementary Table S6. Transcripts with
significant differences in read counts (expression) between Diabrotica
virgifera virgifera larvae infected with Metarhizium anisopliae (Ma) (T3;
Table 2) compared to control non-Bt maize (T7). For each transcript,
standard output are shown for DESeq2 (baseMean = the average of the
normalized counts taken over all samples; log2FoldChange = log2 fold
change between the groups; lfcSE = standard error of the log2Fold-
Change; stat = Wald statistic; pvalue = Wald test P-value; BH_padj = Benja-
mini-Hochberg adjusted P-value) and EdgeR (logFC = log2 fold change
between the groups; logCPM = the average log2-counts-per-million; PVa-
lue = the two-sided P-value; BF_FDR = Bonferroni adjusted P-value). Lack
of significance for any given transcript in DESeq2 or EdgeR results shown
as “-”. The 1199 transcripts differentially expressed in both DESeq2 and
EdgeR estimates are shown above the horizonal line. Transcript annota-
tions include presence (Y) or absence (N) of signal_peptide probability

(signalp_prob) threshold of > 0.700 shown only for “complete” proteins
(match length = 1.0 to Drosophila melanogaster (Dm) or Trobiolium casta-
neum (Tc) protein models). PFAMSCAN_PfamA search results (format tran-
script query start, transcript query end: frame, strand (+ or -), range of hit
to PFAM domain/PFAM domain name/ E-value/percent identity). Pre-
dicted protein information given (transcript start: transcript end: frame:
strand (+ or -): amino acid sequence). BLASTx query results to indicated
databases shown in standard output format with “/” indicating no values
for queries receiving of hits.

Additional file 8: Supplementary Fig. S2. Dispersion of raw and
DESeq2 adjusted read counts about empirical mean for comparisons of
triplicate RNA-seq data within A) control maize (Cn; Treatment T7) and
Cry3Bb1 maize (VT3; T8), and C) control maize (Cn; T7) and Gpp34/
Tpp35Ab1 maize (Hx; T5). MA-plots of Log2 transformed fold-change esti-
mates and normalized mean read count are shown for B) control maize
(Cn; Treatment T7) and Cry3Bb1 maize (VT3; T8), and D) control maize
(Cn; T7) and Gpp34/Tpp35Ab1 maize (Hx; T5), with datapoints (change in
transcript read counts) surpassing a Benjamini and Hochberg (1995) ad-
justed false discovery rate (FDR) of ≤0.05 shown in red.

Additional file 9: Supplementary Table S7. Predicted functional
PFAM domains encoded by transcripts differentially expressed by
Diabrioca virgifera virgifera exposed to Heterorhabditis bacteriophora
compared to controls. Counts provided for instances when ≥3 transcripts
received an annotation within at least one of the treatments. InterPro
identification (InterPro_ID) are also given, with NA indicating
corresponding InterPro_ID not available.

Additional file 10: Supplementary Table S8. Predicted functional
PFAM domains encoded by transcripts differentially expressed by
Diabrioca virgifera virgifera exposed to Metarhizium anisopliae compared
to controls. Counts provided for instances when ≥3 transcripts received
an annotation within at least one of the treatments. InterPro
identification (InterPro_ID) are also given, with NA indicating
corresponding InterPro_ID not available.

Additional file 11: Supplementary Fig. S3. Gene Ontology (GO)
terms enriched among transcripts differentially expressed in
Heterorhabditis bacteriophora (Hb) and Metarhizium anisopliae (Ma)
treatments that were shared with treatments A) Cry3Bb1 and B) Gpp34/
Tpp35Ab1. Significantly overrepresented GO terms are shown within
categories biological process (BP) and cellular component (CC) (FDR ≤
1.0E− 5) and molecular function (MF) at level 2 (FDR ≤ 1.0E− 7; grey bars).
Categories listed by GO ID and GO term. Number of transcripts encoding
each PFAM domain within each functional category are indicated (black
bars).

Additional file 12: Supplementary Table S9. Transcripts with
significant differences in read counts (expression) between Diabrotica
virgifera virgifera larvae feeding on transgenic maize expressing the
insecticidal B. thuringiensis (Bt) Cry3Bb1 toxin (T8; Table 2) and Gpp34/
Tpp35Ab1 (T5) compared to control non-Bt maize (T7). For each tran-
script, indication of differential expression also predicted when larvae
were exposed to Heterorhabditis bacteriophora (Hb) and Metarhizium ani-
sopliae (Ma) is indicated with a “1”. Standard output are shown for
DeSeq2 (baseMean = the average of the normalized counts taken over all
samples; log2FC = log2 fold change between the groups; lfcSE = standard
error of the log2FoldChange; stat = Wald statistic; pvalue =Wald test P-
value; BH_padj = Benjamini-Hochberg adjusted P-value) and EdgeR
(logFC = log2 fold change between the groups; logCPM = the average
log2-counts-per-million; PValue = the two-sided P-value; BF_FDR = Bonfer-
roni adjusted P-value). Lack of significance for any given transcript in
DESeq2 or EdgeR results shown as “-”. Mean log2FC among DESeq2 and
EdgeR estimates are provided for each transcript. Transcript annotations
include presence (Y) or absence (N) of signal_peptide probability (sig-
nalp_prob) threshold of > 0.700 shown only for “complete” proteins
(match length = 1.0 to Drosophila melanogaster (Dm) or Trobiolium casta-
neum (Tc) protein models). PFAMSCAN_PfamA search results (format tran-
script query start, transcript query end: frame, strand (+ or -), range of hit
to PFAM domain/PFAM domain name/ E-value/percent identity). Pre-
dicted protein information given (transcript start: transcript end: frame:
strand (+ or -): amino acid sequence). BLASTx query results to indicated
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databases shown in standard output format with “/” indicating no values
for queries receiving of hits.

Additional file 13: Supplementary Fig. S4. Alignment of partial
enzymatic domain sequences from Drosophila melanogaster caspases
DRONC, DRED, DAMM, STRICA, DCP-1, and DRICE (accessions in foot-
notes) with putative Diabrotica virgifera virgifera orthologs from the refer-
ence transcriptome assembly (DIAVI02NNNN) in this study and RefSeq
gene models (XP_0281NNNNN) from the D. v. virgifera genome assembly
Dvir_v2.0 (GCA_003013835.2; GenBank accession PXJM00000000.2). Con-
served residues are highlighted grey, with those involved in binding and
catalysis in black and yellow, respectively.

Additional file 14: Supplementary Fig. S5. Structural annotation of
inhibitor of apoptosis proteins (IAPs) encoded by transcripts differentially
expressed following Diabrotica virgifera virgifera exposure to Cry3Bb1 or
Gpp34/Tpp35Ab1. Annotations based on structure defined by Hay et al.
(2000).

Additional file 15: Supplementary Fig. S6. Multiple protein sequence
alignment for B-cell-lymphoma protein 2 (Bcl-2)-associated X (BAX) inhibi-
tor (BI) proteins (BI) and Lifeguard 4-like (LFG4) orthologs.

Additional file 16: Supplementary Fig. S7. Orthology of stress-
induced endoplasmic reticulum protein 2 (SERP2) encoded by the differ-
entially expressed transcript DIAVI057195 in Diabrotica virgifera virgifera
larvae exposed to Cry3Bb1 and Gpp34/Tpp35Ab1.
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