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Abstract

Background: The accurate interpretation of RNA-Seq data presents a moving target as scientists continue to
introduce new experimental techniques and analysis algorithms. Simulated datasets are an invaluable tool to
accurately assess the performance of RNA-Seq analysis methods. However, existing RNA-Seq simulators focus on
modeling the technical biases and artifacts of sequencing, rather than on simulating the original RNA samples. A
first step in simulating RNA-Seq is to simulate RNA.

Results: To fill this need, we developed the Configurable And Modular Program Allowing RNA Expression Emulation
(CAMPAREE), a simulator using empirical data to simulate diploid RNA samples at the level of individual molecules.
We demonstrated CAMPAREE’s use for generating idealized coverage plots from real data, and for adding the ability to
generate allele-specific data to existing RNA-Seq simulators that do not natively support this feature.

Conclusions: Separating input sample modeling from library preparation/sequencing offers added flexibility for both
users and developers to mix-and-match different sample and sequencing simulators to suit their specific needs.
Furthermore, the ability to maintain sample and sequencing simulators independently provides greater agility to
incorporate new biological findings about transcriptomics and new developments in sequencing technologies.
Additionally, by simulating at the level of individual molecules, CAMPAREE has the potential to model molecules
transcribed from the same genes as a heterogeneous population of transcripts with different states of degradation and
processing (splicing, editing, etc.). CAMPAREE was developed in Python, is open source, and freely available at https://
github.com/itmat/CAMPAREE.

Keywords: Simulation, Benchmarking, RNA-Seq

Background
High-throughput sequencing of RNA (RNA-Seq) has
quickly become the standard method for assaying the
population of transcripts in a given tissue or cell. As this
technology continues to mature and evolve, many

researchers have developed software tools to analyze se-
quencing data accurately and efficiently. Large-scale
benchmarking studies to assess the relative performance
of these programs across various stages in the RNA-Seq
analysis pipeline help researchers navigate this fluid
landscape of analysis tools [1–5]. While we would ideally
perform benchmarking studies on real datasets where
we know the true abundance of each transcript, it is not
possible with current technologies to characterize the
full transcriptome of any real sample with sufficient ac-
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curacy to achieve all critical goals of the benchmarking
community. For this reason, simulated data provide an
invaluable tool for the benchmarker’s arsenal.
Despite the strong demand for simulated data, there

are only a few RNA-Seq simulators which generate data
at the read-level. These include the FLUX simulator [6],
BEERS [7], RSEM [8], and Polyester [9]. The FLUX
simulator models some of the biases introduced during
RNA-Seq library preparation but does not model poly-
morphisms such as indels and substitutions. BEERS sim-
ulates variants, errors, variable intron signal, and non-
uniform sequence coverage, and despite being originally
designed to benchmark aligners has since been adapted
for use with transcript reconstruction and alternative
splicing analyses [10, 11]. The simulator included with
RSEM develops an empirical model of gene expression
by quantifying real RNA-Seq datasets and using the ex-
pression parameters as the basis for simulation. Polyes-
ter, in addition to simulating coverage biases present in
real data, is designed to generate full experiments with
multiple biological replicates. It has also been adapted to
include a model of GC-bias in coverage and for use with
single-cell RNA-Seq data [12, 13]. While these simula-
tors have been used in various benchmarking studies to
great effect, they are primarily focused on capturing the
biases introduced during RNA-Seq library preparation
and sequencing. To date there has been little focus
placed on realistic simulation of an RNA sample; the mi-
lieu of RNA molecules, often transcribed from a diploid
genome, that serves as input for the molecular biology
of library preparation and sequencing.
There are several advantages a molecule-level simula-

tion of input RNA samples has over traditional genera-
tive models that are integrated directly into RNA-Seq
simulators. First, it provides a more natural parallel to
real RNA-Seq experiments, where purified RNA serves
as input for the various molecular biology steps required
to prepare and sequence the sample. Second, working at
the level of individual molecules, rather than gene
models, allows us to simulate the heterogeneous popula-
tions of RNA we expect to see in real samples. These in-
clude molecules produced from the same gene that are
in different states of transcription, editing, splicing, and
degradation [14–17]. Additionally, many RNA samples
are collections of transcripts from heterogeneous sources
like multiple cancer cell populations, unstable viral ge-
nomes, or contamination from microorganisms [18–21].
As we develop a greater appreciation for the clinical sig-
nificance of these biological processes and develop new
methods to search for them, it is critical that we also
have simulated data that reflect these phenomena. Third,
we gain greater fidelity in our ability to diagnose where
and how analysis algorithms yield inaccurate results. If a
particular set of reads fails to align, or incorrectly drives

normalization and differential expression, we can trace
the paths these reads took through the RNA-Seq proto-
col back to their precursor molecules and intermediates
to look for common features. On the whole, molecule-
level simulations will give us much tighter control over
the parameters we use to develop and test analysis soft-
ware and are likely to yield more realistic data.
Here we present the Configurable And Modular Pro-

gram Allowing RNA Expression Emulation (CAM-
PAREE), a simulator designed to generate realistic RNA
samples at the molecular level from diploid genomes.
CAMPAREE works by calculating empirical distributions
for gene, isoform, intronic, and allelic expression from
real data, and producing a collection of full-length tran-
scripts. These distributions are based on a given tran-
script annotation that must have both gene- and
isoform-level information. The output of CAMPAREE is
intended primarily to prime other RNA-Seq simulators,
which will then model the biases introduced by library
preparation and sequencing. Additionally, the model
underlying this simulation makes CAMPAREE output
useful for creating idealized representations of coverage
plots, separating out signals across different isoforms
and alleles. CAMPAREE is an open source program
written in Python3 and freely available at https://github.
com/itmat/CAMPAREE. Since CAMPAREE bases its
gene expression on given annotations, it can simulate
any form of RNA (short, long, etc.) that is reflected in
the input annotation.

Implementation
CAMPAREE configuration and input
The CAMPAREE pipeline uses a configuration file to
give users detailed control over the inputs, outputs, and
execution of the simulation. This includes two important
options: the ability to specify the job scheduler if run-
ning in a cluster environment, and a seed value for ran-
dom number generation. CAMPAREE currently
supports Load Sharing Facility (LSF) and Sun Grid En-
gine (SGE) cluster environments, as well as serial execu-
tion on a single machine. The seed value is critical for
reproducibility, as two CAMPAREE runs initiated with
the same seed value and input files will yield identical
results (even if they are run serially or using a different
job scheduler). If a user does not specify a seed value
when running the pipeline, CAMPAREE will report a
seed value that can be used to duplicate its results. We
recommend that users include these seed values when
reporting any CAMPAREE results.
In order to run successfully, CAMPAREE requires an

organism’s genome sequence in FASTA format, a gene/
transcript annotation in GTF format, and a file indicat-
ing the ploidy of chromosomes for each gender of the
organism (if the user wants to generate diploid data).
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Using these files, CAMPAREE will generate a genome
index with STAR v2.5.2a [22], although the user can
provide a pre-built index as long as it is compatible with
the same version of STAR. For individual simulation
runs, CAMPAREE accepts a pair of files per simulated
sample containing raw, unnormalized and unaligned
paired-end RNA-Seq reads in FASTQ or FASTA format.
Typically, these will consist of a related set of samples
(e.g. two sets of samples from different experimental
conditions). The current version of CAMPAREE re-
quires raw input data (FASTQ, and optional BAM files)
from paired-end, strand-specific sequencing experi-
ments. Also, in order to simulate diploid data, CAM-
PAREE currently requires that each input sample is
generated from a single, individual organism rather than
a pool. CAMPAREE begins by using STAR to align these
FASTQ files to the reference genome index. Users may
also provide their own genome-aligned BAM files to skip
this step, as long as the alignments in the BAM file are
sorted in chromosome coordinate order. See Additional
file 1 for a table listing the inputs and outputs for each
step in the CAMPAREE pipeline.

Variant finding and phasing
In order to simulate diploid genomes for each of the in-
put samples, CAMPAREE identifies genetic variants rep-
resented in the input data. The variant finder step takes
the indexed BAM file generated by the genome align-
ment step and parses all the alignments to identify loci
that differ from the reference by single-nucleotide vari-
ants (SNVs), insertions, or deletions. For variant calling,
reads are discarded if they map to multiple locations in
the reference. Additionally, if multiple reads have identi-
cal alignments, they are treated like PCR duplicates and
collapsed down to a single alignment for counting pur-
poses. Insertions and deletions in a given alignment are
identified from ‘I’ and ‘D’ entries in the CIGAR string,
respectively. SNVs are identified as single bases that dif-
fer from the reference base. For a variant to be retained,
it must be represented in at least 3 % of the distinct,
uniquely-aligned reads overlapping the locus. Lastly, no
variant is retained if it is present in only a single align-
ment. Once CAMPAREE compiles the list of variants for
each sample, it uses BEAGLE v5.0 [23] to perform
haplotype phasing (i.e. determine which variants are on
the same parental chromosome together). Note that
BEAGLE requires at least two samples to perform this
phasing operation, so users that wish to simulate data
from diploid genomes must provide at least two input
samples, or their own phased VCF file.

Generating parental genomes and transcript annotations
Through the combination of variant finding and phasing,
CAMPAREE generates two lists of variants for each

sample that correspond to the two parental copies of
each autosome. For each sample, the pipeline applies
these variants to the reference sequence to create two
full parental genome sequences. Insertions and deletions
that are introduced into the parental genomes will
change the number of nucleotides and shift the chromo-
somal coordinate systems relative to the reference gen-
ome. To account for these changes, CAMPAREE adjusts
the coordinates in the input gene annotations to account
for insertions and deletions, which creates separate ref-
erence annotations for each parent.

Estimating intron, gene, transcript PSI, and allelic
distributions
To ultimately determine the composition of simulated
molecules in the final output, CAMPAREE estimates
several empirical distributions from each sample. The
pipeline determines the intronic distribution by first
identifying all regions that are exclusively intronic (min-
trons; intronic regions with no overlapping exonic re-
gions from other genes or isoforms from the same
strand). Next, for each mintron, CAMPAREE counts the
number of uniquely-aligned reads/fragments from the
genome-aligned data that overlap each mintron and nor-
malizes these counts by mintron length in kilobases.
This procedure is repeated for the antisense signal in
each mintron, as well as the intergenic regions between
genes. See Additional file 2 for a flowchart depicting this
procedure. For the gene abundance and transcript per-
cent splicing included (PSI) distributions (Additional file
3), CAMPAREE uses kallisto v0.45.0 [24] to map the raw
input reads to the first parental transcriptome. Since
allele-specific quantification is handled in a separate step
and the two parental genomes are relatively similar, the
pseudo-alignment results from the first parental tran-
scriptome are sufficient to determine the transcript dis-
tribution. The kallisto results yield transcript-level
estimated read counts (‘est_counts’ column in kallisto
output), which CAMPAREE normalizes by the effective
length of each transcript (‘eff_length’ column in kallisto
output). Next, CAMPAREE uses these length-
normalized transcript-level read counts to generate the
gene-level distribution by summing the read counts
across all transcripts associated with a given gene. This
is a common approach for getting gene-level data from
pseudo-aligners, which previous work has shown is more
accurate than calculating gene-level read counts directly
from genome-aligned reads [25]. For the transcript PSI
distribution, CAMPAREE again identifies which tran-
scripts are associated with a given gene and then divides
each transcript-level read count by the gene-level read
counts. The PSI values for the transcripts associated
with a given gene will sum to one and represent the rela-
tive abundances of each isoform. Lastly, to generate the
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gene-level allelic distribution (Additional file 4), CAM-
PAREE uses Bowtie2 v2.3.4.3 [26] to align the raw input
reads to each of the parental transcriptomes. For each
read in the input, the pipeline compares the alignments
to both parental transcriptomes and increments a gene-
level read count for each parent depending upon the
alignment results. If the read aligns to only one of the
parental transcriptomes, the read count for the corre-
sponding parental allele is incremented by one. If the
read aligns to both parental transcriptomes, the read
count for the parental allele with the smallest alignment
edit distance is incremented. If the read aligns equally
well to both parental transcriptomes, the read counts for
both parental alleles are incremented by 0.5. After pars-
ing the read alignments, CAMPAREE calculates the al-
lelic imbalance for each gene and parental allele as the
fraction of read counts for that allele over the total read
count for both parental alleles. These two fractions for a
given gene will sum to one and represent the relative
abundances of transcripts originating from either paren-
tal allele. Once again, users may provide their own dis-
tributions instead of estimating them from the input
data.

Generating simulated molecules
For the final stage in the pipeline, CAMPAREE uses
these empirical distributions together in a hierarchy to
generate the molecules in the simulated sample. The
pipeline repeats the following process until it generates
the desired number of simulated molecules: 1) Ran-
domly select a gene from the gene distribution. 2) Ran-
domly select a parental allele from the allelic
distribution for this gene. 3) Randomly select an isoform
for this gene from the transcript PSI distribution. 4)
Randomly determine whether to generate an unspliced
version of the transcript (i.e. pre-mRNA containing all
introns) by calculating the likelihood of pre-mRNA as
the ratio of intronic read counts per base (from the in-
tron distribution) to the gene-level read counts per base.
By using average read counts per base, this accounts for
differences in length between a gene’s introns and exons.
5) Having selected which transcript to generate, retrieve
the full nucleotide sequence for the transcript and gen-
erate CIGAR strings mapping the transcripts back to the
appropriate parental genome and the original reference
genome. 6) Add a polyA tail to the 3 end of the se-
quence and corresponding entries for soft-clipped bases
(denoted by ‘S’) to the appropriate ends of each CIGAR
string. Lastly, CAMPAREE saves this list of simulated
molecules in either FASTA format, listing the full se-
quence and identifier for each molecule, or in a tab-
delimited “molecule file” that lists the molecule sequence
along with other metadata, including the reference and
parental CIGAR strings.

Datasets used in this manuscript and packaged with
CAMPAREE
All CAMPAREE data presented in this manuscript were
primed with two real mouse liver RNA-Seq samples,
9576 and 9577, from a previous study [27]. The FASTQ
files for these samples are available from the Gene Ex-
pression Omnibus (9576 – GSM2599715; 9577 –
GSM2599721). CAMPAREE was run with default pa-
rameters (seed value = 100) in an LSF environment using
the genome sequence from the Ensembl GRCm38 build
of the mouse genome and gene/transcript models from
the Ensembl release 102 annotation [28].
For testing and diagnostic purposes, CAMPAREE is

packaged with a reduced genome sequence and annota-
tion collectively called the “baby genome.” The baby
genome sequence is a subset of the Ensembl GRCm38
build of the mouse genome covering the following
chromosome spans: chr1:57,943,156–58,943,156, chr2:
26,644,480–27,644,480, chr3:88,196,078–89,196,078,
chrM:1-16299, chrX:73,654,661–74,654,661, and chrY:
663,558–1,744,052. Similarly, the baby genome annota-
tion is a subset of gene/transcript models from the En-
semble release 93 [29] annotation that come from the
same coordinate spans as the baby genome sequence.
CAMPAREE also includes two test samples that are sub-
sets of the full 9576 and 9577 samples described above.
Reads were sampled from the original FASTQ files such
that ~ 82 % of the read will map to the baby genome and
the remaining ~ 18 % will not.

Generating simulated data with BEERS, Polyester, and
RSEM from CAMPAREE output
CAMPAREE was run on the full 9576 and 9577 samples
as described above. The molecule file generated from
sample 9576 was prepared for use by BEERS [7], Polyes-
ter [9], and RSEM [8] by the molecule_file_to_fasta_
and_count_table.py script, packaged with CAMPAREE.
This script accepts a molecule file as input and generates
a FASTA file of unique transcript sequences contained
in the molecule file, and a count matrix listing the num-
ber of occurrences for each sequence. This script was
run with the ‘-s’ and ‘-t’ command line parameters to
generate separate output files for each parental genome
and to trim polyA tails from the transcript sequences
and CIGAR strings, respectively.
To simulate reads with BEERS, separate sets of config

files were generated from each of the parental genomes
and annotations created by CAMPAREE. Briefly, the
geneinfo, genenseq, and intronseq config files were cre-
ated from the parental genome FASTA and the annota-
tion using the standard set of scripts included with
BEERS. The featurequantification config file was created
from the matrix of sequence counts using the standard
scripts included with BEERS. Next, BEERS was run
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separately for each parental genome using the two sets
of config files. These reads were generated without any
indels, errors, or intron retention, using the following
command-line parameters: -strandspecific -error 0 -sub-
freq 0 -indelfreq 0 -intronfreq 0 -palt 0.
To simulate reads with Polyester v1.26.0, the simulate_

experiment_countmat(seed = 100, strand_specific =
TRUE) command was run in R v4.0.3. This command
was given the FASTA file of transcript sequences and
the matrix of counts, generating simulated reads from
both parental alleles in a single run. Polyester was run
using its default sequencing error model, so its simulated
reads contain errors and indels, while the BEERS reads
do not.
To simulate reads with RSEM v1.3.3, the FASTA file

of transcript sequences was used to create an RSEM
transcriptome index, where each transcript from each al-
lele was treated as a separate gene. The rsem-prepare-
reference command was run with the --bowtie2 and
--bowtie2-path options, the latter of which pointed to
the bowtie2 binary packaged with CAMPAREE. In order
to simulate reads, RSEM requires a ‘sample_name.model’
file which defines empirical models for RNA-Seq read
length, fragment length, sequencing errors, and quality
scores. To generate this model file, the rsem-calculate-
expression command was used to quantify the input
FASTQ files (sample 9576) with the RSEM transcrip-
tome index prepared above. The command was run with
the following options: --paired-end --strandedness re-
verse --bowtie2 --bowtie2-path, the last of which pointed
to the bowtie2 binary packaged with CAMPAREE. The
count matrix and parental genome annotations pro-
duced by CAMPAREE were used to prepare an rsem
genes.results file, where the expression of transcripts
from each allele was represented in units of TPM (Tran-
scripts per million). Lastly, simulated RNA-Seq reads
were generated by running the rsem-simulate-reads
command with the transcriptome annotation, model file,
and genes.results file prepared above. The simulation
command was run with the theta parameter set to 0,
and with the ‘--seed 42’ parameter, for reproducibility.
These simulated reads also contained sequencing errors
and indels, as RSEM used a model file prepared from
real data.
The FASTA/FASTQ files of simulated reads produced

by all simulators were aligned to the Ensembl GRCm38
build of the mouse genome using STAR v2.5.2a. Cover-
age plots (in bedgraph format) were built from the
resulting SAM files using the sam2cov tool v0.0.5.4-beta,
available at https://github.com/khayer/sam2cov. STAR
was run with the “--outSAMunmapped Within Keep-
Pairs”, which is required by the sam2cov tool. Coverage
plots for CAMPAREE output were generated by CAM-
PAREE itself, using the molecules_to_cov.py script in

the BEERS_UTILS package (one of CAMPAREE’s re-
quirements). Bedgraph files were visualized in the UCSC
genome browser [30] and the STAR alignments were vi-
sualized directly in the IGV v2.5.2 [31].

Results and discussion
The CAMPAREE workflow
The CAMPAREE pipeline (Fig. 1) is based on estimating
genetic variants and empirical distributions for gene, tran-
script, intron, and allele-specific expression from real
RNA-Seq data (see Implementation section for full de-
tails). For this reason, CAMPAREE accepts raw FASTQ
files from real RNA-Seq samples as input. Briefly, CAM-
PAREE begins by using STAR [22] to align raw reads from
each sample to the appropriate reference genome, and
then identifying the variants contained in those align-
ments that differ from the reference. These genome align-
ments also provide estimates for intron-level expression.
Note that while CAMPAREE is configured by default to
estimate variants and distributions directly from the raw
FASTQ data, users may fully specify these distributions
themselves, using their preferred tools for variant calling
or some distributions of interest. After filtering the vari-
ants for likely sequencing errors, CAMPAREE combines
the variants across samples and uses BEAGLE [23] to infer
haplotype phasing. The pipeline uses the phasing informa-
tion, along with the given reference sequence and annota-
tion, to generate two parental genomes and
transcriptomes for each sample. Next, for each input sam-
ple the pipeline realigns the raw FASTQ reads to both
parental transcriptomes using kallisto [24] and Bowtie2
[26]. The kallisto data are used to estimate both the gene-
level expression distribution, as well as the relative abun-
dance of each isoform for a given gene. While kallisto can
rapidly assign reads to their appropriate transcripts, it is a
pseudo-aligner and therefore does not return complete,
nucleotide-level alignments. Since most differences be-
tween the two parental transcriptomes are sequence-level
features like single-nucleotide variants (SNVs) and indels,
CAMPAREE uses the Bowtie2 alignments to assess which
of the two parental alleles each read is most likely to ori-
ginate from. Lastly, the pipeline simulates full-length RNA
molecules according to the empirically-derived distribu-
tions (see Additional file 5 for the distributions estimated
from two real samples). Given the total number of mole-
cules to generate, as specified by the user, CAMPAREE
uses the gene- and transcript-level distributions to deter-
mine the relative ratios of each RNA molecule, the allelic
distribution to determine which parental genome each
molecule originates from, and the intron distribution to
determine what proportion of unspliced RNA molecules
to generate. Each molecule generated by CAMPAREE lists
its full sequence (including polyA tail, if added), transcript
ID, parent of origin, chromosome, reference genome start
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coordinate, and parental genome start coordinate, as well
as CIGAR strings mapping the molecule back to both the
parental genome and the original reference genome.
These two CIGAR strings are intended to facilitate the
rapid mapping of molecules back to their source locations
(common practice when assessing read/sequence align-
ment). CAMPAREE is capable of outputting each simu-
lated RNA sample in a ‘molecule_file’ format, intended for
use with future molecule-based RNA-Seq simulators, or in
FASTA format, allowing for use with current RNA-Seq
toolsets and simulators.

Idealized coverage
RNA-Seq coverage plots are one of the most ubiquitous
methods for visualizing the results of an RNA-Seq ex-
periment. These coverage plots, often viewed with the
UCSC genome browser [30] or IGV [31], display

characteristic non-uniform patterns of peaks and valleys
over the length of a gene [12, 32]. Furthermore, the
expressed regions displayed in a coverage plot only rep-
resent the ends of the underlying RNA fragments. Since
typical RNA-Seq experiments are only reading the ter-
minal 100–150 bp of fragments that are often more than
twice this length, coverage plots for a paired-end experi-
ment often have dead spaces in coverage between the
forward and reverse reads. Technical artifacts, like these,
combine to obscure the true expression patterns, making
it difficult to discern which transcript regions are
expressed. This is particularly true for loci that contain
multiple, overlapping transcripts because the coverage
represents a combination of the individual isoforms/al-
leles. CAMPAREE provides a solution to this problem.
Since CAMPAREE estimates its abundance parameters
from real data, the simulated molecules it generates have

Fig. 1 Flow chart of the CAMPAREE pipeline. Diagram of flow through the CAMPAREE pipeline from FASTQ file input (top) to molecule file or
FASTA output (bottom). Names for each step listed on the left side. File types for intermediates between each of the steps listed on the
right side
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the side effect of providing an idealized view of RNA-
Seq coverage. In other words, a user starts with an
RNA-Seq FASTQ file and ends up with a clean repre-
sentation of the signal meted out to individual isoforms
and alleles. With this information, users can represent
the data with idealized coverage plots that display only
full-length isoforms and perfect signal, separated by iso-
form and allele (Fig. 2). To facilitate this feature and to
provide another means of examining simulated data for
benchmarking studies, CAMPAREE includes utilities to
generate coverage plots from its output molecules.

Enhancing existing RNA-Seq simulators
The goal behind the CAMPAREE simulator is to pro-
vide a realistic collection of simulated RNA molecules
that represent the starting material for creating an
RNA-Seq library. To demonstrate the utility of this
approach, we used output from the CAMPAREE
simulator to prime three existing simulators, BEERS
[7], Polyester [9], and RSEM [8], to generate diploid
simulated data. Neither BEERS nor Polyester simulate
diploid data natively. While RSEM can be configured
to simulate allele-specific RNA-Seq data, it requires
an existing set of allele-specific transcript sequences
as input and does not infer this information itself. To
support RNA-Seq simulators which are not designed
to take single-molecule input, CAMPAREE can output
a FASTA file containing all the unique transcript se-
quences in a simulated sample, along with a count
table listing the number of copies for each sequence.
Polyester accepts both of these files directly as input
for generating simulated RNA-Seq reads. For BEERS,
we used the parental genomes and annotations gener-
ated by CAMPAREE, in combination with the tran-
script count table to prime the simulator. To prepare
RSEM simulations, we used the parental annotations

generated by CAMPAREE, along with the transcript
count table and transcriptome FASTA. To simulate
RNA-Seq data, RSEM also requires a model file which
defines models for sequencing errors, quality scores,
read lengths, and RNA fragment lengths estimated
from real data. We generated this file by using RSEM
to quantify the original FASTQ files used to run
CAMPAREE, against the transcriptome containing se-
quences from both parental alleles. The transcript se-
quences output by CAMPAREE track the parental
genome from which they originated. As a result, even
though neither BEERS nor Polyester were originally
designed to support allele-specific simulations from
diploid genomes, priming them with CAMPAREE
output confers this functionality (Fig. 3, Additional
file 6). Looking broadly at read counts simulated by
each tool (Additional file 6), both BEERS and RSEM
show slight departures from the quantified transcript
counts they were primed with, while Polyester almost
exactly recapitulates the input quantities. This is re-
flective of the different approaches the simulators take
to generating data. Polyester has an option allowing
users to specify exact expression values for each tran-
script. Both BEERS and RSEM use the given quantifi-
cation values to create probability distributions of
transcript expression. They then sample from these
distributions repeatedly when choosing which tran-
scripts to simulate. This distinction between these
simulators may be important depending upon the
level of control users require for their specific needs.
Comparing representative coverage plots of Polr2j
from the CAMPAREE output to the BEERS, Polyester,
and RSEM output, we see that all RNA-Seq simula-
tors layered the coverage artifacts and edge effects we
expect from real data on top of the CAMPAREE out-
put. Additionally, we see representation of the same
alternative splice forms across all simulators and a
decrease in the overall depth of coverage for the sec-
ond parental allele, which reflects the allele-specific
expression pattern of this gene. Also, since CAM-
PAREE includes unspliced pre-mRNA transcripts in
its output (indicated by the lines of coverage in the
CAMPAREE plots that extend through the entire in-
tronic regions), all three simulators include a low
level of intronic expression. While BEERS can already
introduce intronic expression into its gene models,
this feature is not natively supported by Polyester or
RSEM. If we zoom in on the terminal exons of Polr2j
to alignment resolution, we can see the variants dis-
tinguishing the two parental alleles represented in
reads generated by all three simulators (Polyester and
BEERS - Fig. 4; RSEM - Additional file 7). Despite
being developed as the basis for molecule-based
RNA-Seq simulations, CAMPAREE is capable of

Fig. 2 Idealized coverage plots from CAMPAREE output. Representative
coverage plots of real, STAR-aligned input data (pink, top) and
CAMPAREE (idealized) output primed from the input data (black,
bottom). Transcript models for the gene Derl2 displayed below
coverage plots in dark blue. Image captured from the UCSC
genome browser. Input and CAMPAREE data were generated
from a mouse liver sample (9576; GSM2599715)
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introducing additional functionality and control to
three existing RNA-Seq simulators.

Conclusions
Arguably one of the most difficult aspects of simulating
RNA-Seq data is generating a realistic RNA population
to serve as the basis for the input sample. However, this
problem has been largely overlooked by the community,
where efforts tend to focus on simulating the biases in-
troduced by library preparation and sequencing. To this
end, we developed the CAMPAREE simulator to gener-
ate realistic RNA samples following empirical distribu-
tions derived from real RNA-Seq datasets. While this
functionality may be useful to most users, we have also
included the ability to explicitly specify the genetic vari-
ants and expression distributions (gene, transcript, in-
tron, allelic) CAMPAREE uses to generate allele-specific
data. CAMPAREE was developed in Python3, is open
source, and freely available at https://github.com/itmat/
CAMPAREE.
The gene-gene interaction networks and dependency

structures underlying expression data present another
challenge for simulations. These networks are highly
complex, and can change drastically depending upon
stimuli or cell states of the system of interest [33, 34].
Additionally, these interactions are often more complex
than pairwise gene-gene interactions, involving input
from many genes, which makes them difficult to both
accurately detect and model at scale [35]. To make the
analysis and simulation of expression data more tract-
able, many studies have modeled expression across mul-
tiple genes as an independent, identically distributed

(iid) process [36, 37]. This is particularly problematic for
benchmarking studies if the simulated data were gener-
ated using the same iid model and distributions as the
analysis tools being tested. To avoid these potential con-
founds, CAMPAREE, as well as other recent benchmark-
ing studies, including those using the RSEM simulator,
have taken an empirical approach [13, 37]. By estimating
gene expression values from real samples and then using
these estimates as the ground truth in simulations, we
can retain much of the complexity of real data, while
also maintaining full knowledge of and control over the
simulated molecules and transcript expression levels.
While we hold the position that mimicking real data is
an effective means to achieve more realistic simulated
data, we also believe that effective benchmarking studies
should involve both real and simulated data.
Most previous RNA-Seq simulators, including the

ones developed by our group, focused on accurately
modeling the molecular biology and biases of the library
preparation and sequencing reactions. These simulators
operate by using some underlying distribution (either
statistically- or empirically-derived) to select a transcript
to express. They then extract the full sequence for the
transcript from a given annotation and apply some ap-
proximation of library preparation (i.e. fragmentation,
size selection, PCR bias) to ultimately get the simulated
read derived from that transcript. Here we focus on ac-
curately modeling the input sample separately from li-
brary preparation, which we feel offers greater overall
flexibility. By divorcing input sample simulation from li-
brary preparation/sequencing simulation, future simula-
tors that operate on a given population of simulated

Fig. 3 CAMPAREE adds allele-specific expression support to BEERS, Polyester, and RSEM. Representative coverage plots of simulated RNA-Seq data
created by Polyester (red), BEERS (blue), and RSEM (orange) from CAMPAREE output (black). Separate coverage plots for signal from each parental
allele are displayed on the left and right. Transcript models for the gene Polr2j displayed below coverage plots in dark blue. Note, Polyester,
BEERS, and RSEM depth of coverage appears lower than CAMPAREE because they are displaying coverage from short reads, rather than full
length transcripts. Image captured from the UCSC genome browser
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molecules will be agnostic to genome sequence, annota-
tions, and composition of the simulated input sample.
For example, if researchers have access to multiple simu-
lators, each modeling a different library prep technique
(e.g. TruSeq, Smart-Seq2) or sequencing technology (e.g.
Illumina, PacBio), they could use the same simulated
sample as input across all programs. Furthermore, by
priming different RNA-Seq simulators with the same in-
put sample, we can compare their outputs to assess their
performance and bias models. Perhaps most importantly,
this division of the process into a separate sample

simulation part and sequencing simulation part allows
both to develop and evolve independently of each other.
Developers can upgrade and develop new library prepar-
ation/sequencing simulators to match the current state
of sequencing technology, all while still being able to use
the same model of input sample. Similarly, as technology
improves and we can measure the truth underlying RNA
samples with increased fidelity, we can simulate different
species of RNA in the input sample, like small RNAs,
tRNAs, and circular RNAs, without extensive modifica-
tion to the sequencing simulation.

Fig. 4 Variants introduced by CAMPAREE are maintained in BEERS and Polyester output. Coverage plots and alignments for reads simulated by
BEERS and Polyester from the two terminal exons of Polr2j. Black rectangles highlight variants specific to each parental allele. Red lines on left
indicate a ‘T’ substitution present in all alignments from parent 2 allele. Orange lines on the right indicate a ‘G’ substitution present in all
alignments from parent 2 allele. Similar results for RSEM are displayed in Additional file 7
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The CAMPAREE simulator represents an import first
step toward molecule-level simulation. We plan to add
further features to improve the simulator and the
breadth of biological conditions it can mimic. These in-
clude the ability to introduce allele-specific splicing, het-
erogeneous degradation, editing, and processing of the
RNA molecules, use separate parameters to represent
nuclear and cytoplasmic RNA fractions, and simulate
single-cell samples in addition to bulk RNA. This last
option is currently possible as multiple, low expression
CAMPAREE runs could each represent the transcrip-
tomes of individual cells before labeling and pooling to-
gether. It is our hope that the open source, modular
nature of CAMPAREE will allow the community to
adapt it to meet their current and future needs. In this
way, CAMPAREE can evolve in parallel with our under-
standing of transcriptional biology.

Availability and requirements
Project name: CAMPAREE.
Project home page : https://github.com/itmat/

CAMPAREE.
Operating system: Tested on GNU/Linux operating

systems.
Programming language: Python.
Other requirements: git, Python 3.6 or higher, Java

1.8.
License: GNU General Public License v3.0.

Abbreviations
RNA-Seq: High-throughput sequencing of RNA; CAMPAREE: Configurable
And Modular Program Allowing RNA Expression Emulation; SNV: Single
nucleotide variant; PSI: Percent splicing included; iid: Independently and
identically distributed

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07934-2.

Additional file 1: Table S1. Input and output files for each CAMPAREE
step. A table listing each step in the CAMPAREE pipeline, along with the
input and output files for each. Output files marked with a ‘*’ can be
provided by the user to skip the associated step(s).

Additional file 2: Figure S1. Flowchart for estimating intronic and
intergenic empirical distributions. A flowchart describing how CAMPAREE
uses a genome-aligned BAM file and gene annotation to estimate distri-
butions for intron inclusion (sense and antisense) and intergenic expres-
sion. This procedure is repeated for each input sample in a CAMPAREE
run. Note, a “mintron” is defined as the smallest possible genomic span
that does not overlap any exon, intergenic region, or the 1500 bp regions
(by default) flanking any transcript’s start and stop coordinates.

Additional file 3: Figure S2. Flowchart for estimating transcript, gene,
and PSI distributions. A flowchart describing how CAMPAREE estimates
distributions for gene-level abundances, transcript-level abundances, and
transcript PSI (percent splicing included) values from a FASTA file of tran-
script sequences and a gene model, both generated from one parental
genome, as well as FASTQ files of unaligned input reads. This procedure
is repeated for each input sample in a CAMPAREE run.

Additional file 4: Figure S3. Flowchart for estimating the distribution
of allelic imbalances. A flowchart describing how CAMPAREE estimates
the distribution of allelic imbalances (i.e., the percentage of molecules for
each gene transcribed from each parental allele). This process uses FASTA
files of transcript sequences and gene models generated from both
parental genomes, as well as FASTQ files of unaligned reads, and a BAM
file containing alignments of reads to the original, source genome. This
procedure is repeated for each input sample in a CAMPAREE run.

Additional file 5: Figure S4. Empirical distributions estimated by
CAMPAREE from real data. (A) Estimated distributions for transcript
abundances overlapping intronic regions in the sense orientation (left
panel), intronic regions in the antisense orientation (middle panel), and
intergenic regions (right panel). (B) Estimated distributions for transcript-
and gene-level abundances. Gene-level abundances are calculated by
summing the abundances of all transcripts belonging to each gene. (C)
Estimated distributions for per-transcript PSI (percent splicing included)
values. Data in this figure are for transcripts from genes estimated to ex-
press at least one splice form. (D) Estimated distributions for allelic imbal-
ance, represented as the ratio of molecules transcribed from the parent 1
allele and the parent 2 allele. The Y-axes for all plots display the Gaussian
kernel density estimates calculated by the density() function in R. The X-
axes in panels (A) and (B) display the log10-transformed abundance esti-
mates for each genomic feature in FPK (fragments per kilobase length), a
length-normalized measure of transcript abundance. For display purposes,
a pseudocount of 0.001 was added to each FPK value, so that features
with an FPK of 0 are still displayed in log10 space at the position log10(0
+ 0.001) = -3. CAMPAREE estimated these distributions from two real
mouse liver RNA-Seq samples (9575 - GSM2599715; 9577 - GSM2599721).

Additional file 6: Figure S5. Transcript abundances simulated by
BEERS, Polyester, and RSEM after being primed with CAMPAREE output.
Scatterplots of transcript abundances simulated by BEERS (left panels),
Polyester (middle panels), and RSEM (right panels), compared to
CAMPAREE abundances used to prime each RNA-Seq simulator. Data are
displayed separately for genes from each parental allele (top and bottom
panels). The line of unexpressed transcripts at the bottom of the BEERS
panels are from transcripts which BEERS removed from the annotation
because they possess genomic features which interfere with BEERS’s
underlying simulation (e.g., length < 200 bp, introns < 10 bp). Similarly,
the unexpressed transcripts from the bottom of the RSEM panels are
from short transcripts. RSEM reads transcript abundances as TPM (tran-
scripts per million) values. The TPM calculation involves calculating a tran-
script’s “effective length,” by subtracting the estimated RNA-Seq read/
fragment length from the transcript’s length. This can result in an effect-
ive length < 0 for short transcripts. In the RSEM model, transcripts with
effective lengths < 0 have no expression. The X- and Y-axes display the
transcript abundances simulated by each RNA-Seq simulator and by
CAMPAREE, respectively. For display purposes, a pseudocount of 0.1 was
added to each abundance value, so unexpressed transcripts are still dis-
played in log10 space at the position log10(0 + 0.1) = -1.

Additional file 7: Figure S6. Variants introduced by CAMPAREE are
maintained in RSEM output. Coverage plots and alignments for reads
simulated by RSEM from the two terminal exons of Polr2j. Black
rectangles highlight variants specific to each parental allele. Red lines on
left indicate a ‘T’ substitution present in all alignments from parent 2
allele. Orange lines on the right indicate a ‘G’ substitution present in all
alignments from parent 2 allele. Similar results for Polyester and BEERS
are displayed in Fig. 4.
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