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Abstract

identify copy number shifts on some exceptional trails.

https://github.com/xikanfeng2/SCYN.

Background: Copy number variation is crucial in deciphering the mechanism and cure of complex disorders and
cancers. The recent advancement of scDNA sequencing technology sheds light upon addressing intratumor
heterogeneity, detecting rare subclones, and reconstructing tumor evolution lineages at single-cell resolution.
Nevertheless, the current circular binary segmentation based approach proves to fail to efficiently and effectively

Results: Here, we propose SCYN, a CNV segmentation method powered with dynamic programming. SCYN resolves
the precise segmentation on in silico dataset. Then we verified SCYN manifested accurate copy number inferring on
triple negative breast cancer scDNA data, with array comparative genomic hybridization results of purified bulk
samples as ground truth validation. We tested SCYN on two datasets of the newly emerged 10x Genomics CNV
solution. SCYN successfully recognizes gastric cancer cells from 1% and 10% spike-ins 10x datasets. Moreover, SCYN is
about 150 times faster than state of the art tool when dealing with the datasets of approximately 2000 cells.

Conclusions: SCYN robustly and efficiently detects segmentations and infers copy number profiles on single cell
DNA sequencing data. It serves to reveal the tumor intra-heterogeneity. The source code of SCYN can be accessed in

Keywords: scDNA-Seq, CNV segmentation, Dynamic programming

Background

Numerous studies have shown that copy number varia-
tions (CNV) can cause common complex disorders [1-5].
Copy number aberration (CNA), aka, somatic CNV, is
also reported to be a driving force for tumor progression
and metastasis. For example, George et al. reported the
high amplification of oncogene gene PD-L1 in small-cell
lung cancer [6] and amplification of MYC is announced
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prevailing in pan-cancer studies [7]. The loss of tumor
suppressor genes like KDM6A and KAT6B are proclaimed
indirectly amplifies harmful cancer-related pathways
(8, 9].

Conventional experimental protocols for CNV segmen-
tation lies in the following scenarios. Researchers may
infer a coarse CNV profiles utilizing bulk RNA sequencing
[10] and single cell RNA sequencing [11-13] [10]. More-
over, scientists may leverage bulk genome techniques such
as DNA array comparative genomic hybridization (aCGH)
[14], single-nucleotide polymorphism (SNP) arrays
[15, 16], and DNA next generation sequencing (NGS)
[17, 18] to generate high resolution CNV. Although bulk
genome sequencing studies have contributed insights into
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tumor biology, the data they provide may mask a degree
of heterogeneity [19]. For instance, if the averaged read-
out overrepresents the genomic data from the dominant
group of the tumor cells, rare clones will be masked from
the signals. The advent of single-cell DNA sequencing
(scDNA-Seq) delivers a potential solution to overwhelm
the deficiencies of bulk approaches [20—22]. By assigning
a unique barcode to each single cell, scDNA-seq is able to
record the minority cell population, thus to address intra-
tumor heterogeneity (ITH) [22], detect rare subclones
[19], and reconstruct tumor evolution lineages [20, 23].

In this study, we concentrate on the CNV segmenta-
tion and turning points detection approaches customized
for single cell DNA sequencing. CNV Segmentation refers
to partitioning the genome into non-overlapping seg-
ments with the objective of that each segment shares
intra-homogeneous CNV profile, and the segment bound-
aries are often termed to be checkpoints or turn-
ing points [24]. Although numerous CNV segmentation
tools have emerged leveraging high throughput sequenc-
ing data such as Circular Binary Segmentation (CBS)
[25, 26] and Hidden Markov Model (HMM) [27, 28], the
methods customized for scDNA data is in its infancy.
Gingko [29], SCNV [30], and SCOPE [31] applied diverse
strategies to normalize the scDNA intensities through
simultaneously considering sparsity, noise, and cell het-
erogeneity, and adopted variational CBS for checkpoint
detection. While after in silico experiment, we argue
that those CBS approaches might not lead to an opti-
mal segmentation result, some turning points might be
masked. Furthermore, with the advance of large scale
high throughput technologies, the scale of cells for a sin-
gle dataset climbs exponentially. For instance, the newly
emerged 10x Genomics CNV solution can profile the
whole genome sequencing of thousands of cells at one
time [22]. Thus, efficiently processing scDNA-seq data
is crucial. However, current scDNA CNV segmentation
methods are too time-consuming to process thousands
of cells.

Therefore, in this paper, we propose SCYN (Single Cell
and dYNamic programming), an effecient and effective
dynamic programming approach for single cell data CNV
segmentation and checkpoint detection. SCYN resolves
the precise turning points on in silico dataset, while exist-
ing tools fail. SCYN manifested more precise copy num-
ber inference on a triple-negative breast cancer scDNA
dataset, with array comparative genomic hybridization
results of purified bulk samples as ground truth vali-
dation. We tested SCYN on two datasets of the newly
emerged 10x Genomics CNV solution. SCYN successfully
recognizes gastric cancer cells from 1% and 10% spike-
ins 10x datasets. Last but not least, SCYN is about 150
times faster than state of the art tool when dealing with
thousands of cells.
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Results

Overview of SCYN

We developed an algorithm, SCYN, that adopts a dynamic
programming approach to find optimal single-cell CNV
profiles. The framework for SCYN displayed in Fig. 1A.
First, the raw scDNA-seq reads of FASTQ format are pre-
processed with standard procedures (Fig. 1A). SCYN then
takes the aligned BAM files as the input. SCYN integrates
SCOPE [31], which partitions chromosomes into consec-
utive bins and computes the cell-by-bin read depth matrix,
to process the input BAM files and get the raw and nor-
malized read depth matrices. The segmentation detection
algorithm is then performed on the raw and normalized
read depth matrices using our dynamic programming to
identify the optimal segmentation along each chromo-
some. The segmentation results are further applied to
copy number calculation. Finally, SCYN outputs the cell-
by-bin copy number matrix and the segmentation results
of all chromosomes for further CNV analysis.

SCYN effectively identifies all turning points on synthetic
trial

To evaluate the segmentation power of SYCN against
SCOPE, we conducted one simulation experiment. We
first generated a synthetic CNV profile of 100 singe cells
on chromosome 22, with 50M bp as one bin, resulting in
a 100 x70 CNV matrix. As illustrated in Fig. 2B, there is a
large proportion of normal cells with average diploid copy
number and four tumor subclones, which manifests six
turning points and seven segments on chr22. Then, we fit
the ground truth CNV profiles into single cell sequencing
simulator SCSsim [32] to get the synthetic FASTQ reads
(Fig. 2A). Figure 2C-D shows the inferred CNV profiles on
the simulated reads from SCYN and SCOPE, respectively.
Both SCYN and SCOPE able to recognize the normal cells
and mask the noises. SCYN did sound work on CNV seg-
mentation to correctly identify all six turning points and
uncovered the cell heterogeneity. Nevertheless, SCOPE
adds one nonexistent turning point inside segmentation
S1, and drops two critical turning points which discrim-
inate S4-S5 and S6-S7. These then lead to erroneous
CNYV segmentation and CNV estimations. Furthermore,
we conducted a series of in silico spike-in experiments
for CNV turning points detection with different propor-
tion of normal cells (Additional file 1, Supplementary
Figure S1A), different number of cell clusters (Additional
file!l, Supplementary Figure S1B), and different num-
ber of CNV segments (Additional file 1, Supplementary
Figure S1C), respectively. Our results show that SCYN
call turning points with 100% accuracy regardless of the
cell and segment CNV complexity of ground-truth set-
tings, whilst SCOPE always call false positive and false
negative points. As previously mentioned, the core princi-
ple of CNV segmentation is partitioning the genome into
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Fig. 1 Overview of SCYN. (A) The workflow of SCYN. (B) lllustration of SCYN segmentation counting table during dynamic programming. The
backtracking process of finding the optimal turning points and corresponding mBIC are highlighted in red

non-overlapping areas with the objective of that each area
shares intra-homogeneous CNV profile [24, 30]. SCOPE
fails to hit the correct answer as its turning point detection
fails. Overall, our experiment on synthetic data suggest
that empowered with dynamic programming, SCYN can
achieve the correct copy number turning point detection
against the segmentation schema SCOPE proposed.

SCYN successfully identifies subclones in wet-lab cancer
datasets

We illustrate the performance of SCYN in cancer single-
cell datasets. We collected two cancer data sets, namely
the Nature_TNBC (two triple-negative breast cancers)
[33] and 10x_Gastric (gastric cancer spike-ins). We illus-
trated the tumor intra-heterogeneity discovered by SCYN
and validated the results of SCYN against the estimation
made by SCOPE for ground truth available datasets.

The first benchmark dataset we investigated is
Nature_TNBC. 100 single cells were separately sequenced
from two triple-negative breast cancer samples, namely,
T10 and T16 [33]. For T10, we removed cell SRR054599
as it did not pass the quantity control, resulting 99 single
cells from held four subgroups: Diploid (D), Hypodiploid
(H), Aneuploid A (A1), and Aneuploid B (A2). We first
verified if SYCN could replicate the subclone findings
previously reported. Figure 3A demonstrates the genome-
wide copy number profiles across the 100 single cells for
T10. Overall, the cell subclones recognized by SCYN are
concordant with the outputs of SCOPE (Additional file 1,
Supplementary Figure S2A) and Navin et al’s findings.
With hierarchical clustering, SCYN categorizes T10 into
seven clusters. As illustrated in Fig. 3 and Additional
file 1 Supplementary Figure S3A-4A, for T10, cluster 1
matches the diploid (D) cells and cluster 3 represents
the hypodiploid (H) group. There are two hyperdiploid

subgroups. Cluster 4 corresponds to aneuploid A (Al)
and cluster 2,5,6,7 together represents aneuploid B
(A2). Navin et al. also separately profiled the four sub-
groups through array comparative genomic hybridization
(aCGH) [34], here we regarded the CNV profiled from
aCGH as golden-standard to examine the SYCN and
SCOPE performance. As illustrated in Fig. 3B-C, SCYN
owns a higher Pearson correlation and a lower root mean
squared error (RMSE) of ground-truth against SCOPE.

T16 sample is a mixture of one primary breast tumor
(T16P, 52 single cells) and its corresponded liver metas-
tasis (T16M, 48 single cells). Navin et al. identified five
cell subpopulations: Primary Diploid (PD), Primary Pseu-
dodiploid (PPD), Primary Aneuploid (PA), Metastasis
Diploid (MD), and Metastasis Aneuploid (MA). Figure 4A
records T16 genome-wide copy number profiles across
the 100 single cells. In all, the cell subclones recognized by
SCYN are consistent with SCOPE (Additional file 1, Sup-
plementary Figure S2B) and Navin et al.’s findings. Hierar-
chical clustering characterizes T16 into seven subgroups.
As depicted in Fig.4 and Additional file 1 Supplementary
Figure S3B-4B, cluster 1 mates the primary diploid (PD)
cells. Cluster 3 represents metastasis aneuploid (MA), and
cluster 6,7 together pictures primary aneuploid (PA). As
Navin et al. only profiled four bulk dissections using of
T16 aCGH [34], there lacks the CNV gold standard for
16T in su subclones. So we calculated the CNV correla-
tion and RMSE between inferred primary aneuploid (PA)
subpopulation and the four dissections, respectively. From
Fig. 4B-C, although the association between PA group
and four bulk dissections is relatively low, SCYN profiles
a closer correlation than SCOPE with higher correlation
and lower discrepancy.

We next employed SCYN and SCOPE to the lately pub-
lished single cell DNA spike-in demo datasets available at
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Fig. 2 SCYN performance on synthetic case. (A) The workflow of synthetic data generation. (B-D) The heatmap of copy number profiles with single
cells as row and genomics bins as columns, from ground truth, SCYN, and SCOPE, respectively. The colorbar (blue, white, dark red) represents the
value of copy number from 1 to 9, respectively. In (B), vertical lines signify the ground-truth turning points, which divide the genomic bins into

the 10x Genomics official website. 10x Genomics mixed
BJ fibroblast euploid cell line with 1% and 10% spike-in of
cells from MKN-45 gastric cancer cell line. As illustrated
in the CNV heatmap Fig.5A and Additional file 1 Supple-
mentary Figure S5, SCOPE successfully distinguished the
two spike-in gastric cancer cells. Furthermore, we visual-
ized the first two principal components of the estimated
CNV profiles in Fig.5B-C. Cells whose Gini coefficient
more massive than 0.12 were highlighted in yellow and

regarded as gastric cancer cells from the 1% and 10%
spike-ins, respectively. Then, we checked if SYCN pro-
duced CNV profiles better preserves the cell subpopu-
lation information against SCOPE. Leveraging Gini 0.12
as the cut-off value, we partitioned cells into normal and
cancer subset as benchmark labels. Next, we practiced
hierarchical clustering into CNV matrices attained from
SYCN and SCOPE, and get two clusters for each spike-
in sets. Then, we adopt four metrics to inquire about the
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Fig. 3 Performance of SCYN on T10. (A) Whole genome CNV heatmap, aggregated group CNV heatmap, and aggregated group CNV stairstep of
T10. The colorbar (blue, white, dark red) represents the value of copy number from 0 to >10, respectively. N/A denotes the missing of copy number
in corresponding genomic region. An interactive visualization is available on scSVAS [42] (https://sc.deepomics.org/oviz-project/analyses/view) with
demo set “TNBC_T10". (B-C) Pearson correlation and root mean square error (RMSE) as evaluation metrics comparing results by SCYN and SCOPE
against golden standard aGCH, respectively

clustering accuracy of SYCN against SCOPE. The
adjusted Rand index (ARI) [35], Normalized mutual infor-
mation (NMI) [36], and Jaccard index (JI) [37] measures
the similarity between the implied groups and golden-
standard labels; a value approaching 0 purports ran-
dom assignment, and one reveals accurate inferring. As
evidenced in Tables 1 and 2, with ARI, NMI, and ]I
as measurements, SYCN holds equal clustering accu-
racy to SCOPE on both 1% and 10% spike-in sets,
which indicates SYCN captures substantial interior tumor
heterogeneity.

SCYN segmentation is fast

Recall that efficient processing of scRNA-seq data is
essential, especially in today’s thousands of single cells
throughput. To evaluate the efficiency of SCYN against
SCOPE, we measured the checkpoint detection step CPU
running time of SCYN and SCOPE on T10, T16M, T16P,
10x 10% spike-in, 10x 1% spike-in, and several simulation
data sets (90-1, 90-2, 2000-1, 2000-2, 2000-3, 2000-4, and
2000-5), with the cell number ranging from 48 to around
2000. We respectively ran SCYN and SCOPE on each
dataset ten times and calculated the mean CPU running
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Fig. 4 Performance of SCYN on T16. (A) Whole genome CNV heatmap, aggregated group CNV heatmap, and aggregated group CNV stairstep of
T16. The colorbar (blue, white, dark red) represents the value of copy number from 0 to >10, respectively. N/A denotes the missing of copy number
in corresponding genomic region. An interactive visualization is available on scSVAS [42] (https://sc.deepomics.org/oviz-project/analyses/view) with
demo set “TNBC_T16". (B-C) Pearson correlation and root mean square error (RMSE) as evaluation metrics comparing results by SCYN and SCOPE

against golden standard aGCH, respectively

time. As illustrated in Table 3 and Fig. 6, the CPU con-
suming time of SCYN is almost linear in log scale with the
increase of cell number. However, the CPU time of SCOPE
rises dramatically when the cell number goes to hundreds
or thousands. For instance, for large datasets with 2k cells,
SCYN is around 150 times faster than SCOPE, SCYN
finished the tasks within eight minutes, while SCOPE is
unable to scale 2k cells within 16 hours. In all, SCYN is
super fast in respective of datasets scale up to hundreds or
thousands.

SCYN segmentation has better mBIC values

SCYN is fast because we only adopt the simplified ver-
sion (Equation 1 in Method) of total SCOPE-mBIC [31]
as the objective of segmentation and optimize it uti-
lizing dynamic programming. Experiments on synthetic
datasets and real cancer datasets successfully validated
the tumor intra-heterogeneity exposure efficacy of SCYN
against SCOPE. Here we further evaluate SCYN optimiza-
tion effectiveness against SCOPE in respective of the orig-
inal SCOPE-mBIC objective. We compared SCOPE-mBIC
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value by adopting the segmentation results of SCYN and
SCOPE on real cancer datasets T10, T16P, T16M, and
10x spike-ins. As illustrated in Fig. 7A and Supplementary
Figure S6A, the mBICs yielded from SCYN on samples
across all chromosomes are always more massive than
the mBICs produced by SCOPE, except chromosome 16
of 1% spike-in. Clearly, SCYN achieves better segmenta-
tion concerning the tedious SCOPE objective. Further-
more, as illustrated in Fig. 7B and Supplementary Figure
S6B, the proportions of the simplified mBIC against over-
all SCOPE-mBICs are overwhelming across all chromo-
somes except chrl6, indicating the residual terms actually

can be neglected without loss of accuracy and the minor
fluctuations of mBIC will not affect the ability of SCYN to
detect subclones, as proved in the previous section.

Discussion

In this study, we proposed SCYN, a fast and accurate
dynamic programming approach for CNV segmentation
and checkpoint detection customized for single cell DNA
sequencing data. We demonstrated SCYN guaranteed to
resolve the precise turning points on in silico dataset
against SCOPE. Then we proved SCYN manifested a
more accurate copy number inferring on triple-negative
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Table 1 10x 1% spike-in datasets clustering evaluation of SCYN
and SCOPE on adjusted Rand index (ARI), normalized mutual
information (NMI), and Jaccard index (JI), respectively

Method ARI NMI Ji
SCYN 0.67650 0.7623 0.5238
SCOPE 0.67650 0.7623 0.5238

Page 8 0of 13

Table 3 Benchmark for CPU runtimes of checkpoint detection
step (in Minutes). 90-1 and 90-2 are two in silico data with around
90 single-cells, and 2000-1, 2000-2, 2000-3, 2000-4, and 2000-5
are five in silico data with approximate 2000 single cells

breast cancer scDNA data, with array CGH results of
purified bulk samples as ground truth validation. Fur-
thermore, we benchmarked SCYN against SCOPE on 10x
Genomics CNV solution datasets. SCYN successfully rec-
ognizes gastric cancer cell spike-ins from diploid cells.
Last but not least, SCYN is about 150 times faster than
state of the art tool when dealing with thousands of
cells. In conclusion, SCYN robustly and efficiently detects
turning points and infers copy number profiles on single
cell DNA sequencing data. It serves to reveal the tumor
intra-heterogeneity.

SCYN is user-friendly. The implementation of SCYN
is wrapped in python packages https://github.com/
xikanfeng2/SCYN and available at PyPI. Users can easily
run or call it with one line of command or Python code.
For 10x merged BAM (One bam file), SCYN provides the
function to split merged bam to cell bams based on the
barcodes. SCYN outputs the segmented CNV profiles and
cell meta-information for downstream analysis, such as
hierarchical clustering and phylogeny reconstruction.

We neglected one crucial issue. Cancer scDNA-seq
intensities should be regarded as a mixture of subclone
cell signals with confounding of sparsity, GC bias, and
amplification bias [31]. The perfect CNV segmentation
heavily relies on the cross-cell normalization of intensities
in the first place. While we brutely adopt the normaliza-
tion schema from SCOPE; there lacks a comprehensive
evaluation of scDNA intensities normalization. Speaking
to further work, inferring CNV profiles from single-cell
RNA sequencing (scRNA-seq) is trending [11-13, 38].
Incorporating DNA and RNA to profile single cell CNV
segmentation might lead to tumor intra-heterogeneity to
a higher resolution.

Copy number variation is crucial in deciphering the
mechanism and cure of complex disorders and cancers.
The recent advancement of scDNA sequencing technol-
ogy sheds light upon addressing intratumor heterogene-
ity, detecting rare subclones, and reconstructing tumor

Table 2 10x 10% spike-in datasets clustering evaluation of SCYN
and SCOPE on adjusted Rand index (ARI), normalized mutual
information (NMI), and Jaccard index (JI), respectively

Method ARI NMI Ji
SCYN 09139 0.8770 0.8718
SCOPE 09139 0.8770 0.8718

Sample Cell Number SCYN SCOPE Fold
change
on time

T10 99 2917 46.995 16.111

T16M 48 2.566 2194 8.55

T16P 52 2.786 23.927 8.588

90-1 93 2.73 44.14 16.168

90-2 92 2.769 40415 14.596

10x-1% spike-in 1056 3.598 485.768 135011

10x-10% spike-in 462 2615 208.854 79.868

2000-1 2173 6.714 1147658 170.935

2000-2 2214 7.602 1122.881 147.709

2000-3 1722 6.817 947.66 139.014

2000-4 1909 8.139 1122335 137.896

2000-5 2048 7.128 1118.038 156.852

evolution lineages at single-cell resolution. Nevertheless,
the current circular binary segmentation based approach
proves to fail to efficiently and effectively identify copy
number shifts on some exceptional trails.

Conclusion

To summarize, we propose SCYN, a CNV segmentation
method powered with dynamic programming. Experi-
ments on in silico and wet-lab data demonstrate that
SCYN robustly and efficiently detects segmentations and
infers copy number profiles on single cell DNA sequenc-
ing data. It serves to reveal the tumor intra-heterogeneity.

Methods

Data sets

Synthetic data

The workflow for synthetic data generation is displayed in
Fig. 2 A. Firstly, we pre-defined a CNV matrix which con-
tains 100 cells and 70 bins for chromosome 22 and each
bin has a fixed length of 500M. Also, 10% random noise is
applied to this CNV matrix. Secondly, the bed file of each
cell was generated according to the corresponding CNV
number. Thirdly, we adopted the tool, SCSsim [32], which
accepts the bed file as the input, to generate the DNA
sequence of each cell(FASTQ format). Finally, the DNA
sequence data of 100 cells were generated.

Single-end real scDNA-seq data

Two single-end breast cancer scDNA-seq datasets were
downloaded from NCBI Sequence Read Archive with the
SRA number of SRA018951. The raw fastq files were
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SCOPE against SCYN on different cell number scale (48 to around 2000)
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aligned using BWA-mem [39] to the human hgl9 ref-
erence genome, and the BAM files were sorted using
SAMtools [40]. Picard toolkit [41] was used to remove
duplicate reads. The clean BAM files were fed as the input
of SCYN package.

Ten-x (10x) data

The 10x spike-in scDNA-seq data was collected from
the 10x Genomics official dataset with the acces-
sion link https://support.10xgenomics.com/single-cell-
dna/datasets. The cell-mixed BAM files were demulti-
plexed to cellular BAMs according to cellular barcodes
using Python scripts.

Notations

To profile the CNV along genomes, first, we partition the
genome into fix-size bins. Assume the number of bins as
m. If the number of cells is #, then the input matrices,
Y,uxn and f’mxn, contain the raw and normalized reads
counts, respectively; that is, Y;; includes the number of
raw reads count belong to bin i at cell j and ¥;,,x,, contains
the number of normalized reads count belong to bin i at
celljwherel <i<mandl <j<n.

Segmentation
The first task is to partitioning the bins into segments
to optimize an objective function. Here, we choose the
objective function to maximize the simplified version of
modified Bayesian information criteria (mBIC) proposed
by Wang et al. [31].

To calculate the simplified mBIC, we need to partition
the sequence of bins into £ segments sy, ..., s¢, where s =

(g1 +1,.i),io =0 < k; < ky < ... < kg = n. Denote
the number of bins in segment si as |sg| With the parti-
tioning, we can calcu}ate two matrice§ Xosns X@ «n, Where
Xiej = 1 Doies, Yojr Xij = 17 Dies Vi L <k < L.

Given a segmentation S = (sy, ..., S¢), its simplified mBIC
is calculated as

1) — =Dk —k2) (1)

L, m
S) =log— —1
B(S) 87 Og(e_

where log % is the generalized log-likelihood ratio, k1 and
ko are two pre-defined constants and

e A

L‘L’ 5 |.2Xl</Xk-|
log = =Y "X [1- =22
o =Yk 1- 24/

k=1

25252

For more details on the interpretation of the terms in
mBIC, we refer the readers to Wang et al. [31]. Our objec-
tive here is to find a segmentation Sp; such that 8(Syp;) is
maximized.

Optimal algorithm

Let B(k, i) store the simplified mBIC value for the optimal
segmentation which partitions bins 1, ..., i into k segments.
Associated with B(k, i), we also store the corresponding
generalized log-likelihood ratio L(k, i), which is the first
term in Eq. 1, the log-likelihood ratio /(i, j) for a single seg-
ment starting at the i-th bin and ending at the j-th bin, and
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the (k — 1)-th optimal turning point position T'(k — 1, i) to
partition bins 1, ..., i into k segments.

The B(k, i) is calculated by the following recursive for-
mulations:

Bk, i) = maxy<y<;(L(k — 1,i") + 1({' + 1,...,0) + C)

(3)

L(k, i) = argmax(B(k, )Lk — 1, N +IE +1,..,0)

(4)

T(k —1,i) = argmax(B(k, i) (5)

where C is the sum of last two terms in Equation 1.

As demonstrated in Equation 3, the value of each cell
B(k,i) in table 8 can be computed based on the earlier
store data L(k — 1,i) and I(i + 1,...,i). The computed

B(k, i) is then used to incrementally with k and i to com-
pute the correct values of 8. Clearly, the values of 8 and L
for one segment can be initialized to equal to /.

The values of B can be stored in a two dimensional
array, i.e., a table. The procedure for computing the table
B is also displayed in Algorithm 1. The table g will be
constructed starting from a single segment S(1,i), and
moving towards more segments B(k,i). The B(1,i) and
L(1,i) are initialized to [(1, i) and T'(0, {) is initialized to 0
when there is only one segment. When computing a cell
B(k,)(k > 1), we will checks all possible /, (k < i < i)
and compute all values of (L(k — 1,i) + I(J’ + 1,..,0) +
C) and ,B(k, l) is determined by max(r(k—1,)+1@ +1,...,i)+C+
Processing the bins form in increasing order on length
guarantees that the final optimal segmentation can be
detected when i is equal to the total number of bins m. At
the last, the positions of kK — 1 turning points are stored in
table 7.
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Algorithm 1 Computing the table

1: procedure COMPUTINGTHETABLES

2 for segment number k from 1 to pre-defined K do

3 for each bin i from 1 to m do

4 ifk == 1 then

5: B(L,i) = I(1,i)

6: L(,i) =1(1,9)

7 T,i)=0

8 else

9 Bk, i) = maxy<y<;(L(k—1,i) +1(7' +
1,..,0)+0O)

10: L(k, i) = argmaxy (B(k,))(L(k—1,i)+
(0" +1,..,0)

11: T(k —1,i) = argmaxy (B8(k, i)

12: end if

13: end for

14: end for

15: end procedure

Backtracking

The backtracking process of finding the positions of the
optimal turning points is demonstrated in Fig. 1B. Let the
table at the left-side of Fig. 1B as 7, where i and j are the
indexes of turning points and bins respectively. T(i,j) is
the position of the i-th optimal turning point for a seg-
ment s(0, /). The optimal total turning points number is
determined by the maximum value of (i, m), where m is
the total number of bins. Then the positions of the optimal
turning points can be found by the following formulation:

Tk —1,m) = arg m/?x B(k, m) (6)

where k is the total segmentation number (1 < k < K), j
is the index of bin and m is the total number of bins.

Time complexity

The time complexity of this algorithm is O(m?*n + m>k),
where m is the total bin number, n is the total cell number
and k is the total segment number. The time complex-
ity of calculating each [(i,j) is O(n) and we need to go
over O(m?) possible segments for m bins. Therefore we
need to O(m?n) time to construct the table /. For a given
segments number k, we need to calculate O(m) possible
(Ltk —1,{) + 1(/' 4+ 1,..,0)) values to get the maximum
L(k, i) for m possible i, total O(m?) times. The time com-
plexity for calculating the table L is O(m%k). In conclusion,
the time complexity of our algorithm is O(m?n + m?k).

Benchmark settings
SCOPE is a state-of-the-art tool for single cell CNV call-
ing. We followed the steps in SCOPE README tutorial to
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perform the call CNV tasks in all datasets and the default
parameters were used in all experiments. For SCYN, the
function ’call()’ was used and all parameters were set to
default values. For running time analysis experiments, all
experiments were run on a Dell server with an Intel(R)
Xeon(R) CPU E5-2630 v3 with a clock speed of 2.40GHz.
The mean value of 5 independent runs was regarded as
the final running time for each tool.
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