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Abstract

Background: The human microbiome is inherently dynamic and its dynamic nature plays a critical role in
maintaining health and driving disease. With an increasing number of longitudinal microbiome studies, scientists are
eager to learn the comprehensive characterization of microbial dynamics and their implications to the health and
disease-related phenotypes. However, due to the challenging structure of longitudinal microbiome data, few analytic
methods are available to characterize the microbial dynamics over time.

Results: We propose a microbial trend analysis (MTA) framework for the high-dimensional and
phylogenetically-based longitudinal microbiome data. In particular, MTA can perform three tasks: 1) capture the
common microbial dynamic trends for a group of subjects at the community level and identify the dominant taxa; 2)
examine whether or not the microbial overall dynamic trends are significantly different between groups; 3) classify an
individual subject based on its longitudinal microbial profiling. Our extensive simulations demonstrate that the
proposed MTA framework is robust and powerful in hypothesis testing, taxon identification, and subject classification.
Our real data analyses further illustrate the utility of MTA through a longitudinal study in mice.

Conclusions: The proposed MTA framework is an attractive and effective tool in investigating dynamic microbial
pattern from longitudinal microbiome studies.

Keywords: Composition, Classification, Dynamic, High dimensionality, Hypothesis testing, Longitudinal microbiome,
Phylogenetic tree, Variable selection

Background
The human microbiota represents a complex and rich
ecosystem of over 100 trillion microbial cells, playing a
fundamental role in maintaining health and driving dis-
ease [1, 2]. Considering that the human microbiota is
inherently dynamic and can be substantially altered by
many factors at any time point either temporally or per-
manently, recent microbiome studies [2–8] have shifted
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their research design from cross-sectional or case-control
studies to longitudinal analyses. Rather than untangling
the associations between microbes and a wide range
of diseases at a fixed time point [2, 9–13], longitudi-
nal microbiome studies target understanding how the
dynamic changes in microbiome are linked with disease
susceptibility. For example, the Integrative HumanMicro-
biome Project [2, 3] was designed to comprehensively
characterize the dynamic changes in human microbiome
in three disease-specific cohorts: pregnancy and preterm
birth, onset of inflammatory bowel disease (IBD), and
onset of type 2 diabetes. Thaiss (2018) [5] found that
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the microbiome underwent oscillations in composition,
functional activity, and localization over the course of a
day and these dynamic patterns were aberrant in obe-
sity. Lloyd-Price et al. (2019) [6] reported that periods of
IBD disease activity were distinguished by increases in
temporal variability of gut microbiome, with taxonomic,
functional, and biochemical shifts of microbiota. Such sci-
entific results provide insights into the characterization
of the microbial dynamics and raise further questions
about understanding these underlying microbial dynam-
ics as well. Do the microbial dynamics significantly relate
or contribute to the group differentials? If so, which spe-
cific microbes dominate them? Can subjects be classified
based on their microbial dynamics?
To address such questions, recent efforts have focused

on analyzing the longitudinal microbiome data. Several
parametric methods have been proposed to elucidate
the microbial dynamic changes, including mixed-effects
model [14–16], generalized Lotka-Volterra equations
[17, 18], time series models [19–21], and state-space
models [22, 23]. While those methods provide capa-
bilities to capture the microbial dynamics and identify
the time-dependent taxa, they assume that the microbial
abundance changes at a fixed rate, in the autoregressive
or autoregressive integrated moving average pattern, or
following the Markov process, which cannot always be
justified and implemented because of the limited sam-
ple size. In contrast, spline-based approaches [24, 25]
are proposed to examine whether one taxon’s changing
pattern over time or within a time interval is signifi-
cantly different between two groups or not with permu-
tation test. MetaLonDA [24] models the mapped read
counts by a negative binomial (NB) distribution and fits
the longitudinal profiles in each phenotypic group with
NB smoothing splines. While a nonparametric approach
Permuspliner [25] uses the loess spline for the relative
abundance. However, since these methods need to do
the modeling or testing taxon by taxon, the large num-
ber of taxa can inevitably affect the statistical power after
the multiple testing corrections, even at high taxonomic
ranks.
To support the comprehensive analyses in the longitudi-

nal microbiome data, we propose a microbial trend anal-
ysis (MTA) as a complementary tool which can capture
the overall community level microbial dynamic pattern for
a group of subjects. In particular, following the path of
the principal trend analysis (PTA) [26], MTA integrates
the spline-basedmethod for time-course data analysis and
principal component analysis for dimension reduction to
extract the dynamic patterns from a group of subjects.
Matrix decomposition and lasso technique are used to
address the high-dimensionality feature as in PTA, and
the graph Laplacian penalty [27–30] is additionally used
to incorporate phylogenetic tree structure, the unique

feature of microbiome data, into the analysis. In com-
bination, these help MTA to identify the dominant taxa
that contribute to the common trends simultaneously.
To make MTA hold practical value in the microbiome
research, we further propose: 1) a microbial trend group
differential test to confirm the statistical significance of
the group comparison and identify the key taxa contribut-
ing to the group differential trend, and 2) a distance-based
classification algorithm to assign a group label to a given
subject.

Results
There are three components of the proposedMTA frame-
work: MTA model, group comparison, and classification
algorithm, based on the longitudinal microbiome data. Its
workflow is illurstrated in Fig. 1 and the detailedmethod is
provided in the Methods section. Briefly, forN subjects in
a given group with the relative abundance Ynpt for the nth
subject of the pth taxon at the tth time point, n = 1, . . . ,N ,
t = 1, . . . ,T , and p = 1, . . . ,P, we first propose a non-
linear iterative algorithm (Algorithm 1, MTA model) to
extract the common trends shared by all N subjects, iden-
tify the dominant taxa, and estimate their contributions to
the common trends. Next, we propose a group differential
test (Algorithm 2) to evaluate how different two groups
are and quantify the differentiating taxa if the group dif-
ference is significant. At last, we propose a distance-based
classification algorithm (Algorithm 3) to classify subjects
based on their longitudinal microbial profiling. In the
following, we explore the performance of MTA through
the simulation study and illustrate the utility of MTA
to investigate the relationship between antibiotic usage
and the microbial dynamics using a longitudinal murine
study.

Simulation results
We constructed extensive simulations to evaluate the
performance of the proposed MTA method in both
group comparison (Algorithm 2) and classification (Algo-
rithm 3). Specifically, the performance of group compar-
ison is evaluated in terms of the empirical type I error
rate and statistical power at the group level, as well as
in terms of sensitivity and specificity at the taxon level,
compared to the competing methods Permuspliner [25],
MetaLonDA [24], and LonGP [16]. Note that Permus-
pliner, MetaLonDA, and LonGP all do the analysis taxon
by taxon. Permuspliner and MetaLonDA are strategically
similar in terms of testing the group differential, but Met-
aLonDA has a poorer performance. Meanwhile, LonGP,
as a Baysian method, provides the component relevance
and corresponding selection with a given threshold based
on the linear mixed model, rather than a testing p-value,
and its sampling procedure to determine the prior param-
eters is time-consuming. Comparisons in Additional file 1:
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Fig. 1Workflow of the microbial trend analysis (MTA) framework, which consists of three components: MTA model, group comparison, and
classification

Section S6 show that LonGP does not have the compet-
itive sensitivities either. We include only Permuspliner
in this section and report all the other comparisons in
Additional file 1: Section S6. Permuspliner tests the dif-
ferences in microbial abundance between two groups over
the longitudinal time course based on the loess splines
[31, 32]. We evaluated the performance of classification
in terms of receiver operating characteristic (ROC) curve
and area under the curve (AUC) [33].

Simulation results for group comparison
Since the common trends extracted by Algorithm 2 man-
ifest the difference between case and control groups and
have a hierarchical structure as well, the overall empir-
ical type I error rate and power for the proposed MTA
method are defined as the proportion of the adjusted p-
values for the first common trend less than the given
significance level (usually 5%) with 1000 independent
replications under the null and alternative hypotheses
respectively. Since the competing method Permuspliner
works at the taxon level and only provides the individual
p-value for each taxon separately, its overall type I error
rate and power are calculated as the proportion of at least
one taxon that has a significant adjusted p-value with the
Benjamini-Hochberg (BH) correction for multiple com-
parisons [34]. The number of resamplings in Algorithm 2
is set as R = 50.
Type I error rate and power. The first group of bars in

each subfigure of Fig. 2 reports the empirical type I error
rates of the proposed MTA method and the competing

method Permuspliner. They are all around the nominal
significance level 5%, except that when sample size N =
20 and the number of time points T = 20, both methods,
especially Permuspliner, have slightly conservative type I
error rates. Thus, both are statistically valid tests to differ-
enciate microbial dynamic patterns between groups in the
longitudinal study.
The scenarios 1-3 in each subfigure of Fig. 2 report

the estimated powers of both methods with sample size
N = 20, 30 and the number of time points T = 10, 20,
respectively. The relative performance of these two meth-
ods is similar across scenarios 1-3 in all combinations
of N and T. MTA is more powerful than Permuspliner
in most scenarios, especially when the number of time
points is large at T = 20. In addition, the power of
MTA increases as N or T increases. Taking scenario 2
as an example, the estimated power of MTA increases
from 37.1% with N = 20 and T = 10 to 66.0% with
N = 30 and T = 10, and to 90.5% with N = 30 and
T = 20. The number of time points T has an effect on
the power of the competing method Permuspliner, since
increasing time points from 10 to 20 diminishes its power
dramatically in all scenarios. This is because Permuspliner
is based on the area under the microbial splines across all
time points to evaluate dynamic patterns. The area under
the curve method is most effective when the temporal
trend difference between the compared groups is rela-
tively consistent along time, i.e. one trajectory is always
above the other. However, when the microbial trends from
two groups cross over, which is more likely to happen
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Algorithm 1 Nonlinear iterative algorithm for MTA
Input: the observed data Y n (n = 1, . . . ,N), the number of
common trends M, and the fixed tuning parameters λ1, λ2
and λ3
Form = 1, 2, . . . ,M

Initialize: Y 1
n = Y n, n = 1, . . . ,N

For i = 1, 2, . . .

Initialize: ĉ(1)m = 0, and f̂
(1)
m with

‖f̂ (1)
m ‖2 = 1 as the first estimated factor score

vector from the mean matrix 1
N

∑N
n=1 Ym

n .
Step 1: ĉ(i+1)

m =
(
NB′B + λ1�

)−1 B′
(∑N

n=1 Ym
n

)′
f̂
(i)
m

Step 2:

f̂
(i+1)
m =

[

Soft
(

ĉ(i+1)′
m B′

(∑N
n=1Ym

n

)′
, λ2
2

)

(NhIP + λ3L)−1
]′
,

where h = scalar
(
ĉ(i+1)′
m B′Bĉ(i+1)

m

)
,

Soft(a, b) = sign(a)(|a| − b)+ is the
soft-thresholding operator.
Step 3: f̂

(i+1)
m = f̂

(i+1)
m /‖f̂ (i+1)

m ‖2
If both f̂ m and ĉm are convergent with

max
(∣
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. . . ,
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)

≤ 10−5, then break;

Q̂m = Bĉm is the estimatedmth common
trend and f̂ m is the corresponding estimated
factor scores.

Ym+1
n = Ym

n − f̂ mĉmB′
Note: Instead of giving a predetermined number of
top common trends, M, to extract, the percentage of
variance, denoted as V, can be specified to be
explained by the top common trends. Then

M = arg minM
[

N‖F̂ĈBT‖2F∑N
n=1 ‖Yn‖2F

≥ V
]

, where V is set as

85% by default in the MTA package.

when the observed time period is longer, the differences
between the areas under two curves balance out. Accord-
ingly Permuspliner’s power is reduced in differentiating
dynamic patterns. Since in practice, microbial dynamic
patterns are nonlinear and the group changing trends are
more likely to intersect, as supported by our real data in
Fig. 6, the proposed MTA method has superior power.
Sensitivity and specificity. The estimated powers

above illustrate that the proposed MTAmethod has supe-
rior performance in testing the differences between two
groups than the competing method Permuspliner at the

Algorithm 2 Hypothesis testing for group comparison
Input: the observed data X = {

X1, . . . ,XN1

}
and Z = {

Z1, . . . ,ZN2

}
,

and the number of resamplings R
For r = 1, . . . ,R

For the difference array between X and Z

∗ Construct the difference array G∗(r) = Z∗(r) − X∗(r) ,
where Z∗(r) =

{
Z∗(r)
1 , . . . ,Z∗(r)

N∗
}
and

X∗(r) =
{
X∗(r)
1 , . . . ,X∗(r)

N∗
}
are randomly selected from

cases and controls without replacement, respectively,
N∗ = min(N1,N2).

∗ ApplyMTA on G∗(r) to extract the common trends
Q̂(r)
1 , . . . , Q̂(r)

M(r) , and obtain the corresponding
estimated factor scores f̂

(r)
1 , . . . , f̂

(r)
M(r) , where the

number of common trendsM(r) is related to the
explained variance captured by estimates
F̂(r) =

(
f̂
(r)
1 , . . . , f̂

(r)
M(r)

)
and Ĉ(r) =

(
ĉ(r)1 , . . . , ĉ(r)M(r)

)′

and is determined by arg minM(r)

(
‖F̂(r)

+1Ĉ
(r)
+1B′‖2F

−‖F̂(r)Ĉ(r)B′‖2F
)

/‖F̂(r)Ĉ(r)B′‖2F ≤ 10−3 , where

F̂(r)
+1 =

(
f̂
(r)
1 , . . . , f̂

(r)
M(r) , f̂

(r)
M(r)+1

)
and

Ĉ(r)
+1 =

(
ĉ(r)1 , . . . , ĉ(r)M(r) , ĉ

(r)
M(r)+1

)′
.

∗ Calculate the distance of Q̂(r)
m from 0 by

D(r)
m = ‖Q̂(r)

m ‖2 ,m = 1, . . . ,M(r) .

For the noise array

∗ Construct the noise array G∗(r)
Noise = X1(r) − X2(r) ,

where X1(r) =
{
X1(r)
1 , . . . ,X1(r)

N∗
}
and

X2(r) =
{
X2(r)
1 , . . . ,X2(r)

N∗
}
are exclusive and randomly

selected from controls, N∗ = �N1/2�.
∗ ApplyMTA on G∗(r)

Noise to extract the primary random
tend Q̂(r)

Noise .
∗ Calculate the distance of Q̂(r)

Noise from 0 by
D(r)
Noise = ‖Q̂(r)

Noise‖2 .
Use the Wilcoxon rank-sum test [57] to obtain the p-value pm for
testing whether distances Dm =

{
D(1)
m , . . . ,D(R)

m
}
are greater than

DNoise =
{
D(1)
Noise, . . . ,D

(R)
Noise

}
,m = 1, . . . ,M∗ , where

M∗ = max
(
M(1) , . . . ,M(R)

)
and D(r)

m is a missing value ifm > M(r) .
Obtain the adjusted p-values based on a gatekeeping procedure [58, 59].
Specifically, the adjusted p-values are padj1 = p1 and
padjm = max

(
padjm−1, pm

)
,m = 2, . . . ,M∗ .

Output: (i) the adjusted p-values for all the extracted common trends;
(ii) the dominant taxa which contribute to the significant common
trends; (iii) the discover rates for the dominant taxa among R
resamplings; (iv) the mean and standard error of the estimated factor
scores for the dominant taxa.

group level. We further evaluate the performance of both
methods at the taxon level in terms of sensitivity and
specificity. Specifically, sensitivity is defined as the pro-
portion of taxa correctly identified from 5 dominant
taxa that truly contribute to the difference between two
groups, and specificity is the proportion of uninvolved
taxa that are correctly identified as such. Furthermore,
the proposed MTA method determines whether a taxon
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Algorithm 3 Classification
Input: a training set involving controls X and cases Z
and a new subject Y new with an unknown group label
For Y = X and Z, respectively

ApplyMTA on Y to extract M common
trends ĈB′ and obtain the corresponding
estimated factor scores F̂ , where M is
determined by the proportion of explained
variance as indicated in Algorithm 1. Then the
predicted microbial matrix is Ŷ = F̂ĈB′.

Calculate the distances of Y new from X̂ and Ẑ and
define them as Dcon = ‖Y new − X̂‖2 and
Dca = ‖Y new − Ẑ‖2, respectively.
If Dcon > Dca, then this new subject Y new is classified
as a case, otherwise a control.

is significantly contributing or not by the estimated con-
fidence interval of its factor score with the number of
resamplings R = 50 in Algorithm 2. For the compet-
ing method Permuspliner, the adjusted p-value with BH
multiple comparison correction determines whether a
taxon is significantly different between two groups or not.
Figure 3 presents the estimated sensitivity and speci-

ficity of the MTA and Permuspliner methods for identi-
fying the dominant taxa that contribute to the microbial
dynamic differences between control and case groups,
with sample size N = 20, 30 and the number of time
points T = 10, 20 in scenarios 1-3, respectively. The
proposed MTA method has much higher sensitivity and
sufficiently high specificity in all scenarios compared to
Permuspliner, although Permuspliner has slightly higher
specificity. This indicates thatMTA has the ability to iden-
tify not only dominant taxa but also those inactive ones.
But Permuspliner suffers from the limited sensitivity in
identifying dominant taxa reliably, especially with T = 20,
which agrees with its conservative performance in the
power section. Thus, the proposed MTA method has bet-
ter performance in identifying whether or not taxa are
dominant than Permuspliner in the taxonomic analysis.
Furthermore, the proposed MTA method has the dis-

tinct advantage that it not only identifies the dominant
taxa that contribute to the extracted common trends,
but also quantifies their contributions by the estimated
factor scores. This suggests their individual effects on the
difference between two groups and provides additional
insights for followup studies. Additional file 2: Figures
S1–S3 report the extracted group difference trends and
the estimated factor scores for the corresponding dom-
inant taxa in scenarios 1-3 with N = 30 and T = 10
respectively, produced by our MTA R package.

Simulation results based on the simulation design
used in Permuspliner method. To assess the robust-
ness of the proposed MTA method, we further evaluated
both methods using the simulation design in the origi-
nal Permuspliner report [25], which is shown in detail in
Additional file 1: Section S1. When the effect directions
of the signal taxa at different time points are mixed, the
relative performance of MTA and Permuspliner is quite
similar to that reported above (the “Simulation results
for group comparison” section). MTA exhibits general
superior performance in both group and taxon levels eval-
uation (Additional file 2: Figures S4(A) and S5(A)). When
the effects of the signal taxon across all the time points
are in the same direction, which becomes less likely as the
number of time points increases, Permuspliner has higher
power than MTA, since Permuspliner directly measures
the area between the microbial splines of control and
case groups for each taxon. However, as the effect size
gets larger, the estimated powers of MTA and Permus-
pliner become similar (Additional file 2: Figure S4(B)).
Furthermore,MTAhas similar performance with Permus-
pliner in terms of sensitivity and specificity (Additional
file 2: Figure S5(B)). Therefore, considering that the same
effect direction across a long period is less likely, the
proposed MTAmethod is robust and has superior perfor-
mance to Permuspliner in terms of statistical power at the
group level, as well as in terms of sensitivity and specificity
at the taxonomic level.

Simulation results for classification
In this subsection, we evaluate the performance of the
proposed classification Algorithm 3 in terms of ROC
curve and AUC using the 10-fold cross-validation (CV)
method based on scenario 2 with different effect sizes.
Specifically, we simulated the microbial relative abun-
dances for 300 cases and 300 controls, where β1

.t and β2
.t

were assigned as below,

β1
.t = (−1, 2,−1)′ × min(|e × sin(t)|,β0p/2)

× sign(sin(t)), p ∈ ∧1; (1)
β2
.t = (−1, 1)′ × min(|e × sin(2t)|,β0p)

× sign(sin(2t)), p ∈ ∧2, (2)

where e is the magnitude of effect size and was assigned
as 1, 2, 4, 6 and 8, respectively and sign(·) is the sign func-
tion. We then randomly divided the 600 subjects into 10
groups of equal size, each of which was in turn used as a
testing set to classify a new subject, while the rest were
used as a training set to establish the predicted micro-
bial composition matrix for the control and case groups.
The ROC curve and AUC were estimated as the average
performance over 10 testing sets.
Additional file 2: Figure S6 and Fig. 4 present the over-

all ROC curves and AUCs with effect size e = 1, 2, 4, 6, 8,
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Fig. 2 Empirical type I error rate and power (%) for testing the difference between case and control groups with sample size N = 20, 30 and the
number of time points T = 10, 20 in null model and scenarios 1-3, respectively. The dashed line represents the given significance level 5%

Fig. 3 The estimated sensitivity and specificity for identifying the dominant taxa which contribute to the extracted trends with sample size
N = 20, 30 and the number of time points T = 10, 20 in scenarios 1-3, respectively
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(a) (b)

Fig. 4 The classification performance of the proposed MTA framework with the number of time points T = 20. (a) The overall ROC curves. (b) The
mean and standard error of AUCs under various effect sizes based on 10-fold CV

and the number of time points T = 10, 20, respectively.
As expected, AUC increases as the effect size e increases,
with the average AUC being 0.63, 0.76, 0.88, 0.95 and 0.96
for e = 1, 2, 4, 6, 8 respectively. These results show that the
proposed MTA framework has satisfactory performance
to classify.

Real data analysis
Livanos et al. (2016) [35] conducted a longitudinal micro-
biome experiment in mice at risk for developing Type I
diabetes (T1D). They found that early exposure to antibi-
otics altered the gut microbiota and this shift accelerated
T1D onset compared to control mice. Here we apply
the proposed MTA method to the longitudinal micro-
biome data collected in this experiment to examine the
changing microbial trend differences between the STAT
(antibiotic) and control groups. Specifically, MTA deter-
mines whether the overall dynamic patterns present in the
STAT and control groups are significantly different or not,
identifies which taxa contribute to the identified overall
group difference, and subsequently provides the corre-
sponding estimated factor scores for those identified taxa.
Algorithm 3 in the MTA framework then is applied to
classify the mice based on their longitudinal microbial
profiles.
In this study, the fecal samples collected from antibiotic

and control mice at 3, 6, 10, and 13 weeks were sequenced
to examine their 16S rRNA genes, and their median

sequencing depths were 12, 524 ± 3, 295 sequences. The
OTU table and taxonomy were determined using the
QIIME pipeline [36], and 106 genera were originally
observed. As indicated in the “Simulation design” section,
we analyzed 35 genera in 17 antibiotic and 20 control male
mice at 3, 6, 10 and 13 weeks.
Figure 5a reports the primary significant microbial

trend determined by the MTAmethod, with p-value 9.8×
10−10, representing the major difference in the micro-
bial dynamic pattern between antibiotic and control male
mice. With MTA, based on the 35 genera, we identify 5
dominant genera (Lactobacillus, Lachnospiraceae_Other,
S24-7_Other, Akkermansia, and Allobaculum) that con-
tribute to the microbial trend difference. In Fig. 5b, we
report the nonzero estimated factor scores of these 5
dominant genera and they reveal the extent of their con-
tributions to the microbial trend group difference. In con-
trast, the competing test Permuspliner only identifies 3
significant genera (Lactobacillus, Coprobacillus, Cori-
obacteriaceae_Other) associated with STAT treatment
(adjusted p-values <5%).
Figure 6 presents the group average relative abundances

over time for each identified genus by either method.
Specifically, genus Lactobacillus identified by both meth-
ods has consistently higher relative abundances at all 4
time points in the control group than in the case group.
The genera identified by MTA tend to have different
changing directions between two groups, such as genera
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(a) (b)

Fig. 5Microbial trend comparison between the STAT and control mice in the real longitudinal murine microbiome data. (a) The microbial trend
extracted by MTA represents the significant difference between STAT and control mice. (b) The estimated factor scores for the dominant taxa that
contribute to this trend. The number of resamplings R = 50

Lachnospiraceae_Other, S24-7_Other, and Akkermansia,
while Permuspliner fails to identify them, which agrees
with the simulation results. The 5 genera identified by
MTA are relatively common with their cumulative rela-
tive abundances ranging from 46.4% to 97.6% across all
4 time points. In contrast, two of three genera identified
by Permuspliner are rarer with their cumulative rela-
tive abundances ranging from 0.6% to 31.0% (Additional
file 2: Figure S7). Additional file 2: Figure S8 presents a
principal coordinate analysis (PCoA) visualization based
on the Bray-Curtis dissimilarity index using all 35 orig-
inal genera; the 5 genera identified by MTA, and the
3 genera identified by Permuspliner at 3, 6, 10 and 13
weeks, respectively. As expected, the PCoA plot based
on the genera identified by MTA closely resembles the
original plot, while the plot based on the genera identified
by Permuspliner presents a completely different pattern.
These results illustrate that 5 genera identified by MTA
well represent the original microbial diversities among
all samples, which demonstrates that MTA is capable of
capturing the differential microbial dynamic signals, and
representing taxa in the longitudinal microbiome analysis.
Figure 7 presents the distances of all mice from the

predicted microbial matrices of control and STAT mice
which are estimated from the training set based on

Algorithm 3. For a given mouse, the training set con-
sists of all other mice. We observe that 18 of 20 control
mice (specificity=90.0%) and 13 of 17 antibiotic mice (sen-
sitivity=76.4%) are classified correctly by the proposed
distance-based classification algorithm (Algorithm 3),
which is superior to the clustering results based on beta
diversity measurements at a single time point (Additional
file 2: Figure S8) as well as the results in Livanos et al.
(2016) [35] based on the hierarchical clustering using
the samples at week 6. These results demonstrate the
satisfactory performance of the proposed MTA method
in classification. Furthermore, the variation of distances
shows that STAT mice have more diverse microbial pro-
files than control mice, which is consistent with their
beta diversity measurements shown in Additional file 2:
Figure S8.
Compared to the significant signals found in Livanos

et al. (2016) [35], the proposed MTA method identifies
more significant results in terms of dominant taxa identi-
fication and mouse classification, which provides insight
into the comprehensive characterization of the gut micro-
biome. This further shows the importance of investigating
microbial dynamic changes and their characterization in
human diseases based on the longitudinal microbial pro-
files.
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(a)

(b)

Fig. 6 The relative abundances for 7 identified genera at 3, 6, 10 and 13 weeks, respectively. (a) 5 genera identified by the proposed MTA method.
(b) 3 genera identified by the Permuspliner method. Genus Lactobacillus is identified by both methods

Discussion
Compared to the PTA method [26], which was proposed
to specifically extract the common gene expression trend
patterns shared by the subjects of a group and identify
the dominant genes, the proposed MTA framework is a
more comprehensive analytical pipeline on longitudinal
microbiome data with three components. First, similar to
but extended from the PTA method, the MTA framework
extracts the microbial common trends and identifies the
key taxa, which employs not only the Lasso penalty and

the smoothing technique to deal with the high dimen-
sionality of taxa and the smoothness of the extracted
trends, but also the Laplacian penalty to address the dis-
tinct feature of microbiome data, the phylogenetic tree
structure. The second component is to evaluate the group
differential in microbial dynamic trend with permutation
strategy, and the third component is to construct a classi-
fication algorithm based on microbial dynamic profiling,
which are two new add-ons inMTA. TheMTA framework
assumes that the microbiota act as an integratedmicrobial
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(a) (b)

Fig. 7 The boxplot of distances calculated based on Algorithm 3. For a given mouse, the training set involves all other mice except for itself. The
distances of its prediction from the predicted microbial matrices of control and STAT mice were separately calculated. (a) Distances of the relative
abundances of control mice from the predicted microbial matrics of control and STAT mice, respectively. (b) Distances of the relative abundances of
STAT mice from the predicted microbial matrics of control and STAT mice, respectively

community and there are a group of key taxa that drive
the overall microbial dynamics, rather than assuming that
each microbe acts alone and needs to be tested individu-
ally [2, 37]. This community level integrated analysis pro-
vides a systematic view of microbial dynamic responses,
which is especially important for understanding complex
diseases.
The compositional nature of the microbiome has raised

many debates in the microbiome data studies [38–40].
The constant sum constraint can lead traditional sta-
tistical methods to produce spurious correlations and
errant results. Various log-ratio transformation tech-
niques have been used to deal with the compositionality
of microbiome data, such as additive log-ratio transforma-
tion (ALR), centered log-ratio transformation (CLR), and
isometric log-ratio transformation (ILR) [38–42]. These
transformations can maintain the underlying covariance
or correlation structure originating from the natural inter-
action of the components theoretically [41, 42]. How-
ever, the utility of log-ratio transformations is not able
to ease the statistical analyses entirely from the influ-
ence of the compositionality, even in the cross-sectional
study [38]. For the longitudinal microbiome studies, there
is not much discussion on how to appropriately perform
the log-ratio transformations yet. Many questions remain
open. For example, how to define the invariant reference
taxon, how to interpret the ratio when the denomina-
tor varies across time points, whether the transformation
retains the inherent temporal pattern, etc. In this paper,

we took a modest action to conduct a small simulation
and the results in Additional file 2: Figure S9 exhibit that
both ALR and CLR transformations alter the dynamic
patterns of the causal taxa that contribute to the group
difference between control and case under the simulated
scenario 1. Note that we didn’t include ILR in the simu-
lation, because it relies on the choice of the orthonormal
basis which can be arbitrary. For sure, more comprehen-
sive research are needed to evaluate the effect of log-ratio
and other transformations in the longitudinal microbiome
study.
On the other hand, we conducted additional simulations

to investigate the utility of ALR and CLR transformations
in the MTA method. Specifically, we applied the pro-
posed MTA framework to the relative abundances, the
corresponding log transformation, ALR, and CLR, respec-
tively (see the details in Additional file 1: Section S2).
The estimated powers show that using relative abun-
dances captures more dynamic information and produces
the highest power among all the methods in all sim-
ulating scenarios. The reason that MTA based on the
relative abundance has good performance is twofold. First,
MTA evaluates the dynamic difference between cases and
controls by comparing the trends extracted from a dif-
ference array G∗ to a noise trend which is randomly
arranged around 0 across all time points, rather than
directly compare the dynamic trends extracted from cases
and controls, respectively. Second, MTA employs matrix
factorization and regularization techniques to analyze all
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taxa together and identify the dominant taxa simultane-
ously, by assuming that the microbiota act as an integrated
microbial community. This strategy addresses the cor-
relations among taxa due to compositionality to some
extent [43, 44]. We recognize that all results above are
based on our simulation studies, rather than on theoretical
consideration. We include log, ALR, and CLR transfor-
mations in the MTA R package as options and let the
users decide the transformation procedure based on their
studies.
Sparsity is another feature of microbiome data, as many

taxa are rare and most samples show numerous zero
counts. Recent microbiome quality control studies and
practical data analyses indicate that many observed rare
taxa are subject to sequencing artifacts, contamination, or
sequencing error [45–47]. Filtering out the rare taxa is one
common approach to deal with this problem. Cao et al.
(2021) [48] demonstrates that filtering reduces the com-
plexity ofmicrobiome data while preserving their integrity
in downstream analysis and allows researchers to generate
more reproducible and comparable results in microbiome
data analysis. In Additional file 1, Section S7, we simulated
the longitudinal microbiome data from a zero-inflated NB
distribution to evaluate whether and how sparsity or zero
inflation affects the performance of MTA. Both low vs.
high and stable vs. time-varied zero inflations scenarios
were considered in the simulation studies. We observe
that the sparsity of causal taxa affects the performance
of the proposed MTA, while the sparsity of non-causal
taxa does not. As the sparsity of causal taxa increases,
the estimated sensitivity decreases, and the specificity
increases.
The findings of this study have to be seen in light of

some challenges. Note that the core of the MTA frame-
work is to identify the common patterns shared by all
subjects in a given group. The within-group heterogene-
ity and outliers potentially weaken MTA’s performance in
group comparison and classification. Recently, archetypal
analysis has been widely used in the clustering and clas-
sification, aiming to identify distinct archetypes (extremal
points) as the representative, rather than the prototypes
(central points or medoids) [49, 50]. The idea on how
to extract archetypes gives MTA framework a possible
solution to address the issues of heterogeneity and out-
liers. The proposed MTA framework requires all subjects
havemicrobiome sequencing data at the same time points,
and does not allow the missing values, which are not in
common in the longitudinal studies. Imputation strategies
are suggested to address the missing value issue before
applying the MTA framework. Given that the longitudi-
nal relative abundance of one taxon can be considered as a
time series, one can employ appropriate imputationmeth-
ods for univariate time series [51] to impute the missing
relative abundance accordingly, then do the normalization

to maintain the compositionality of the microbiome. As a
nonparametric method, MTA is also limited for covariate
adjustment.
Although this paper focused on binary phenotypes, the

proposed MTA framework can be easily generalized for
use with more than two categories. For group compar-
isons, Algorithm 2 can be used to compare the paired
difference between any two categories and then deter-
mine their microbial differential with correction for mul-
tiple testing. For the classification, the predictedmicrobial
matrix for each category can be estimated based on the
training set, then the distances of a new subject from
its microbial profile can be calculated in relation to the
predicted microbial matrices of all categories separately,
and finally to determine its label by comparing those
distances.

Conclusions
In this paper, we propose a microbial trend analysis
(MTA) framework for analyzing the longitudinal micro-
biome data. MTA can describe microbial dynamics, test
the group difference, extract key taxa driving the micro-
bial temporal trend, and classify the subjects. Comparing
to the competing method Permuspliner, MTA has supe-
rior performance in these tasks based on both extensive
simulations and real data analyses. Consequently, with the
recent proliferation of microbial longitudinal studies, the
proposed MTA framework is an attractive analytical tool
to study the comprehensive characterization of microbial
dynamics and identify key bacterial species that may affect
susceptibility to complex diseases.

Methods
Microbial trend analysis
Suppose there are N subjects in a given group. Let Ynpt
be the relative abundance of the pth taxon of subject n
at time point t, p = 1, . . . ,P, and t = 1, . . . ,T , and
Y n = {

Ynpt
}p=P,t=T
p=1,t=1 be a P×T matrix of the relative abun-

dances of subject n. To extract the common trends shared
by all N subjects, we consider the following optimiza-
tion problem, as illustrated in PTA [26] (Additional file 1:
Section S3),

minF ,CL(F ,C|Y n) =
N∑

n=1
‖Y n − FCB′‖2F , (3)

subject to c′m�cm ≤ a1, ‖F‖1 ≤ a2, and ‖F‖22 = 1,

where F = (f 1, . . . , fM) is a P×Mmatrix of factor scores,
C = (c1, . . . , cM)′ is anM × (T + 2) matrix of spline coef-
ficients, B = {Bi(t)}t=T ,i=T+2

t,i=1 is a T × (T + 2) matrix
containing the cubic spline basis and ‖·‖F is the Frobenius
norm. Denote Q = CB′, which is an M × T matrix pre-
senting the top M common trends across T time points.
� = {

�ij
}i,j=T+2
i,j=1 is a (T + 2) × (T + 2) matrix with
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�ij = ∫
B′′
i (t)B′′

j (t)dt, i, j = 1, . . . ,T + 2. M can be either
predetermined by the user or determined by specifying
the percentage of variance to be explained by the top com-
mon trends (see Algorithm 1 for details). The parameter
a1(≥ 0) controls the smoothness of trends with a smaller
value of a1 producing smoother trends. a2(≥ 0) controls
the sparsity of taxa to ease the high-dimentionality prob-
lem in the microbiome data, that the number of taxa P is
usually far larger than the sample size N or the number of
time points T, and only a few taxa are assumed to make
substantial contributions to the community level dynamic
trends [52]. Note that F and C are identical for all sub-
jects respectively, for they integrate information from all
subjects and represent the common trendsQ shared by all
subjects. The elements of f m are the weights of P taxa on
the mth common trend Bcm, of which a higher absolute
value indicates a stronger contribution to this common
trend. With this modeling, we can find the top M com-
mon trends from a group of subjects, and quantify the
contributions of P taxa to each of the common trends.
In addition to the high-dimensionality, another impor-

tant feature of microbiome data is the phylogenetic tree
structure that describes the evolutionary relationships
among taxa. Evolutionarily related taxa tend to have sim-
ilar effects on human phenotypes or diseases [27, 28, 30,
53]. In the existing studies, incorporating the phylogenetic
tree information into the analysis improves both statistical
power and biological interpretability [27–30]. To take this
factor into account, we integrate the following Laplacian
penalty in the optimization problem (3),

g(λ,L) = λF ′LF , (4)

where λ(≥ 0) is the tuning parameter. The Laplacian
matrix L is determined by the phylogenetic tree and con-
structed using a similar approach to that described in
Chen et al. (2012) [27]. Detailed construction of L is given
in Additional file 1: Section S4. Incorporating this Lapla-
cian penalty L weights the OTUs closely linked on the
phylogenetic tree to have similar effects on the extracted
common trends. With these two additional penalties, we
introduce two Lagrange multipliers to rewrite the opti-
mization problem (3) as

minF ,C
[
L(F ,C|Y n) + λ1C�C′ + λ2‖F‖1 + λ3F ′LF

]
, (5)

subject to ‖F‖22 = 1, where λ1(≥ 0), λ2(≥ 0) and
λ3(≥ 0) are tuning parameters that control smoothness
of the common trends, sparsity, and smoothness of the
estimated factor scores based on the phylogenetic tree dis-
tance, respectively. As demonstrated in Zhang and Davis
(2013) [26], the optimization problem (5) is biconvex,
though not convex. Thus we adapt an iterative nonlinear
partial least square algorithm in Algorithm 1 to get esti-
mates F̂ and Ĉ by minimizing the optimization problem

(5) [26, 54], modified from the Algorithm S1. The detailed
derivation is provided in Additional file 1: Section S5.
Given the observations Y n, n = 1, . . . ,N , the number of

top common trendsM or the percentage of variance V for
the top common trends to explain, and the tuning param-
eters λ1, λ2 and λ3, Algorithm 1 solves for the estimated
top common trends Q̂m = Bĉm, m = 1, . . . ,M, shared by
all N subjects, which are the linear combinations of the
relative abundances of all P taxa across T time points, and
F̂ indicates the dominant taxa and their contributions to
the common trends.
Note that the choices of tuning parameters in Algo-

rithm 1 are crucial for extracting the common trends
and we use the K-fold CV [26, 27, 55] to determine the
values of λ1, λ2 and λ3. Specifically, we randomly split
the indexes of all subjects 1, . . . ,N into K exclusive folds
with roughly equal sample size G1, . . . ,GK , and take the
subjects Y n, n /∈ Gk , as the training set and the remain-
ing subjects as the testing set in the kth cross-validation,
k = 1, . . . ,K . With the given candidate values of the
tuning parameters λ = (λ1, λ2, λ3), we obtain estimates
F̂−k

λ and Ĉ−k
λ from the training set with Algorithm 1 in

the kth cross-validation. The predicted group-level micro-
bial composition for this training set therefore is Ŷ−k

λ =
F̂−k

λ Ĉ−k
λ B′. Then the total squared error on the testing set

Y n, n ∈ Gk , is defined as ek (λ) = ∑
n∈Gk

‖Y n − Ŷ−k
λ ‖2F ,

and the average mean squared error over all K folds is
recorded as

CV (λ) = 1
N

K∑

k=1
ek(λ) = 1

N

K∑

k=1

∑

n∈Gk

‖Y n − Ŷ−k
λ ‖2F .

Finally, we select λ∗ = arg minλCV (λ) as the optimal
tuning parameters.

Group comparison
In the subsection above, we proposed the MTA method
to capture the common dynamic trends shared by all sub-
jects in a given group and identify the dominant taxa
contributing to these common trends. We next apply the
MTA method to evaluate how different two groups are
in terms of their microbial dynamic pattern, and if the
group difference is significant, quantify the differentiat-
ing taxa. The proposed group test is based on a difference
array constructed using pseudo samples and permutation
technique. Specifically, let X = {

X1, . . . ,XN1

}
and Z ={

Z1, . . . ,ZN2

}
be the arrays of relative abundances for N1

controls and N2 cases with P taxa across T time points
(here,Xn and Zn have a similar definition as Y n in the sub-
section above), respectively. The difference array then is
constructed as

G∗ = Z∗ − X∗,
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whereG∗ = {
G∗
1, . . . ,G∗

N∗
}
andG∗

n represents the relative
abundance difference between randomly paired subjects
from case and control groups with

∑P
p=1G∗

npt = 0, n =
1, . . . ,N∗, t = 1, . . . ,T , and N∗ = min (N1,N2). X∗ ={
X∗
1, . . . ,X∗

N∗
}
and Z∗ = {

Z∗
1, . . . ,Z∗

N∗
}
are the permuted

controls and cases, respectively.
Under the null hypothesis of no difference between

cases and controls, the expectation of G∗
n should be a

P × T zero matrix and the difference array G∗ thus has
only noise signal. On the other hand, under the alternative
hypothesis, that control and case groups hold different
dynamic patterns, G∗

n is expected to be time-related and
to contain some common trends illustrating the underly-
ing differences between cases and controls, which should
differ from the random noise signal under the null. Thus,
we propose a test to evaluate the dynamic differences
between cases and controls by comparing the trends
extracted from G∗ to the noise trend which is randomly
arranged around 0 across all time points. Specifically, the
test is evaluated based on the resampling (or bootstrap-
ping) method [56], with details described in Algorithm 2.
Note that Algorithm 2 consists of several components

used in constructing the hypothesis test for assessing the
microbial dynamic group differences. First, we determine
the number of common trends extracted from the differ-
ence array G∗(r), M(r), by the criterion that the increasing
rate of the explained variance is equal to or less than
10−3, to capture most of the information shared by all
pseudo subjects. Second, we employ the straightforward
and widely used Euclidean distance to measure the differ-
ences between the common trends extracted fromG∗ and
the random trend fromG∗

Noise. Third, we use theWilcoxon
rank-sum test to check whether distances Dm are greater
thanDNoise, and provide the corresponding p-value pm for
the mth common trend, m = 1, . . . ,M∗. Finally, multi-
ple testing correction is needed to adjust these individual
p-values to control the overall error rate. Since these
M∗ hypothesis tests exhibit a hierarchical structure in
which the information captured by the common trend
Qm monotonically decreases as m increases, we use a
gatekeeping procedure [58, 59] to take care of this hier-
archical structure and obtain the adjusted p-values padjm ,
m = 1, . . . ,M∗. This implies that the mth common trend
is meaningful only if the previous one has a significant
difference.

Classification
In addition to the common dynamic trends and the esti-
mated factor scores, the MTA method provides the pre-
dicted microbial composition matrix: Ŷ = F̂ĈB′ at the
group level. Since the predicted microbial composition
matrix integrates information from all subjects of a given
group and represents the unique and underlying pattern
defined by this group, it can serve as a prototype of this

group. Therefore, we propose a distance-based classifi-
cation algorithm (Algorithm 3) to classify subjects based
on their distances from the predicted microbial matrices
of two different groups in the training set. Specifically,
Algorithm 3 employs the k-nearest neighbors strategy [60]
and classifies the new subjects in terms of the similarity.
Suppose there is a training set involving controls X and
cases Z, and a new subject Ynew with an unknown group
label. First, we apply the MTA method to controls X and
cases Z separately to obtain their corresponding predicted
matrices X̂ and Ẑ. Here the number of common trendsM
integrating the predicted microbial matrix is determined
by the proportion of explained variance, as illustrated in
Algorithm 1. Second, we calculate distances of the new
subject Ynew from X̂ and Ẑ, which are defined as Dcon =
‖Y new − X̂‖2 and Dca = ‖Y new − Ẑ‖2 respectively. Finally,
this new subject Y new is classified as a case if Dcon > Dca,
otherwise as a control.

Simulation design
FollowingWang et al. (2020) [61], we designed our simula-
tion at the genus level based on the real data illustrated in
the “Real data analysis” section [35]. The real data include
106 genera for 20 control and 17 sub-therapeutic antibi-
otic treatment (STAT) male mice across 4 time points
(weeks 3, 6, 10 and 13). After filtering out those genera
that appear in less than 10% of samples or with mean
proportions less than 10−4, 35 taxa were included in the
analysis. We simulated the microbial relative abundances
at each time point for cases and controls respectively from
the Dirichlet distribution. Specifically, the mean relative
abundance of the pth taxon for a subject at the tth time
point Opt is assigned as below for p = 1, . . . ,P and t =
1, . . . ,T ,

E[Opt]= γpt
∑P

p=1 γpt
, γpt = β0p + βpt , (6)

where β0 = (β01, . . . ,β0P)′ represents the baseline relative
abundances for P = 35 taxa, which were set as the corre-
sponding estimates from the control mice using R package
dirmult [62]. βpt is the deviation from the baseline relative
abundance β0p of the pth taxon at the tth time point, which
represents the group difference.
To estimate the empirical type I error rate, the relative

abundances of controls and cases were generated under
the null hypothesis with no group difference by setting
βpt = 0, p = 1, . . . ,P and t = 1, . . . ,T .
To evaluate the statistical power, we designed three sce-

narios with two different common trends between control
and case groups, of which 3 dominant taxa (about 10% of
the total) contributed to the first one and 2 dominant taxa
(about 5%) contributed to the second one. Denote the set
of the indices of these 5 dominant taxa as ∧1 and ∧2 and
their corresponding deviations as β1

.t = (β1
1t ,β1

2t ,β1
3t)

′ and
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β2
.t = (β2

1t ,β2
2t)

′. Following Zhang and Davis (2013) [26],
they were assigned as

β1
.t = (−1, 2,−1)′ × sin(t) × min(1,β0p/2), p ∈ ∧1;(7)

β2
.t = (−1, 1)′ × sin(2t) × min(1,β0p), p ∈ ∧2. (8)

Furthermore, the ∧1 and ∧2 were determined by taking
the phylogenetic tree structure into account as follows.
We first partitioned the 35 taxa into 5 clusters using the
partition around medoids algorithm [63] on the patristic
distance in the real phylogenetic tree. Second, we ran-
domly selected two clusters and then randomly selected 3
and 2 taxa from these two clusters without replacement
as the taxa in ∧1 and ∧2, respectively. Consequently, the
dominant taxa that contributed to the group differences
were phylogenetically related.
Three different simulation scenarios were constructed

to thoroughly illustrate the performance of the proposed
MTA method and the competing method Permuspliner.
Scenario 1: The relative abundances in the control group
were generated with βpt = 0, while the relative abun-
dances in the case group were generated with β1

.t for the
taxa in ∧1 and βpt = 0 for p /∈ ∧1. Scenario 2: The rela-
tive abundances in the control group were generated with
βpt = 0, while the relative abundances in the case group
were generated with β1

.t and β2
.t for the taxa in ∧1 and ∧2

respectively and βpt = 0 for p /∈ ∧1 ∪ ∧2. Scenario 3: The
relative abundances in the control group were generated
with β2

.t for the taxa in ∧2 and βpt = 0 for p /∈ ∧2, while
the relative abundances in the case group were generated
with β1

.t and β2
.t for the taxa in∧1 and∧2, respectively, and

βpt = 0, p /∈ ∧1 ∪ ∧2; p = 1, . . . ,P, t = 1, . . . ,T . Hence,
there is only one different common trend between control
and case groups in both scenario 1 and scenario 3, but two
different common trends in scenario 2. Finally, we consid-
ered two equal sample sizes Ncase = Ncontrol = N = 20 or
30, and two numbers of time points T = 10 or 20.
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Additional file 2: FIG S1. The proposed MTA method for the comparison
between case and control groups in scenario 1 with sample size N = 30
and the number of time points T = 10. (A) The microbial trend extracted
by MTA represents the significant difference between case and control
groups. (B) The average and standard error of the estimated factor scores
for the dominant taxa that contribute to the extracted trend, respectively.
FIG S2. The proposed MTA method for the comparison between case and
control groups in scenario 2 with sample size N = 30 and the number of
time points T = 10. (A) Two microbial trends extracted by MTA represent
the significant difference between case and control groups. (B) The
average and standard error of the estimated factor scores for the dominant
taxa that contribute to those two trends, respectively. FIG S3. The
proposed MTA method for the comparison between case and control
groups in scenario 3 with sample size N = 30 and the number of time
points T = 10. (A) The microbial trend extracted by MTA represents the
significant difference between case and control groups. (B) The average
and standard error of the estimated factor scores for the dominant taxa
that contribute to the extracted trend, respectively. FIG S4. Empirical
power for testing the difference between case and control groups with
sample size N = 20, 30 and the number of time points T = 10, 20 under 1X
and 2X magnitudes of perturbation, respectively. Here, (A)
z = (0, 0.3, 0.45, 0.2,−0.3, 0.3,−0.3, − 0.2,−0.1, 0)′ and
z = (0, 0.2, 0.5, 0.3, 0.2,−0.2,−0.4,−0.4,−0.2, 0.2, 0.5, 0.2,−0.3,−0.4,−0.2,
0.2, 0.4, 0.2, 0.1, 0)′ , (B) z = (0, 0.1, 0.2, 0.3, 0.4, 0.3, 0.2, 0.1, 0.1, 0)′ and z =
(0, 0.05, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2, 0.2, 0.1, 0)′ ,
for T = 10, and 20, respectively. FIG S5. The estimated sensitivity and
specificity for identifying dominant taxa which contribute to the extracted
trends with sample size N = 20, 30 and the number of time points
T = 10, 20 under 1X and 2X magnitudes of perturbation, respectively.
Here, (A) z = (0, 0.3, 0.45, 0.2,−0.3, 0.3,−0.3,−0.2,−0.1, 0)′ and z = (0, 0.2,
0.5, 0.3, 0.2,−0.2,−0.4,−0.4,−0.2, 0.2, 0.5, 0.2,−0.3,−0.4,−0.2, 0.2, 0.4, 0.2,
0.1, 0)′ , (B) z = (0, 0.1, 0.2, 0.3, 0.4, 0.3, 0.2, 0.1, 0.1, 0)′ and z =
(0, 0.05, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2, 0.2, 0.1, 0)′ ,
for T = 10, and 20, respectively. FIG S6. The classification performance of
the proposed MTA framework with the number of time points T = 10. (A)
The overall ROC curves. (B) The mean and standard error of AUCs under
various effect sizes based on 10-fold CV. FIG S7. The relative abundances
for the genera identified by MTA (5 genera) and Permuspliner (3 genera) at
3, 6, 10 and 13 weeks, respectively. FIG S8. Beta diversity analysis for all
male mice based on the Bray-Curtis dissimilarity index. The PCoA is
evaluated based on: (A1)-(A4) 35 original genera; (B1)-(B4) 5 genera
identified by the proposed MTA method; and (C1)-(C4) 3 genera identified
by the competing method Permuspliner at 3, 6, 10 and 13 weeks,
respectively. Points represent samples. FIG S9. Evaluation of the
transformations affect on the longitudinal trends of the causal taxa that
contribute to group difference in scenario 1 with sample size N = 30 and
the number of time points T = 10, respectively. (A) The true relative
abundance time series of the causal taxa with equation (1). (B) The mean
and standard error of the relative abundances without none
transformation. (C) The mean and standard error of the relative
abundances after ALR (additive log-ratio transformation), with the last one
taxon being the reference. (D) The mean and standard error of the relative
abundances after CLR (centered log-ratio transformation).
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