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Abstract

Background: Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an
enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain
more knowledge about interactions between parasites and the host immune system during the early asexual
replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella
oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced.

Results: Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during
the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest
number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-
regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-y along with IFN-stimulated
genes GBP, IRFT and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g.
IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved
in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing

those for proteins in rhoptry and microneme organelles.

were observed during the infection. Specific E. tenella genes with altered expression during the experiment include

Conclusions: The present study provides novel information on both the transcriptional activity of £. tenella during
schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results
indicate a role for IFN-y and IFN-stimulated genes in the innate defence against Eimeria replication.
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Background

Coccidiosis is regarded as one of the most important
infectious diseases in modern poultry rearing with
significant impact on animal health, animal welfare and
industry economy [1-3]. The infection causes gastro-
intestinal disease with symptoms ranging from decreased
feed conversion to acute deaths. A recent calculation of
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the costs of coccidiosis prophylaxis, treatment and losses
in chickens estimated a yearly global cost of £10.4 billion
at 2016 prices [4]. Prophylactic coccidiostat medication
and live vaccines are available, but carry drawbacks
such as resistance development, limited supply of the
vaccines, costs and ethical concerns [3, 5]. Hence, the
development of new sustainable control methods is
demanded by the industry, but will require a better
understanding of the biology of Eimeria infection in
the chicken host.
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The disease is caused by Apicomplexan parasites of
the genus Eimeria with seven chicken specific Eimeria
species [1-3]. The clinical outcome of infection varies
between the Eimeria species and with infection dose, age
and immune status of the bird. The life cycle of Eimeria
is monoxenous and involves three phases: sporulation of
oocysts that occur outside the host, asexual replication
involving several repeated generations (schizogony), and
sexual replication (gametogony), that both occur inside
the host. Detailed knowledge on specificities of the
Eimeria life cycle such as virulence factors, immune eva-
sion mechanisms and proteins recognised by the host
immune system is still limited and often inferred from
more extensively studied Apicomplexans such as Toxo-
plasma gondii. For example, functions of parasite organ-
elles and proteins from these such as the rhoptry, dense
granules and micronemes have been identified with roles
in the entry of Apicomplexans into host cells and
establishment of the intracellular parasitophorous
vacuole [6-9]. Corresponding genes and proteins have
in some cases also been identified for Eimeria, e.g. rhop-
try kinases (ROPK) [10, 11] and micronemes [12, 13].
Moreover, particularly for T. gondii several proteins in-
volved in immune recognition and parasite immune eva-
sion have been identified [14, 15] while for Eimeria such
knowledge is much more limited. Nonetheless, for glyco-
sylphosphatidylinositol (GPI)-anchored surface antigens
(SAGs), that have been pointed out in parasite immune
recognition, 23 genes have been fully sequenced and
identified for Eimeria tenella [16]. One of these, SAG19
has also been structurally defined [17]. Among these E.
tenella SAGs, SAG4, SAG5, and SAGI12 have been
shown to be highly immunogenic, stimulate production
of nitric oxide, induce expression of IL1f and IL10 and
reduce expression of IL12 and IFNG [18].

It is well established that Eimeria infection induces
species-specific immunity in chickens after single or re-
peated infections [1, 5]. Protective immunity is thought
to be strongly dependent on a Thl-type T-cell response
with interferon (IFN)-y as a key component [5, 19].
Nonetheless, the mechanisms involved in induction of
protective immune responses as well as the effector
mechanisms involved in parasite control in immune
chickens remain largely unknown. The initiation of im-
mune responses is a complex process dependent on both
host and parasite traits. Transcriptome analysis may
offer a possibility to achieve a more complete picture of
complex immune responses, especially in animal species
such as the chicken for which the availability of im-
munological reagents is limited. Earlier studies using
microarray-based methodology to study RNA expression
in intra-epithelial lymphocytes [20-22] or caecal epithe-
lial cells [23] from Eimeria infected chickens have in-
deed contributed e.g. evidence of the immune pathways
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activated by Eimeria infection such as interleukin
and TLR signalling. These studies were however lim-
ited to the genes included on the arrays and did not
include parasite gene expression. The more recent
methodology of RNA-seq offers a comprehensive
transcriptome analysis and with dual RNA-seq both
host and parasite RNA-expression can be analysed
simultaneously, which gives a further dimension to
host-parasite interactions [24-28]. We have previ-
ously applied this methodology to follow the kinetics
of gene expression in chicken macrophage cells in-
fected with E. temella sporozites in vitro during the
first round of asexual replication [29]. Results from
this study showed early up-regulation of chicken im-
mune related genes at 2-12h post infection (hpi)
followed by strong down-regulation at 24 hpi and a
subsequent up-regulation at 72 hpi which coincides
with the release of merozoites from first generation
schizonts. Results also suggested involvement of pat-
tern recognition receptors (PRRs) mannose receptor
C type 2 (MRC2), Toll-like receptor 15 (TLR15) and
NOD-like receptor family CARD domain containing
5 (NLRC5) in E. temella innate recognition and re-
vealed E. temella genes such as rhoptry kinases and
microneme proteins with distinct expression patterns
during this phase of the life cycle. In order to moni-
tor more of the early E. tenella life cycle and to in-
clude the full host immune system the aim of the
present study was to apply the dual RNA-seq meth-
odology in vivo.

E. tenella is considered a highly pathogenic species
and performs the entire schizogony and gametogony of
the life cycle in the caeca of chickens [1-3]. The focus of
the present study was immune events and parasite ac-
tivities during invasion and first and second rounds of
asexual E. tenella replication, 1-4 days post infection
(dpi). Approximately 4 h after ingestion of oocysts E.
tenella sporozoites invade epithelial cells at the tip of
the caecal fold and then migrate to the crypt epithe-
lium where first generation schizonts develop [30].
The mature schizonts rupture and first generation
merozoites are released into the caecal lumen and in-
vade epithelial cells. The infected enterocytes subse-
quently migrate through the basement membrane and
second generation schizonts develop in the lamina
propria. A third round of asexual replication then
takes place in the caecum epithelium before sexual
replication commences. For the E. tenella Houghton
strain used in the present study first generation schiz-
onts are reported first to appear 48 hpi with maximum
numbers observed at 60 hpi [31]. The corresponding
figures for second and third generation schizonts, re-
spectively, were 84 and 108 hpi for first appearance
and 96 and 114 hpi for maximum numbers.
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Results

Clinical outcome of the E. tenella infection

In this study thirty-six chickens were infected with E.
tenella on experimental day 0 and six were kept as unin-
fected controls. For tissue sampling uninfected and
groups, n =6, of infected chickens were sacrificed on
days 1, 2,3, 4 and 10 dpi. Chickens were monitored for
clinical signs of disease daily and for oocyst excretion in
faeces between 5 and 9 dpi. For infected chickens, blood
was observed in faeces from the afternoon of 5 dpi until
7 dpi. At 6 dpi one of the chickens was lethargic and
therefore euthanised. The post mortem examination of
this chicken showed a caecal lesion score of 4 according
to the scoring system of Johnson and Reid [32] with no
further pathological findings. For the remaining chickens
no other signs of disease were observed. At 7 dpi five
chickens were sacrificed and their caecal lesion scores
were 3 for four of them and 2 for the remaining one.
The oocyst excretion (Fig. 1A) peaked at 7 dpi as
expected, but was approximately 100-fold higher at 6
dpi compared to previous results with this infection
model [33-35]. The total oocyst yield for the collection
period was 3.8 + 1.4 x 10" oocysts/chicken (mean + 95%
confidence interval), which is well in line with our previ-
ous results. The uninfected chickens did not excrete any
oocysts.

Caeca sampled in the experiment were macroscopic-
ally examined at collection. For caeca collected from un-
infected chickens and from the infected chickens at 1 to
3 dpi tissues showed a normal morphology. At 4 dpi
caeca from one of the sampled chickens showed a small
amount of petechial bleeding in the caecal mucosa. At
10 dpi all caeca were small and contracted with moder-
ately thickened caecal walls and lacked normal content.
Cores of white necrotic material (5 of 6 birds) or cores
of white and red necrotic material (1 of 6 birds) were
present in the caeca and small (3 of 6 birds) or moderate
(I of 6 birds) amounts of petechial bleeding was
observed in the caecal mucosa.

Thus, the outcome of the experimental infection was
as expected with respect to clinical signs of disease,
macroscopic lesions and oocyst excretion.

Quantification of E. tenella DNA in caecal tissues

The amount of E. tenella DNA in caecal tissues samples
included in the study was assessed with droplet digital
PCR (ddPCR; Fig. 1B). At 1 dpi E. tenella DNA could be
detected in three of the six infected chickens. From 2
dpi and onwards all infected chickens had detectable
amounts of E. tenella DNA in caecal tissues. Between 1
and 4 dpi the amount of E. tenella DNA in the caecal
samples increased progressively, approx. 10-fold between
1 and 2 dpi and 2 and 3 dpi, respectively, and approxi-
mately 100-fold between 3 and 4 dpi. At 4 dpi the

Page 3 of 19

highest amount of parasite DNA was observed for the
chicken that also displayed some petechial bleeding in
the caecal mucosa. At 10 dpi the amount of DNA in cae-
cal tissues had decreased approx. 100-fold compared to
4 dpi. On this day the chicken with the highest amount
of parasite DNA also displayed the most pronounced
pathological findings in the caeca at this sampling with
moderate petechial bleedings in the mucosa and cores of
white and red necrotic material.

Hence, the results showed a pronounced increase in E.
tenella DNA between 3 and 4 dpi, which corresponds in
time with the beginning and peak of the second gener-
ation schizonts as reported for the E. tenella Houghton
strain [31].

Sequencing and read counting

Sequencing was performed on 36 mRNA samples from
the ceaca of uninfected and E. tenella infected chickens.
Infected samples were from 1, 2, 3, 4, and 10 dpi and six
biological replicates were used for each time point and
the uninfected sample. The number of reads generated
for each time point varied between 15 million and 890
million, with the deepest sequenced samples being
from 3, 4, and 10 dpi to achieve informative coverage
of E. tenella RNA expression at these time points
(Additional file 1).

The fraction of E. tenella reads varied during the
infection, from near zero at 1 dpi to 0.75-6% at 4
dpi (Fig. 1C). Hence, the kinetics of E. tenella RNA
content corresponds to the kinetics of parasite DNA
content in these samples (Fig. 1B). A large of
variation between individuals was also observed for
the proportion of E. tenella RNA content within each
time point (Fig. 1C).

Multidimensional scaling and differential expression
analysis

In order to identify clusters and outliers in the read data,
a multidimensional scaling (MDS) analysis was carried
out (Fig. 2). Due to the low amount of data on E. tenella
expression for 1 and 2 dpi, these time points were
excluded from the analysis of the parasite data.

For the chicken data, most of the time points did not
cluster separately, except for data from 10 dpi (Fig. 2A).
The rest of the chicken data formed two somewhat sep-
arate clusters, both made up of data from several time
points, though one cluster contained all samples from 4
dpi and all but one from 3 and 0 dpi. For E. tenella data
the opposite was observed with all included time points
clustering away from each other (Fig. 2B).

Differential expression analysis was carried out for
both organisms (Figs. 3 and 4). For the chicken, data
from each time point was compared to data from the
uninfected chickens. For E. tenella, the data was
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Fig. 1 Parasite parameters after experimental infection of chickens with E. tenella with 1000 oocysts/bird at day 0. A Kinetics of oocyst excretion
from 5 to 9 dpi (120-218 h). Results show the mean number of oocysts excreted per bird (£95% confidence intervals, technical replicates n =6 at
6 and 7 dpi and n=3 at 8 and 9 dpi) from faeces collected for 24 h intervals. B The ratio of £. tenella/chicken GAPDH DNA in DNA samples from
chicken caecal tissues collected at the indicated time points post infection and C the proportion of E. tenella read counts in mRNA samples.
Symbols represent individual sample values and the line represents mean values. Corresponding symbols in panel A) and B) indicate that the

compared to a purified sample of sporozoites, described
earlier [29]. For the chicken (Fig. 3) there was no signifi-
cant differential expression at 1 and 2 dpi and only nine
significantly differentially expressed genes at 3 dpi. At 4

dpi, this pattern changed, with several significantly up-
and down-regulated genes. Finally, at 10 dpi, a large
number of genes were significantly differentially
expressed. For E. tenella, all included time points show a
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Fig. 2 Multidimensional scaling plots for the normalized count data in mRNA samples from caecal tissue. A Individual sample values for chicken
data in samples collected from uninfected chickens (0) or at the indicated dpi from chickens infected with 1000 E. tenella oocysts/bird on day O.
B Individual sample values for E. tenella data from purified E tenella sporozoites (P.0 [29];) or from caecal tissue (C) collected at the indicated dpi
from chickens infected with 1000 E. tenella oocysts/bird at day 0

large number of significantly differentially expressed
genes, both up- and down-regulated (Fig. 4).

Gene ontology (GO) category and Kyoto Encyclopaedia of
genes and genomes (KEGG) pathway enrichment analyses
A GO category and KEGG pathway enrichment analysis
was carried out for both organisms. The top 50 most sig-
nificantly enriched categories at each time point can be
found in additional files 2, 3, 4 and 5. For the chicken data
set GO categories, the top most significantly enriched

category was ‘Immune response’ (GO:0006955), being
highly up-regulated. Otherwise, the top up-regulated cat-
egories at 4 dpi mostly consisted of immune response re-
lated processes, such as ‘Interleukin-12 production’ (GO:
0032615) and ‘Defense response’ (GO:0006952), while at
10 dpi, cell cycle and repair processes were more domin-
ant, with categories such as ‘Cell cycle process’ (GO:
0022402) and ‘DNA recombination’ (GO:0006310).

For chicken KEGG pathways, the most significantly
enriched pathways at 4 dpi included ‘Cytokine-cytokine
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Fig. 3 Volcano plots of the differential expression, mMRNA from caeca from E. tenella infected chickens vs. caeca from uninfected chickens, of all
chicken genes at the indicated time points in mMRNA samples from chickens infected with 1000 E. tenella oocysts/bird at day 0. The significance
thresholds were set at log, fold change of +1 and a false discovery rate of 0.05. NS stands for non-significant

receptor interaction’ (KO:04060), ‘Influenza A’ (KO:
05164), and ‘Phagosome’ (KO:04145), all up-regulated.
At 10 dpi, ‘Cytokine-cytokine receptor interaction’
remained among the most significantly enriched categor-
ies. Only the ‘Metabolic pathways’ (KO:01100) pathway
was more significantly enriched, being significantly
down-regulated. Other pathways of note include up-
regulation of the ‘Toll-like receptor signalling pathway’
(KO:04620), ‘p53 signalling pathway’ (KO:04115), ‘C-type
lectin receptor signalling pathway (KO:04625) and
‘Intestinal immune network for IgA production’ (KO:

04672) as well as down-regulation of the ‘Peroxisome’
(KO:04146) and ‘Ribosome’ (KO:03010) pathways.

For E. tenella, the most significantly enriched GO
categories at all three time points, 3, 4, and 10 dpi, ap-
peared related to DNA and protein processing and
metabolic processes. The most up-regulated categories
included ‘Glycolytic process’ (GO:006096), ‘Oxidation-
reduction process’ (GO:0055114), ‘Translation’ (GO:
0006412), and ‘Protein glycosylation’ (GO:0006486). The
most down-regulated categories included ‘Dephosphoryla-
tion” (GO:0016311) and ‘mRNA splicing via spliceosome’
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Fig. 4 Volcano plots of the differential expression, E. tenella mRNA from caeca from E. tenella infected chickens vs. E. tenella mRNA from
sporozoites, of all £. tenella genes at the indicated time points in MRNA samples from chickens infected with 1000 E. tenella oocysts/bird at day 0.
The significance thresholds were set at log, fold change of +1 and a false discovery rate of 0.05. NS stands for non-significant

(GO:0000398). The most significantly enriched KEGG
pathways showed a similar pattern as the GO categories.
‘Proteasome’ (KO:03050) was significantly up-regulated
while ‘Spliceosome’ (KO:03040) was down-regulated
across all time points. ‘Ribosome’ (KO:03010) was signifi-
cantly up-regulated at 3 and 4 dpi but not at 10 dpi. Meta-
bolic pathways such as ‘Glycolysis / Gluconeogenesis’
(KO:00010) and ‘Citrate cycle (TCA cycle)’ (KO:00020)
were also up-regulated across all time points. Another
pathway of interest, as it is needed for the production of
SAGs, is ‘Glycosylphosphatidylinositol (GPI)-anchor

biosynthesis’ (KO:00563), which contained up-regulated
genes across all time points but the category was only sig-
nificantly up-regulated at 10 dpi.

Expression of chicken immune genes and E. tenella
invasion/infection genes

Separate analyses were undertaken of genes putatively
involved in host immune response and parasite infec-
tion/invasion processes as described previously [29]. A
further manual curation of putative immune response
related genes was also carried out.
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Results from the differentially expressed chicken im-
mune genes were plotted in a heatmap (Fig. 5). The
most pronounced contrasts in the heatmap were the
general differences in expression between 1 and 4 dpi
and 10 dpi, and more specifically in expression of im-
mune genes between 4 and 10 dpi. Nonetheless, a group
of immune genes that were up-regulated at 4 dpi and
mostly down-regulated at other time points, including
10 dpi was also observed.

The expression profiles of manually curated categories
of host immune genes were plotted only including genes
that showed significant differential expression at least at
one time point. Among genes for chicken chemokines
(Fig. 6A), CCLL4 showed a distinct expression pattern
with significant up-regulation of expression already at 3
dpi and progressively increasing levels of expression at 4
and 10 dpi. For the other chemokines with significant
differential expression, two groups with similar intra-
group expression patterns were observed, both showed
up-regulated expression but at 4 dpi or 10 dpi, respect-
ively. The group up-regulated at 4 dpi included e.g.
CCL4-2 and CCLI19, and most of these genes showed
lower expression at 10 dpi compared to that at 4 dpi.
The group with up-regulated expression at 10 dpi, such
as IL8L1 and IL8L2, were only significantly up-regulated
at this time point.

Among chicken cytokines with significant differential
expression the majority were up-regulated and only at
10 dpi (Fig. 6B). However, IFNG, IL10 and LOCI101747944
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(IL-12B-like) showed significant up-regulation at 4 dpi
and among these solely ILI0 was not significantly up-
regulated at 10 dpi. Among cytokines only MIF and IL34
were significantly down-regulated and this occurred at 10
dpi.

Differentially expressed IFN-stimulated genes were
also identified (Fig. 7A) and most of these were signifi-
cantly up-regulated at 10 dpi only. However, GBP, IRFI
and RSAD?2 were significantly up-regulated at 4 dpi.

For differentially expressed PRR genes (Additional file 6)
most were significantly up-regulated at 10 dpi only.

Differentially expressed genes associated with cytotoxic
T-lymphocytes (CTL), e.g. the a- and P-chains of the
CD8 co-receptor and components of cytotoxic granules,
were also identified (Additional file 6). Most of these
were significantly up-regulated at 10 dpi only but CD8A
was significantly up-regulated also at 4 dpi and
LOCI00858579 (granzyme G-like) was significantly
down-regulated at 10 dpi only.

To broaden the focus on early immune activation we
also examined immune related genes with significant dif-
ferential expression at 3 and 4 dpi that did not fall into
any of our other studied immune gene categories
(Fig. 7B). This analysis revealed that MMP1 was sig-
nificantly up-regulated at 3 dpi and the expression
continued to increase at 4 and 10 dpi. Other genes
for members of the matrix metalloproteinase family
with significant differential expression where either
significantly up-regulated at 4 and 10 dpi, MMP7 and

Color Key

1 dpi 2 dpi

Fig. 5 The heatmap depicts the expression profile of 284 immune related chicken genes at the indicated time points in mRNA samples from
caecal tissue of chickens infected 1000 E. tenella oocysts at day 0. Blue represents up-regulation and red down-regulation. Expression is
normalized within each row. For details on the selection of immune related genes see [29]

3 dpi 4 dpi
Timepoints
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MMPIO0, only up-regulated on 10 dpi, MMP2, MMP9,
MMP23B and MMP27, or down-regulated on 4 dpi,
MMPI3. Among other immune genes with increased
expression at 4 dpi also ITGB3, IL21RBI, IL13RA2,
SOCSI, SOCS3, SUSD4, IL411, ILI8BP and CDSS5,
were identified.

Several categories of E. tenella genes involved in the
host cell invasion process of the parasite were also exam-
ined: The SAG genes, the rhoptry kinase (ROPK) genes,
the rhoptry neck protein (RON) genes, the dense granule
(GRA) genes and the microneme (MIC) genes. This

analysis made use of the same classification of genes as de-
scribed previously [29] and parasite gene expression was
examined with the same significance thresholds as the
chicken genes. The majority of SAG genes (Fig. 8) had
similar patterns of expression, with peak expression at 4
dpi and a slight decrease in expression at 10 dpi compared
to 4 dpi. Most of the genes were up-regulated with only
SAG14, SAG4, SAGIO and SAGI3 significantly down-
regulated, all at 3 and 10 dpi and SAG13 at 4 dpi as well.
The ROPK genes (Fig. 9A) tended to be consistently
either up-regulated or down-regulated throughout the
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experiment, compared to that in pre-infection sporozo-
ites. A few, such as ROPK/Eten3_1 and ROPK/Unique_1,
showed larger changes, with the first increasing expres-
sion at 10 dpi and the latter with decreasing expression
during the experiment.

The six differentially expressed RON genes (Fig. 9B)
showed varied expression profiles. For example, RONS
was significantly down-regulated at 3 and 4 dpi but sig-
nificantly up-regulated at 10 dpi, RON2 was significantly

up-regulated at all time points while RON9 was signifi-
cantly down-regulated at all time points.

Three of the four differentially expressed GRA genes
(Fig. 10A) were down-regulated across all time points
while expression of EtGRAII progressively increased
during the experiment and it was significantly up-
regulated at 10 dpi.

The differentially expressed MIC genes (Fig. 10B) had
more varied expression patterns. For example TgMIC8/9
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and EtMIC3 were both significantly up-regulated across
all time points while EtMIC13 was only significantly up-
regulated at 4 and 10 dpi, AMAI isol was significantly
up-regulated at 4 dpi and TgMICI7A/B at 10 dpi. The
rest of the MIC genes were down-regulated across all
time points.

Discussion

This study aimed to contribute to a more comprehensive
picture of the transcriptional processes of E. tenella and
the chicken host immune response during the early
phases of infection. We detected significant alterations
in the expression of both parasite and chicken genes in
the infected caecal tissue from 3 dpi.

For immune responses the focus of the present study
was to identify early immune events that reflect the rec-
ognition of infection, activation of innate immunity and
regulation of ensuing responses. Indeed, regarding over-
all expression of immune response related genes in cae-
cal tissue a group of genes with up-regulated expression
at 4 dpi was identified. Notably, one of the up-regulated
GO-categories at this time point was production of
interleukin-12, a pro-inflammatory cytokine with key
roles in connecting innate immune activation with the
initiation of subsequent Thl-type responses [36]. Since
Thl-type responses are considered essential for protec-
tion against Eimeria-infection [19] our results suggest
that the chain of events leading to development of pro-
tective immunity already was initiated at this time point.
This was also supported by a recent report showing that

the Thl pathway was among top up-regulated GO-
categories in jejeunal tissue from E. maxima infected
chickens 4—6 dpi [37]. Beside this, the most striking ob-
servation in the general analysis of immune related
genes in our data was the up-regulated expression of a
large number of genes at 10 dpi. This was an expected
observation since at this time the parasite life cycle is
completed and many immunological and inflammatory
processes are ongoing including tissue regeneration. In
this infection model we have previously e.g. observed a
prominent increase of CTL among leukocytes in the cae-
cal mucosa [35] and increased mRNA expression of
genes for cytotoxic granule proteins such as perforin and
granzyme A [33] at 10 dpi. In the current results evi-
dence for the recruitment and activation of CTL was
again observed at 10 dpi, as up-regulated expression of
e.g. CD8A, CD8B, PRF1, GZMA, GZMK and GNLY,
which confirms the sensitivity of the RNA-seq method-
ology used.

For E. tenella, the small amount of genetic material
present in the sampled tissue on the first two time
points limited the analysis to only 3, 4, and 10 dpi. The
data for these three time points, however, was plentiful,
with a large number of significantly differentially
expressed genes compared to pre-invasion sporozoites.
The samples from each of these time points clustered
separately in the MDS analysis, showing significant dif-
ference in expression patterns. This could be due to dif-
ference in parasite expression during the distinct phases
of the life cycle. At 3 dpi and 4 dpi, the parasite should
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be in the midst of the first and second asexual
reproduction cycles, respectively [31]. Similarities and
distinctions between these two stages might explain why
samples from 3 and 4 dpi cluster together along leading
logFC dim 1 but form separate clusters along dim 2. At
10 dpi, the life cycle is completed but since oocysts may
be detected in faeces up to 14 dpi [31] it is likely that
low-grade sexual replication and oocyst maturation still
occur. In the present results 10 dpi samples form a
looser cluster with “outliers” compared to samples from
3 and 4 dpi. This might indicate that host factors were

starting to influence parasite replication leading to a
lower degree of synchronisation of replication between
individual chickens.

In the overall gene expression analysis a general down-
regulation of DNA and RNA processing categories and
up-regulation of protein expression and energy metabol-
ism categories was observed. A similar pattern was re-
corded when the first schizogony of E. tenella was
monitored in cell culture [29] and analogous results have
been observed for E. maxima when merozoites and oo-
cysts were compared [38]. Based on these observations
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one may hypothesise that Eimeria merozoites in general
may have a lower level of splicing and increased protein
expression compared to sporozoites.

In the present study the earliest clear host immune ac-
tivation observed in caecal tissue was a strong increase
in the expression of matrix metalloproteinase MMPI
and chemokine CCLL4 at 3 dpi. For MMPI a prominent
increase in expression was observed from 3 dpi and its
expression then remained at a high level throughout the
rest of the experiment. In addition, other genes in the
matrix metalloproteinase family also showed increased

expression at 4 and/or 10 dpi. Matrix metalloproteinases
are proteolytic enzymes that have many roles in the im-
mune responses to infections, e.g. by recruiting immune
cells, modulating chemokine and cytokine responses and
in tissue degradation and remodelling [39]. Earlier re-
ports have shown mRNA expression of several MMPs
including MMP1 in caecal epithelial cells [23] and in-
creased levels of serum MMP9 [40] after E. tenella infec-
tion of chickens and MMP activity has been shown in
jejunal content after E. maxima infection of chickens
[41]. In our previous in vitro study of E. tenella infected
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chicken macrophages [29], MMP9 expression was transi-
ently up-regulated at 12 hpi while MMPI10 and MMPI17
expression was up-regulated later in the infection at 48—
72 hpi (unpublished observation). Hence, considering
the prominent early response observed in the present
study matrix metalloproteinases may be of importance
in the early recognition of Eimeria infections. It is also
possible that the early, 3 dpi, expression of MMPI could
be involved in the migration of merozoite infected enter-
ocytes through the basement membrane, which occurs
at this time point [30]. In support of this, a transient
accumulation of mucosal mast cells has been ob-
served around epithelial cells invaded by first gener-
ation E. tenella merozoites [30, 42] and it has been
suggested that mast cells may disrupt the mucosal
basement membrane by activation of matrix metallo-
proteinases [30, 43].

The chemokine CCL4 also showed a prominently
increased expression at 3 dpi and then remained the
chemokine with the highest differential expression
throughout the rest of the experiment. At 4 dpi we also
observed a group of chemokines, CCL4-2, CCL17,
CCL19, CCL20, CCL26 and CCAH221, with a clear peak
of up-regulated expression. We earlier observed prompt
up-regulation of the expression of several chemokines
including CCL4-2, CCLI17 and CCL20 at 4h after
in vitro E. tenella infection of chicken macrophages [29].
Other reports have also shown increased chemokine
gene expression, e.g. IL-8 and CCL4, in intestinal tis-
sues/cells approx. 4 to 10 days after Eimeria infection of
chickens [23, 44—49], which is in line with the present
results. Chemokines are crucial for recruitment of im-
mune cells to the site of infection and important for the
regulation of subsequent immune responses. Thus, the
present results contribute to a more comprehensive
picture of the kinetics of chemokine expression in the
initiation of chicken immune responses to Eimeria
infections.

For cytokines most genes with significantly altered ex-
pression were up-regulated as part of the general im-
mune activation at 10 dpi. However, expression of three
cytokines were significantly up-regulated at 4 dpi; IFNG,
IL10 and LOC101747944 (IL-12fB-like). Among these,
IFN-y is regarded as a cytokine of central importance in
chicken immunity to Eimeria-infection both as an ef-
fector cytokine inhibiting parasite intracellular develop-
ment and as a key regulator of Thl-type responses
(reviewed in [19]. In line with the present results, early
IFN-y responses in intestinal tissues/cells upon primary
Eimeria-infection of chickens have been reported previ-
ously [21, 23, 37, 45, 47, 48, 50, 51]. Moreover, in the
present results some of the differentially expressed IFN-
induced genes, i.e. GBP, IRF1 and RSAD2, were signifi-
cantly up-regulated at 4 dpi, which may be a result of
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IFN-y stimulation. Expression of IFN-induced genes
were also reported in caecal epithelial cells 4.5 days after
E. tenella infection [23] and in jejeunal tissue 4—6 days
after E. maxima infection [37] and in the latter study
IEN signalling was the top enriched GO pathway at 4
dpi for chickens relatively resistant to the infection. For
related Apicomplexan parasites T. gondii and Neospora
caninum it has been shown that IFN-y induced
members of the murine guanylate-binding protein (GBP)
family can restrict the intracellular growth of the
parasites [52], which for T. gondii has been suggested
essential for survival of infected mice [53]. Also the IFN-
induced transcription factor IFN regulatory factor 1
(IRF1) is suggested to be of importance in parasite de-
fence since it has been shown that IRF1 deficient
(IRF17/7) mice have a high susceptibility to T. gondii in-
fection [54, 55]. In addition, parasite evasion mecha-
nisms aimed at GBP and IRF1 have been described for
T. gondii. For example, it has been shown that the rhop-
try protein TgROP18 inhibits both murine GBPs [14]
and human IRF1 [56]. Thus, the early IFN-y response
and IFN-induced innate effector functions may be cru-
cial events in the chicken immune response to Eimeria-
infection and it would be valuable to identify these early
IFN-y producing cells for our further understanding of
Eimeria immune recognition.

At 4 dpi we observed a transient up-regulation of IL10
expression in caecal tissue. Interleukin-10 (IL-10) is a
pleiotropic cytokine well known for its immunoregula-
tory effects and in the context of protozoan infections
IL-10 is suggested to have a role in controlling the po-
tentially host-damaging effects of parasite-eliminating
immune responses [57, 58]. Induction of IL-10 has earl-
ier been observed upon Eimeria infections of chickens
[37, 45, 48, 50, 59-61] and increased IL-10 expression
has been associated with increased susceptibility to
Eimeria-infection [37, 50, 59, 61]. Chicken macrophages
have also been shown to up-regulate IL10 expression
upon in vitro stimulation with recombinant E. tenella
surface antigens, SAG4, SAG5 and SAG12, [18]. For
these SAGs we observed up-regulated expression of
SAG5 and SAGI2 and down-regulated expression of
SAG4 by the parasite during the present experiment.
Hence, the observed IL-10 response may be part of E.
tenella immune evasive mechanisms as well as part of
the host’s intrinsic regulatory immune mechanisms.
Interestingly, at 4 dpi several of the other immune re-
lated genes with up-regulated expression have general or
more targeted immune regulatory effects, i.e. inhibitors
of the cytokine-induced STAT cell signalling pathway
SOCSI and SOCS3 [62], regulators of specific immune
events, e.g. Thl-type responses, IL411 [63] and ILI8BP
[64], and complement inhibitors SUSD4 [65] and CD55
[66]. These early events may equally be part of the
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parasite’s or the host’s defence strategy. As an example
of this the expression of suppressor of cytokine signal-
ling (SOCS) 1 [67, 68] is induced by some T. gondii
strains to avoid the effects of IFN-y while SOCS3 on the
other hand is essential for mounting protective immune
responses against 7. gondii [69], which highlights a
complex balance of measures and countermeasures in
infection biology.

The expression of several categories of genes involved
in the E. tenella infection process, i.e. SAG, ROPK,
RON, GRA and MIC genes, was examined in greater
detail. In the present study, all SAGs, except for SAGI,
SAG9 and SAGI9, showed some level of differential
expression. The majority of SAGs showed only up-
regulation, indicating roles in the merozoites. SAG5 and
SAG12 were both up-regulated at all time points while
SAG4 was down-regulated, indicating some expression
in the sporozoite. The down-regulation of SAGIO,
SAG13 and SAG14 also agrees with previous with the re-
sults of Tabarés et al [16] that these are expressed in
both the sporozoite and merozoite while the rest were
only found in one stage.

Rhoptry proteins ROPK and RON are known to have
roles in the initial stages of Apicomplexan cell invasion
[7]. For E. tenella several sub families of ROPK unique
to Eimeria have been identified dubbed ROPK/Etenl1-6
[11]. In the present study, most of the ROPK genes
showed a consistent expression level, with either slightly
higher or lower expression at 4 dpi compared to 3 dpi
and a similar or slightly lower level at 10 dpi. Overall,
the expression of these genes appears to differ far more
between the sporozoite and the intracellular lifecycle
stages than within the latter. A few genes, such as
ROP35_2, ROPK/Eten3_1, ROPK/Eten5_2, ROPK/Eten5_
3, ROPK/Eten5_4 and ROPK/Unique 1 show more
dramatic changes in expression level. This may indicate
differing roles between the two merozoite stages and be-
tween the merozoites and the zygote/developing oocysts
at 10 dpi.

The RONSs have roles in cell invasion and in formation
of the parasitophorous vacuole [7, 10]. In the present
study, the RON genes were more varied in expression
pattern compared to the ROPK genes, with RONS
(ETH_00005755), especially, showing a considerable in-
crease in expression between each time point. These re-
sults agree with those of Oakes et al. [10], with RON2
(ETH_00012760) being up-regulated in the merozoites
and RON3L1 (ETH_00007925) being down-regulated
(i.e. up-regulated in the sporozoite). RONS is interesting
as it was highly expressed in the sporozoite, which
agrees with it being down-regulated at 3 and 4 dpi.
However, it was highly up-regulated at 10 dpi,
indicating that it may also play some role during
oocyst formation/development.
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The dense granule proteins have been extensively
studied in T. gondii while those of the Eimeria genus are
still rather poorly defined [6, 9] but several orthologues
have been identified in the E. tenella genome and were
included in the present study. Overall, three of four
GRA genes that were significantly differentially
expressed were down-regulated at all time points, pos-
sibly indicating a larger role in sporozoites than merozo-
ites. The fourth, GRA11, was highly up-regulated at 10
dpi, which may indicate a role in the oocyst.

Microneme proteins are involved in cell invasion and
formation of the parasitophorous vacuole, e.g. AMAI1
[70], as well as parasite motility and binding to host cell
membranes [8]. A number of microneme proteins have
been described for E. tenella, including EtMIC4 [12] and
EtMIC2 [13]. In the present study, the three isoforms of
AMA-1 show two different patterns. Both AMA-I and
AMA-1_iso2 were significantly down-regulated at all
three time points, most strongly at 3 and 4 dpi. AMA-1_
isol on the other hand, showed significant up-regulation
at 4 dpi. This is in line with previous results, both from
our in vitro gene expression experiments [29] and earlier
proteomic experiments [71]. It further supports that E.
tenella uses different forms of AMA1 in sporozoites and
merozoites. In addition, an orthologue of TgMICI7A/B,
showed a similar pattern of expression to RONS and
GRA11, perhaps also indicating a role in the oocyst and
sporozoite.

At the two earliest time points in the present study,
i.e. 1 and 2 dpi, the proportion of E. tenella transcripts
was too low to allow meaningful analysis of the
expressed genes. Moreover, we did not detect any major
changes in the chicken transcriptome at these early time
points either. It would be reasonable to expect some
host responses to the first generation of schizonts devel-
oping during this time. However, with the inoculation
dose used a maximum of approx. eight thousand in-
fected enterocytes can be generated and the present
methodology might simply not be sensitive enough to
detect responses to such a small proportion of the total
cells present in the sample. In previous studies using this
infection model we did not detect altered expression of
CTL associated genes [33] or signs of activation of
CD8p-expressing cell populations [35] in caecal mucosa
during this phase of infection of naive chickens, which is
in line with the present observations. Among earlier RT-
PCR or RNA-seq based studies of Eimeria-infected
chickens that include samples collected at 1 and 2 dpi,
those using intestinal tissue samples reports no or very
low changes in mRNA expression at these time points
[37, 46, 47] while those using purified intestinal mono-
nuclear leukocytes report genes with altered expression
[45, 51]. In addition, RNA-microarray based studies of
Eimeria-infected chickens wusing purified intestinal
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mononuclear leukocytes report some altered gene ex-
pression at 1 and 2 dpi [20-22]. However, such studies
will of course only allow expression profiling of the
purified cell types. It might be more fruitful to study re-
sponses upon the first invasion of host cells by sporozo-
ites and during the first round of schizogony in in vitro
systems such as the chicken macrophage cell-line we
have used earlier [29].

Conclusions

Taken together this study has given novel insights into
the initial immune activation and parasite activities dur-
ing primary E. tenella infection. For example findings
suggest a role for IFN-y and IFN-induced genes as anti-
parasite effector mechanisms in the innate chicken
defence against Eimeria infections. Our results demon-
strate the usefulness of dual RNA-seq for addressing the
complexity of host-parasite interaction. Future applica-
tions of this methodology may include studies of add-
itional E. tenella life cycle stages in the chicken host, of
other Eimeria species and of infections in immune birds.

Materials and methods

Maintenance of the E. tenella isolate and generation of
sporulated oocysts

A pure E. tenella Houghton strain [31] isolate was
maintained by twice yearly passage in chickens and
sporulated oocysts were prepared according to earlier
described protocols [33].

Experimental design and infection of chickens with E.
tenella oocysts

For this study in total 42 female Dekalb White Leghorn-
type laying chickens purchased from a commercial
hatchery were used. All chickens were reared from day-
old under SPF-conditions at the National Veterinary In-
stitute animal facilities and were group housed in cages
in rooms under negative pressure ventilation. At 12 days
of age blood samples were collected and analysed for
maternal antibodies to E. temella using an in house
ELISA as previously described [33]. Chickens were then
allocated to seven groups with respect to an even distri-
bution of maternal antibodies. One group was kept as
uninfected control and at 17 days of age chickens in the
remaining six groups were inoculated orally with 1000
live E. tenella oocysts per bird. Five infected groups and
the uninfected group were used for tissue sampling and
the remaining infected group was used for caecal lesion
scoring [32] at 7 dpi.

Viability of inoculation oocysts was estimated based
on our experience that approx. 12% of oocysts loose
infectivity per month of storage in 2% dichromate at
4°C and oocysts used in this experiment had been
stored for 3 months.
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From 5 to 9 dpi all faeces produced by chickens
were collected once a day and numbers of oocysts
per gram faeces (OPG) were determined as described
earlier [33, 34].

Caecal sample collection and RNA extraction

At 1, 2, 3, 4 and 10 dpi all chickens in one of the in-
fected groups and one or two of the uninfected control
chickens were killed by cervical dislocation and the two
caeca were collected. Approximately 1 cm of the prox-
imal part of the caeca containing the caecal tonsils was
cut off. The remaining caeca were cut open longitudin-
ally and caecal contents were thoroughly rinsed off with
ice cold PBS. Ceacal tissues were cut into 0.5 cm wide
strips and the tissue from the two caeca from each bird
were pooled in 5 ml RNAlater (ThermoFisher Scientific).
Samples were subsequently stored at 4°C for 24 h and
thereafter stored at — 20 °C.

Caecal tissues stored in RNAlater were thawed, re-
moved from the solution and briefly air-dried. Tissues
were shaken three times in a 15ml screw cap tube for
60s at 6.2 m/s in 10 ml of TRIzol (ThermoFisher Scien-
tific) and a 1:1 mixture of 2mm ¢ and 0.5 mm @ Zirco-
nia/Silica beads (BioSpec products). After this treatment
all mucosal tissue, but not all connective tissue, was ho-
mogenized. Samples were then stored at —70°C. Total
RNA was isolated with a TRIzol/choloroform extraction
protocol, DNAse treated, quality controlled and quanti-
fied as previously described [29].

RNA sequencing

RNA samples isolated from the caecum from the unin-
fected chickens and E. tenella infected chickens at 1, 2,
3, 4 and 10 dpi, respectively, were sequenced with six
biological replicates for each time point as described
above. The sequencing libraries were prepared from
0.4-1.0 ug total RNA using the TruSeq stranded mRNA
library preparation kit (Illumina) with polyA selection
according to the manufacturer’s protocol. For infected
chicken samples collected at 3 and 10 dpi, due to the
quantity of data to be generated, 2 sequencing libraries
were prepared for each sample to ensure sufficient diver-
sity. Sequencing was done on a NovaSeq 6000 using an
S4 flow cell, except for uninfected samples and those
from 1 and 2 dpi for which an SP flow cell was used,
with paired-end 150bp reads and vl sequencing
chemistry.

Read counting and differential expression analysis

Read counting and differential expression analysis was
performed as previously described in [29]. Briefly, the
reads were quality checked using FastQC v0.11.8 [72]
and MultiQC v1.8 [73], trimmed with Trimmomatic
v0.36 [74], mapped to the reference genomes (Gallus
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gallus; GCF_000002315.6_GRCg6a, and Eimeria tenella;
GCF_499545.2_ETHO001) using STAR v2.7.2b [75] and
mapped reads counted using HTSeq v0.9.1 [76], edgeR
v3.28.1 was used to perform differential expression
analysis, analysing E. temella and chicken expression
separately. The comparisons made were infected tissue
samples at each time point vs the uninfected tissue for
chicken data and parasites at the infection time points vs
a pure sporozoite sample for E. tenella data. GO and
KEGG enrichment analysis and visualisation of results
were performed as previously described [29].

DNA isolation and ddPCR assays for quantification of E.
tenella and chicken cells

DNA was isolated from 1ml aliquots of caecal tissue
homogenised in TRIzol according to the TRIzol manu-
facturer’s protocol. DNA preparations were subsequently
cleaved using Bam HI restriction endonuclease (New
England BioLabs Inc.) according to the manufacturer’s
instructions.

Two ddPCR assays were set up to quantify host and
parasite cells using previously described primers and
probes for detection of E. tenella [77] and chicken glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) [33].
The assays were set up for the QX100 ddPCR system ac-
cording to the Droplet Digital PCR Applications Guide
(BIO-RAD). In brief, reactions had a total volume of
20 ul containing 10 pl ddPCR Supermix for Probes (BIO-
RAD) 0.4 pM of each primer, 0.13 pM of probe and 2 pl
of DNA samples. PCR reactions were carried out in a
thermal cycler at PCR cycling parameters 10 min at
95 °C followed by 50 cycles of 30s at 94°C and 120s at
58°C followed by 10 min at 98 °C. Data were analysed
using QuantaSoft software version 1.5.38.1118. FAM
fluorescent droplets were analysed in channel 1 and
fluorescent and non-fluorescent droplets were separated
with a threshold set at 2000 AU. Samples with less than
3 positive droplets were considered negative. Data was
expressed as the ratio of copies of E. tenella/copies of
chicken GAPDH in each sample.
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after E. tenella infection.
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