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Abstract

Background: As non-coding RNA molecules of more than 200 bp in length, long non-coding RNAs (lncRNAs) play
a variety of roles in biological processes, including regulating the immune responses to bacterial infections. In
recent years, there have been many in-depth studies on mammalian lncRNAs, but the relevant studies in fish are
very limited. Meanwhile, since lncRNAs are not conserved among species, it is difficult to apply the existing results
directly to unstudied species.

Results: To obtain the information of lncRNAs in Megalobrama amblycephala, one of the most economically
important freshwater fish in China, also to better understand the biological significance of lncRNAs in the immunity
system, the fish liver at 0, 4, 12, 24, and 72 h post Aeromonas hydrophila infection (hpi) were obtained for lncRNA-
sequencing (lncRNA-seq). A total of 14,849 lncRNAs were identified, and 2196 lncRNAs showed significant
differences at different time points post A. hydrophila infection. Gene Ontology (GO) annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the target genes of the differentially
expressed lncRNAs were enriched in several pathways related to immune such as apoptosis, inflammation, and
immune response. Time-specific modules were then identified, using weighted correlation network analysis (WGCN
A), and 28 modules significantly correlated with different time point after infection were found. Furthermore, four
immune-related genes and six lncRNAs in the time-specific modules were subsequently verified by RT-qPCR.

Conclusions: The above findings reveal the discovery of widespread differentially expressed lncRNAs in the M.
amblycephala liver post A. hydrophila infection, suggesting that lncRNAs might participate in the regulation of host
response to bacterial infection, enriching the information of lncRNAs in teleost and providing a resources basis for
further studies on the immune function of lncRNAs.
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Background
Long noncoding RNAs (lncRNAs) are operationally de-
fined as non-coding RNA molecules with a length of
more than 200 base-pairs (bp) [1]. LncRNAs include
intergenic lncRNAs (lincRNAs), antisense lncRNAs, in-
tronic lncRNAs, and sense lncRNAs [2]. As multifunc-
tional molecules, lncRNAs play important roles in
multiple biological processes by interacting with RNA,
DNA, or proteins to change the expression of protein-
coding genes [3], which can regulate diverse cellular pro-
cesses, including disease process, development and cell
proliferation [4].
Since the expression pattern of lncRNAs is closely re-

lated to the development of many diseases [5, 6],
lncRNAs have gradually become a research hotspot in
the field of life sciences. LncRNAs regulate gene expres-
sion at the epigenetic, transcriptional and post-
transcriptional levels [7] and previous studies have
shown that they play an important regulatory role in the
innate immune system [8, 9]. The adaptive immune cells
provide vital immune protection under the guidance of
lncRNAs [3]. Meanwhile, microRNAs (miRNAs) can
regulate gene expression post-transcriptionally [10]. Bac-
terial infection in mammals can interferes with miRNA
expression, thus altering the mechanism of immune sig-
nal transduction, autophagy, or apoptosis [11]. As com-
peting endogenous RNA (ceRNA), messenger RNAs,
transcribed pseudogenes, and lncRNAs form a large-
scale regulatory network across the transcriptome to
communicate with each other through miRNA response
elements (MREs) [12]. The MREs in coding and non-
coding transcripts affect the expression levels and activ-
ities of different ceRNAs [13], which were associated
with a variety of diseases [14]. As miRNA sponges,
lncRNAs play a role in immunity by competitively in-
hibit the ability of miRNAs to interact with their mRNA
targets [15, 16].
Most studies about immune-related lncRNAs are

mainly focused on mammalian species, especially human
and mouse. Previous research has established that
lncRNAs play a paramount role in immunity by inducing
immune gene expression, regulating cytokine genes,
adaptive immune cells, and participating in RNA-
protein, RNA-DNA, or RNA-RNA interactions [3]. The
lncRNA transcripts significantly enrich in autoimmune
and immune-related disorders (AID) loci [17], which
makes lncRNAs a biomarker for human disease or a tar-
get for medical detection. For example, lncRNAs are in-
volved in the host response to viral infection and innate
immunity during SARS-CoV infection in mouse [18]. Li
et al. (2018) find that lncRNA MEG3–4 is more com-
petitive than miR-138 when combining with proinflam-
matory cytokine interleukin-1β (IL-1β), thus intensifying
the inflammatory responses to bacterial infection in mice

[19]. Additionally, it’s shown that lncRNAs are specific-
ally involved in the mammalian cell response toward
bacterial infections [11].
Due to the low evolutionary conservation of lncRNAs

across species [20], the research result of lncRNAs in
mammalian species can hardly be applied to aquaculture
species. Up to now, a few studies have attempted to ex-
plain the role of lncRNA in teleost. When exposed to β-
diketone antibiotics (DKAs), the lncRNAs in zebrafish
(Danio rerio) are abnormally expressed and their poten-
tial target genes might play roles in immunity [21]. Be-
sides, antisense lncRNA PU.1 is found to be involved in
the adaptive immunity of zebrafish [22]. After infected
with Flavobacterium psychrophilum, lncRNAs mediate
anti-bacterial immune response in rainbow trout (Onco-
rhynchus mykiss) [23]. RNA sequencing of Atlantic sal-
mon (Salmo salar) infected with Piscirickettsia salmonis
suggests that lncRNAs are associated with the genes of
endocytosis and iron homeostasis, such as clathrin, hep-
cidin, and haptoglobin [24].
Aeromonas hydrophila, the main pathogen that causes

bacterial septicemia in freshwater fish, can lead to high
mortality and bring about serious economic losses to the
freshwater aquaculture industry. Megalobrama amblyce-
phala is an important economic freshwater fish in
China, meanwhile it is sensitive to A. hydrophila and
can be seriously harmed by bacterial septicemia. The
liver has the functions of secreting bile, detoxifying, and
storing glycogen, and is one of the most core organs for
the body to maintain physiological functions. At the
same time, the liver has been generally accepted as a
major immune organ in teleost [25–27]. As in mammals,
hepatocytes are the prime source of acute phase re-
sponse in fish, and that pro-inflammatory cytokines in-
duce transcription of their genes [28]. Given that
lncRNA is an essential part of the immunological
process and related knowledge in fish is quite limited,
herein, we conducted a comprehensive lncRNAs sequen-
cing in the liver of M. amblycephala post A. hydrophila
infection and performed functional annotation analysis
based on the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases.
We identified the co-localization of lncRNAs and genes
at different time points post infection by using WGCNA
(weighted correlation network analysis). This research
will enrich the lncRNA database of teleost and contrib-
ute to a better understanding of the role of lncRNAs in
the immune response of teleost.

Results
Identification and characterization of mRNA and lncRNA
in the M. amblycephala liver
To identify lncRNAs expressed in the M. amblycephala
liver at different time points after A. hydrophila
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infection, 15 cDNA libraries (5 time points, 3 repetitions
per time point) were constructed and sequenced. Clean
reads totaling 163.21 Gb were obtained. The mean GC
content of the 15 libraries was 48.23% and the Q30 of
each sample was no less than 95.68%, suggesting that
the sequencing data was highly reliable. On average,
67,576,141 mapped reads were obtained from the clean
data (Additional files 1 and 2: Table S1 and S2). A total
of 9011 differentially expressed genes (DEGs) were iden-
tified. The intersection of the CPC, CNCI, Pfam, and
CPAT finally yielded 14,849 lncRNA transcripts, which
were classified as 10,272 lincRNAs, 2691 intronic
lncRNAs, 1161 sense lncRNAs, and 725 anti-sense
lncRNAs (Fig. 1).
To study the basic features of lncRNAs in the M.

amblycephala liver, lncRNAs were identified and aligned
with mRNAs. The results showed that there were 12,689
lncRNAs corresponding to 887,446 target genes (Add-
itional file 3: Table S3). Furthermore, several lncRNAs
acting in trans were found to target protein-coding
genes specifically related to innate immunity, including
interleukin 6 (IL 6), hepcidin, transferrin, and comple-
ment C3. Some mRNAs (complement C3) are regulated
by multiple lncRNAs (e.g. MSTRG.9317.1 and MSTR
G.104056.1), and a single lncRNA (MSTRG.97410.1) can
target multiple mRNAs (IL 6, NF-kB2, TRAF2, and hep-
cidin), indicating the functional intersection of these
lncRNAs and their common potential target genes.
Compared to 0 h, there were 1133 differentially

expressed lncRNAs (DE lncRNAs) at 4 hpi, 1164 DE
lncRNAs at 12 hpi, 482 DE lncRNAs at 24 hpi, and 506

DE lncRNAs at 72 hpi, respectively (FDR < 0.05 and
|log2 (Fold Change) | ≥ 1) (Fig. 2). To further analyze the
interactions among different time points, we constructed
a Venn diagram using the DEGs and DE lncRNAs that
were differentially expressed in comparisons of 4 hpi vs
0 hpi, 12 hpi vs 0 hpi, 24 hpi vs 0 hpi, and 72 hpi vs 0
hpi, respectively. A total of 557 overlapping sequences
from 9011 DEGs and 59 overlapping sequences from
2196 DE lncRNAs were identified among all the 4 com-
parisons (Fig. 3). Heat maps indicated overt different
clusters before and after A. hydrophila infection (Fig. 4).
Notably, the results showed a relatively large difference
in mRNAs and lncRNAs expression trends among differ-
ent time points although the time difference was only a
few hours.

GO and KEGG enrichment analyses of target genes of DE
lncRNAs
Based on the GO database, the target genes of DE
lncRNAs were assigned to the biological processes, cellu-
lar components, and molecular function, respectively.
The significantly enriched GO terms for DEGs and tar-
get genes of DE lncRNAs in each comparison between
different time points were shown in Additional files 4
and 5 (Table S4 and S5). In the four comparisons, the
significant GO terms of the DEGs were mainly associ-
ated with “I-kappaB kinase/NF-kappaB signaling”,
“hydrolase activity”, “oxidation-reduction process”,
“ncRNA processing”, “nuclear ncRNA surveillance”, “re-
sponse to metal ion”, “cofactor binding”, “lipid biosyn-
thetic process”, and so on (Additional file 4: Table S4).

Fig. 1 Percentage of different types of predicted lncRNAs in the Megalobrama amblycephala liver post Aeromonas hydrophila infection

Sun et al. BMC Genomics          (2021) 22:653 Page 3 of 15



In contrast, no significant pathway of the target genes of
DE lncRNAs was identified at 24 and 72 hpi. The signifi-
cant GO terms of the target genes were mainly associ-
ated with “catalytic activity”, “endoplasmic reticulum
cytoplasm”, and “golgi apparatus” at 4 and 12 hpi (Add-
itional file 5: Table S5).
KEGG were performed to understand the enrichment

of the lncRNA target genes and to reveal the functions
of the DE lncRNAs. KEGG analysis demonstrated that
most of the significantly enriched pathways of the target
genes of DE lncRNAs post infection belong to the path-
ways including “adipocytokine signaling pathway”, “her-
pes simplex infection”, “NOD-like receptor signaling
pathway”, “PPAR signaling pathway”, “protein export”,

“protein processing in endoplasmic reticulum”, “RIG-I-
like receptor signaling pathway”, “TGF-beta signaling
pathway”, and “Toll-like receptor signaling pathway”
(Additional file 6: Table S6).

Weighted correlation network analysis (WGCNA) and RT-
qPCR validation
We combined all the expression matrix of both protein-
coding genes and lncRNAs as the input file for WGCNA
to identify modules. After excluding deletion and outlier
values, an expression matrix of 13,460 transcripts (in-
cluding 916 lncRNAs and 12,544 protein-coding genes)
were obtained for further analysis. We explored and
identified the correlations among modules according to

Fig. 2 Number of differentially expressed mRNAs (A) and lncRNAs (B) in the Megalobrama amblycephala liver post Aeromonas hydrophila
infection. The blue and red columns represent significantly up- and down-regulated, respectively, and the number at the top of the column
indicates the number of differentially expressed mRNAs or lncRNAs
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Fig. 3 Venn diagram of differentially expressed mRNAs (A) and lncRNAs (B) among four comparisons in the Megalobrama amblycephala liver post
Aeromonas hydrophila infection. Yellow: 4 hpi vs 0 hpi; red: 12 hpi vs 0 hpi; green: 24 hpi vs 0 hpi; and blue: 72 hpi vs 0 hpi. The numbers on the
diagram represent the number of differentially expressed mRNAs or lncRNAs that overlap between one or two to four comparisons
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Fig. 4 Expression profile of DEGs and DE lncRNAs in the Megalobrama amblycephala liver post Aeromonas hydrophila infection based on RNA-seq.
(A) Heatmap of expression profile for the DEGs that showed significant expression changes. (B) Heatmap of expression profile for the DE lncRNAs
that showed significant expression changes. Red: relatively high expression level; Blue: relatively low expression level. The darker the red color, the
higher the expression level, and the darker the blue color, the lower the expression level
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Fig. 5 (See legend on next page.)
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clustering analysis. The resulting gene dendrograms and
respective module with different colors were shown in
Fig. 5A and 28 modules were found to be significantly
correlated with different time point post infection (Fig.
5B).
Six modules (P < 0.05), which were significantly posi-

tively correlated with different time points post infection
were selected for co-expression analysis (Fig. 6). Grey 60
(r = 0.92, P = 1e-06) and mediumpurple 3 (r = 0.57, P =
0.03) modules, which included many immune related
genes such as HACE1, IL-1β, NF-kB, transferrin, p53,
hepcidin and so on were correlated with 4 hpi. The
genes such as Derl1, Hsp90, and calreticulin-like in the
darkolivegreen (r = 0.84, P = 8e-05) module, which might
play important roles at 12 hpi, were enriched in the
“protein processing in the endoplasmic reticulum” path-
way. The midnightblue module (r = 0.73, P = 0.002) in-
cluded genes such as egl-9 family hypoxia-inducible
factor 1α were correlated with 24 hpi, whereas the dark-
violet (r = 0.6, P = 0.02) and darkorange 2 (r = 0.68, P =
0.005) modules which included perforin, NLRC3-like,
and DMBT1-like genes, might play important roles at 72
hpi.
RT-qPCR was used to verify expression of the selected

six DE lncRNAs and four DE genes. The results showed
that the expression trends of lncRNAs and target genes
identified by high-throughput sequencing were consist-
ent with those identified by RT-qPCR (Fig. 7). The ex-
pression of MSTRG.55000.1 and MSTRG.81802.1 was
up-regulated at 4 hpi and gradually down-regulated after
12 hpi. The hepcidin gene trans-regulated by those
lncRNAs has a similar expression trend. This indicates
that lncRNAs have complex functions.

Discussion
Although there have been many in-depth studies in
mammals, the study of fish lncRNA is very inadequate
and the results of the former cannot be applied to the
latter due to the non-conservativeness of lncRNAs. Sev-
eral studies indicate that lncRNAs are involved in the
immune regulation of teleost fish. For example, of the
5636 non-overlapping lncRNA loci identified, 3325 are
differentially expressed during ISA virus (ISAV) infec-
tion in the liver of Atlantic salmon [29]. A total of
11,462 lncRNAs are expressed in the liver of Atlantic
salmon infected with Piscirickettsia salmonis, of which

993 lncRNAs are differentially expressed [30]. There are
8463 lncRNAs identified in the spleen of Larimichthys
crocea infected with vibrio parahaemolyticus [31]. Con-
sistently, in this study, lncRNA-seq was performed on
the M. amblycephala liver at 0, 4, 12, 24, and 72 hpi post
A. hydrophila infection. A total of 14,849 lncRNAs were
identified, of which 2196 lncRNAs were differentially
expressed. The dynamic changes of mRNAs are closely
related to the physiological status of fish. Like mRNAs,
lncRNAs may have spatial and temporal expression with
potentially important roles during bacterial infection.
Meanwhile, the expression of lncRNAs in the M. ambly-
cephala liver showed significant difference among differ-
ent time points post challenge. After challenge with A.
hydrophila, the mortality rate and pathological damage
of M. amblycephala peaked at 48 hpi and then gradually
recovered [32]. We assume that in the early stages post
challenge, bacteria proliferated rapidly, and the innate
immune of the body quickly responded to kill bacteria.
In the late stages post challenge, the immune system
continued to kill bacteria in the survived fish, and the
bacteria were completely defeated finally. Overall, with
dynamic changes of competition between the prolifera-
tion of bacteria and the killing bacteria of the immune
system, lncRNAs also presented a very dynamic change
in the short-term post challenge. The RT-qPCR results
further validated that the expression of the DE lncRNAs
was consistent with the sequencing data.
There are different kinds of lncRNAs such as lincRNA,

intronic lncRNA, sense lncRNA, and antisense lncRNA.
It has been reported that most lincRNAs are more likely
to act in cis through transcriptional interference [2]. Cis-
natural antisense lncRNAs may regulate gene expression
at the transcription level. The large number of intronic
lncRNAs may be pre-mRNA fragments [33], which are
transcribed and may encode exons within rarely-
expressed transcripts [2]. Among the obtained lncRNAs
in M. amblycephala, 69.2% were lincRNA, 18.1% were
intronic lncRNA, 7.8% were sense lncRNA, and 4.9%
were antisense lncRNA. Multiple types of lncRNAs
coexisted in this study, and lincRNAs accounted for the
largest proportion, indicating that lncRNAs may play
multiple biological functions through multiple pathways,
and the role of lincRNAs may be the most important.
The DEGs and target genes of DE lncRNAs at differ-

ent time points were analyzed separately here. GO

(See figure on previous page.)
Fig. 5 Weighted gene co-expression network analysis (WGCNA) of mRNAs and lncRNAs in the Megalobrama amblycephala liver post Aeromonas
hydrophila infection. (A) The dendrogram of all genes is clustered based on a dissimilarity measure (1-TOM). Each single leaf in the tree represents
a single gene, the major tree branches constitute 28 distinct modules and are shown in different colors. (B) Heatmap of the module-trait
relationships. Each row corresponds to a module, and each column represents the specific time points after infection with Aeromonas hydrophila.
The right color panel represents Pearson’s r correlation coefficient. Red for positive correlation and blue for negative correlation. Each cell
contains the corresponding correlation and p-value

Sun et al. BMC Genomics          (2021) 22:653 Page 8 of 15



analysis showed that both DEGs and target genes of DE
lncRNAs were mostly enriched in oxidoreductase activ-
ity and immune-related pathways, such as inflammatory
response, and hydrolase activity post infection, whose
function in the immune system have been reported in

previous studies [34–38]. Oxidoreductases are enzymes
that catalyze many redox reactions in normal cells [39].
Gostner et al. (2013) [34] indicated that redox reactions
could initiate cytocidal reaction within the pathogen
defense and trigger immune response, which are further

A B

C D

E F

Fig. 6 Visualization of connections between mRNAs and lncRNAs in various modules. A–F: Connections between mRNAs and lncRNAs in grey60
(A), darkorange2 (B), darkolivegreen (C), darkviolet (D), mediumpurple3 (E), and midnightblue (F) modules. The lncRNAs and their corresponding
target genes were used to construct the lncRNA–gene interaction network. In this network, red-colored nodes represent mRNAs and blue-
colored nodes represent lncRNAs. Define the width of the line according to the weight of node. The higher the weight of the node, the thicker
the connecting line, and the stronger the correlation between lncRNAs and mRNAs
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involved in the process of cellular restorative. Xanthine
oxidoreductase (XOR) has the capacity to produce both
ROS and NO [35]. It is reported that the A. hydrophila
infection affect ROS and NO reactive free radicals and
induce an inflammatory response in zebrafish [36]. The
iNOS is related to the immune response, which can in-
duce NO to participate in immune regulation and anti-
tumor mechanism [37]. Furthermore, the inducible iso-
form of nitric oxide synthase (iNOS) can be induced by
cytokines such as interleukin, tumor necrosis factor, and
interferon in the process of many diseases [37]. Trigger-
ing lyososomal rupture in dendritic cells might be to ele-
vate intracellular ROS production for promoting antigen
cross presentation [38].
In this study, KEGG pathway analysis showed that the

target genes of the DE lncRNAs at different time points
were mostly significantly enriched in the innate immune
response pathways such as “adipocytokine signaling
pathway”, “RIG-I-like receptor signaling pathway”, “her-
pes simplex infection”, and “Toll-like receptor signaling
pathway”, which further confirmed that lncRNAs might
participate in the regulation of fish immunity. Adipocy-
tokine signaling pathway was one of the frequent path-
ways present in different time points comparisons in our
study. It has been reported that the increase of genes ex-
pression related to various lipid and energy metabolism
could reduce the inflammation in the body [40]. The
peroxisome proliferator-activated receptors (PPARs) can
modulate the expression of genes involved in lipid me-
tabolism, maintenance of metabolic homeostasis, and in-
flammation [41]. After Toll-like receptors (TLR) or
cytokine receptors in innate immune cells activate the
intracellular signaling pathways to participate in immune
responses, the expression of lncRNA in specific cell-
types is induced [3]. This strongly indicates that these
pathways play essential roles in the M. amblycephala re-
sponse to A. hydrophila infection.
Obviously, we need more in-depth molecular mecha-

nisms research to elucidate the specific function of
lncRNAs to their target genes. The target genes of
lncRNA in the module could indicate their biological
processes and functions. Thus, we integrated lncRNAs
and their target genes using WGCNA and BMKCloud
(www.biocloud.net), and several highly correlated
lncRNAs and mRNAs in six time-specific modules were
identified. This genetic network may aid in functional
analysis of lncRNAs, as most of them have not yet been
identified as functional. These modules of co-expressed
genes revealed the complex defense network, indicating
diverse regulatory mechanisms of M. amblycephala post
bacterial infection. For example, hepcidin was highly
connected with 4 hpi (COR = 0.98) in the grey 60 mod-
ule in the present study. We found that DEGs were sig-
nificantly enriched in “iron ion binding” at 4 and 12 hpi.

Previous studies have shown that there is a close con-
nection between iron and innate immunity [42], and
iron metabolism-related genes such as ferritin and trans-
ferrin have been verified to be related to immunity [43,
44]. Hepcidin is the main regulator of iron homeostasis
and also the mediator of innate immunity [45]. The co-
expressed lncRNAs related to hepcidin and other im-
mune related genes in the iron metabolism pathway
were analyzed by using BMKCloud and the co-expressed
lncRNAs of those genes were selected for expression
verification by RT-qPCR. The hepcidin and other im-
mune related genes were up-regulated post bacterial in-
fection, indicating that these genes played antibacterial
immunity role after bacterial infection.

Conclusions
This study explored the response of lncRNAs in the M.
amblycephala liver to A. hydrophila infection. A total of
14,849 lncRNAs and 2196 DE lncRNAs were identified.
GO and KEGG pathway analyses showed that the target
genes of the DE lncRNAs were enriched in several path-
ways related to immune such as apoptosis, inflamma-
tion, and immune response. In addition, 28 time-specific
modules were found by using WGCNA. Although the
complexity of the natural environment cannot be fully
explained, this research will enrich the lncRNAs data-
base and contribute to a better understanding of the
roles of lncRNAs in the immune response of teleost. Be-
sides, since the lncRNAs can be a biomarker for human
disease or a target for medical detection, we hope that
our research on lncRNA could contribute to the re-
search and detection of fish diseases. Further experimen-
tal studies are still needed on how lncRNAs work in the
liver of M. amblycephala, and how it regulates the co-
expressed genes involved.

Materials and methods
Samples collection
All the experimental procedures involved fish were ap-
proved by the Institutional Animal Care and Use Com-
mittee of Huazhong Agricultural University (Wuhan,
China). The challenge experiment was conducted ac-
cording to a previous study [44] with modification. In
brief, unvaccinated healthy juvenile M. amblycephala
(50 ± 10 g) were obtained from a fishery farm from Hon-
ghu city, Hubei province. The fish were kept in a recir-
culating freshwater system (temperature: 25–26 °C) and
fed with a commercial pellet fish feed for 2 weeks before
experimental manipulation. The experimental fish were
injected intraperitoneally with 0.1 mL A. hydrophila (6 ×
106 CFU/mL). The liver tissues from 9 fish (3 pools with
3 fish per pool) at 0, 4, 12, 24, and 72 h post infection
(hpi) were collected, respectively. Three liver samples
were pooled as one biological duplicate and a total of 15
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Fig. 7 (See legend on next page.)
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samples (3 biological duplicates at 5 time points) were
used for later lncRNA-sequencing. The experimental fish
were anesthetized with MS 222 at 100 mg/L before dis-
section. All samples were flash-frozen in liquid nitrogen
and stored at − 80 °C for further use.

LncRNAs library construction
After total RNA was extracted using TRIzol reagent
(Invitrogen, CA, USA) according to the manufacturer’s
instructions, its purity, concentration, and integrity were
checked to ensure the use of qualified samples for tran-
scriptome sequencing. rRNA was removed by using the
Ribo-Zero rRNA Removal Kit (Epicentre, Madison, WI,
USA). Sequencing libraries were constructed using the
NEBNextR Ultra™ Directional RNA Library Prep Kit for
IlluminaR (NEB, USA) following the manufacturer’s rec-
ommendations. Insert fragments of 150–200 bp in length
were purified with AMPure XP Beads (Beckman Coulter,
Beverly, USA). Finally, the U chain was degraded, and
the cDNA library was obtained by PCR enrichment. At
last, PCR products were purified (AMPure XP system)
and library quality was assessed using the Agilent Bioa-
nalyzer 2100.

Clustering, sequencing, and transcriptome assembly
The clustering of the index-coded samples was per-
formed on acBot Cluster Generation System using Tru-
Seq PE Cluster Kitv3-cBot-HS (Illumina, San Diego, CA,
USA). After cluster generation, the library preparations
were sequenced on Illumina NovaSeq 6000 (Illumina,
San Diego, CA, USA). After sequencing, the Q20, Q30,
GC-content and sequence duplication level of the clean
data (clean reads) were calculated.
Our lncRNA detection pipeline started with aligning

the timecourse RNA-seq paired-end reads from each
time point to the M. amblycephala genome [46] using
Hisat2 [47]. The transcriptome was assembled using the
StringTie [48] based on the reads aligned to the refer-
ence genome and was used to calculate FPKM (Frag-
ments per kilobase of transcript per million mapped
reads) of both lncRNAs and coding genes in each sam-
ple. The assembled transcripts were annotated using the
GffCompare program [49]. The filter criteria of lncRNAs
transcripts were included in the “i” (transcripts entirely
within intron), “x” (exonic overlap with reference on the
opposite strand), “u” (intergenic transcripts), “o” (other
same strand overlap with reference exons), and “e” (sin-
gle exon transfrag partially covering an intron, possible

pre-mRNA fragment) classes [49]. According to the
above standard, transcripts longer than 200 nucleotide
(nt) and that have two or more exons [50] were
screened, and the FPKM was set ≥0.1. LncRNAs were
screened using CPC2 [51]/ CNCI [52]/ Pfam [53]/ CPAT
[54] that can distinguish the protein-coding genes from
the non-coding genes.

DEGs, DE lncRNAs analyses and functional annotation
Differential expression analysis of the library was per-
formed using DEseq2 [55]. LncRNAs or protein-coding
genes with a false discovery rate (FDR) < 0.05 and |log2
(Fold Change) | ≥ 1 were assigned as differentially
expressed. For each lncRNA locus, the 100 kb upstream
and downstream protein-coding genes (without overlap)
were identified as cis-acting target genes. The trans-acting
target genes of lncRNA were predicted by a correlation
analysis method between the expression of lncRNA and
mRNA. To analyze the main function of the mRNAs and
lncRNAs, the genes were annotated through GO [56] and
KEGG pathway analyses [57]. GO terms analysis was per-
formed using the OmicShare tools, an online platform
(http://www.omicshare.com/tools) for data analysis. The
KEGG pathways analysis was performed using BMKCloud
(www.biocloud.net). GO terms and KEGG pathways with
P-values < 0.05 and the corrected Q-values < 0.05 were
considered significantly enriched.

Co-expression network analysis
Data were processed using the WGCNA package [58].
To ensure that the results of network construction are
reliable, the abnormal values were removed. The soft
threshold for network construction was selected to make
sure that the network is closer to the real biological net-
work state. The scale-free network was constructed
using the blockwise modules function to group genes
with similar patterns of expression.
The modules were defined by cutting the clustering tree

into branches using a dynamic tree cutting algorithm and
assigned to different colors for visualization [59]. To
screen specific modules related to different time points
post infection, the correlation coefficient r and corre-
sponding P-value between the feature vector of each mod-
ule and different time points were calculated. Time-
specific modules were identified based on the correlation
between gene significance (GS) and module membership
(MM). Modules with significantly correlated GS and MM
(P < 0.01) were defined as time-specific.

(See figure on previous page.)
Fig. 7 RT-qPCR validation of six differentially expressed lncRNAs and four differentially expressed genes selected. The blue column represents the
results of lncRNA-seq, and the red column represents the results of RT-qPCR. Values were described as mean ± SEM (n = 3 pools, with 3 fish per
pool). Differences were determined by one-way analysis of variance (ANOVA). The asterisks indicate statistically significant differences (*, P < 0.05;
**, P < 0.01)
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To further examine how lncRNAs cooperate with tar-
get genes to regulate fish immunity, co-expression ana-
lysis of the DE lncRNAs and the corresponding DE
target genes was performed based on each time-specific
module. Several differentially expressed immune-related
mRNAs and predicted lncRNA-gene co-regulation pairs
(COR > 0.8 and P < 0.01) were selected. Then Cytoscape
3.6 [60] was used to predict potential lncRNA targets
with DEGs to build the lncRNA-gene co-expression
network.

Real-time fluorescent quantitative PCR (RT-qPCR)
validation of lncRNA and gene expression
To verify the results of high-throughput RNA-seq, RT-
qPCR was conducted. For the RT-qPCR analysis, 1 μg of
total RNA was reverse transcribed using the RT reagent
Kits with gDNA Eraser (Takara, Dalian, China) accord-
ing to the manufacturer’s protocol. Six DE lncRNAs and
four DEGs were chosen for RT-qPCR validation. Primer
Premier 5.0 software was adopted to design the gene-
specific primers (Additional file 7: Table S7).
The reaction of RT-qPCR was performed with CFX

Connect Real-Time PCR Detection System (BIO-RAD,
USA) according to standard methods using LightCy-
cler@ 480 SYBR Green I Master (Roche, USA). 18 s
rRNA was used as an internal control [44]. All experi-
ments were performed in triplicate. The amount of tar-
get molecules relative to the control was calculated by
using the 2-ΔΔCt method [61]. The results of RT-qPCR
data were presented as mean ± standard error of the
mean (SEM) and were calculated by SPSS 22.0 (SPSS
Inc., Chicago, IL, USA). Differences between the control
and experimental treatments were analyzed by one-way
analysis of variance (ANOVA) through Dunnett’s mul-
tiple comparison. The level of statistical significance was
set at P < 0.05, and highly significance at P < 0.01.
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