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Abstract

Background: Spinach is a beneficial annual vegetable species and sensitive to the bolting or early flowering, which
causes a large reduction in quality and productivity. Indeed, bolting is an event induced by the coordinated effects
of various environmental factors and endogenous genetic components. Although some key flowering responsive
genes have been identified in spinach, non-coding RNA molecules like long non-coding RNAs (lncRNAs) were not
investigated yet. Herein, we used bioinformatic approaches to analyze the transcriptome datasets from two
different accessions Viroflay and Kashan at two vegetative and reproductive stages to reveal novel lncRNAs and the
construction of the lncRNA-mRNA co-expression network. Additionally, correlations among gene expression
modules and phenotypic traits were investigated; day to flowering was chosen as our interesting trait.

Results: In the present study, we identified a total of 1141 lncRNAs, of which 111 were differentially expressed
between vegetative and reproductive stages. The GO and KEGG analyses carried out on the cis target gene of
lncRNAs showed that the lncRNAs play an important role in the regulation of flowering spinach. Network analysis
pinpointed several well-known flowering-related genes such as ELF, COL1, FLT, and FPF1 and also some putative TFs
like MYB, WRKY, GATA, and MADS-box that are important regulators of flowering in spinach and could be potential
targets for lncRNAs.

Conclusions: This study is the first report on identifying bolting and flowering-related lncRNAs based on
transcriptome sequencing in spinach, which provides a useful resource for future functional genomics studies,
genes expression researches, evaluating genes regulatory networks and molecular breeding programs in the
regulation of the genetic mechanisms related to bolting in spinach.

Introduction
Spinach (Spinacia oleracea L.) from the Amaranthaceae
family is a beneficial annual vegetable species that is
widely cultivated in different parts of the world and used
in the human diet. It is a rich source of vital nutrients,
containing β-carotene (provitamin A), vitamins of the B
group, ascorbic acid, folates, and vitamin C. [1, 2].

Spinach is also known for its high iron content (4–6 mg
per 100 g dry wt), and according to this feature, it is
highly recommended for anemic people [3]. The dra-
matic increase in market demand has developed spinach
breeding programs to introduce cultivars with a broader
range of valuable traits, such as leaf texture, color, shape,
pose, and petiole length. However, the development of
cultivars to increase spinach production is positively re-
lated to other morphological traits such as plant height
and bolting, induced by long-day exposure. Hence, the
spring and summer spinach varieties have a greater
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tendency to bolting, causing a reduction in production
[4–6]. Indeed, bolting is one of the most important
productivity-related traits regulated by multiple signaling
pathways and regulatory mechanisms [7, 8]. In recent
years, studies on the identification of pathways and mo-
lecular functions of bolting-related genes have pro-
gressed in model plants, but few studies have focused on
spinach [9–12]. However, the comparative transcriptome
analysis of two spinach accessions with different bolting
times identified genome-wide gene expression profiling
and large-scale discovery of flowering-related genes from
vegetative and reproductive leaves [13]. On the other
hand, previous researches have revealed there are some
non-coding RNA molecules (ncRNAs) that affect bolting
and flowering by the regulation of genes expression [14,
15]. These ncRNAs are very heterogeneous in terms of
their length, conformation and cellular function. In this
regards, they can be separated into small non-coding
RNA (small ncRNA) and lncRNA. Small ncRNAs are
further divided into myriad subclasses, and each subclass
has its own biological and medical importance. LncRNA
can be further grouped into linear RNAs and circular
RNAs (circRNA) types [16–20].
ncRNAs with more than 200 nucleotides are consid-

ered as lncRNAs, which originate from intronic and ex-
onic regions of protein-coding genes in both sense and
antisense strands, as well as from the intergenic regions
[21]. Previous studies have demonstrated that lncRNAs
act as one of the molecular mechanisms for the post-
transcriptional regulation and modulation of protein
function. Interestingly, lncRNAs have been shown to act
as competing endogenous RNAs (ceRNAs), where miR-
NAs and lncRNAs regulate each other through their bid-
ing sites. Indeed, lncRNAs can promote gene expression
by competing with miRNAs for specific binding sites in
the non-coding regions of mRNAs and preventing the
transcriptional repression caused by miRNAs [22, 23].
Hence, interactions of miRNA-mRNA, lncRNA-mRNA,
miRNA-lncRNA, and lncRNA-mRNA-miRNA have
been investigated by using various experimentally sup-
ported evidence or computationally predicted methods
such as PceRBase [24] and LncACTdb [25].
LncRNAs are extremely found in diverse organisms

and play critical functional roles in various biological
processes, such as flowering time, root organogenesis,
photomorphogenesis, and sexual reproduction [26–28].
Functional analysis of some lncRNAs has also indicated
that they have potential roles in regulating temperature-
dependent developmental changes, such as the transition
from the vegetative to the reproductive phase and the
bolting process. For example, FLINC is a lncRNAs,
which plays a role in temperature-mediated flowering
and is down-regulated at higher ambient temperature in
Arabidopsis [29]. COLDAIR is another intronic lncRNA

associated with the silencing and epigenetic repression
of FLOWERING LOCUS C (FLC) to regulate flowering
time in Arabidopsis [26]. Another lncRNA regulating de-
velopmental pathways known as long-day-specific male-
fertility-associated lincRNA (LDMAR), which its expres-
sion lower than a certain level affects pollen develop-
ment in rice under long-day conditions [30, 31].
Although a remarkable number of flowering-related
lncRNA molecules have been identified by advanced se-
quencing technology in Arabidopsis, a large number of
tissue-specifically expressed lncRNAs have also discov-
ered in other plants such as strawberry [32], tomato
[33], Brassica rapa [34], and Coffea canephora [35].
Based on RNA-seq datasets from different flower and
fruit tissues of diploid strawberry, a large number of
lncRNAs from various loci were identified and annotated
[32]. According to the expression profile, 186 known
lncRNAs, and 89 novel lncRNAs were found associated
with pistil development in Prunus mume, which could
provide new indications to elucidate how lncRNAs and
their targets play role in pistil differentiation and flower
development [36], highlighting the potential contribu-
tions of lncRNA in the flowering process. Although, for
a better understanding of the functions lncRNAs and
their target genes, several research works are carried out
to identify abiotic stress responsive lncRNAs (In direct
connection with flowering) under different conditions in
many plants including Camellia sinensis [37, 38], Capsi-
cum annuum [39], Mangifera indica [40], Arachis hypo-
gaea Linn [41], Zea mays [42], a substantial number of
databases have been also developed to provide resources
and broadly investigate lncRNAs in plants [20, 43–45].
Therefore, there is a critically important role for

lncRNAs to control flowering time in various crops, es-
pecially for the sensitive plants to bolting. Hence, we
characterized lncRNAs in two different spinach acces-
sions (Kashan and Viroflay) at the transcriptome level
and compared their expression levels before and after
flowering. According to the results of previous research,
the vegetative characteristics of 44 spinach accessions
[46], two accessions Viroflay and Kashan were placed in
the group of late and early flowering spinach, respect-
ively. Indeed, maximum variation for the trait of “days to
flowering” was found between accessions Viroflay (87
days) and Kashan (43 days). Thus, we performed tran-
scriptome and qPCR analyses to reveal lncRNAs and
hub genes associated with spinach bolting in two acces-
sions with different bolting time. To further examine the
role of lncRNAs in bolting, we also constructed a co-
expression network using weighted gene co-expression
network analysis (WGCNA) based on differentially
expressed mRNAs and lncRNAs. Moreover, the relation-
ship between modules and their correlation with the
stages of each accession was detected. In our
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experiment, a robust and complete set of lncRNAs were
identified, and the basic features of these lncRNAs were
also characterized. We also obtained differentially
expressed lncRNAs (DELs) from different stages of two
accessions by differential expression analysis. Finally, by
conducting gene co-expression network analysis, we
identified several functional modules correlated to bolt-
ing. Overall, our results provide the basis for future stud-
ies on lncRNAs activity mechanisms in spinach bolting.

Results
Novel lncRNAs identification
According to the lncRNAs identification pipeline
(Fig. 1 A), after reconstructing the transcriptome for
each RNA-Seq library and combining assemblies, a total
of 50,027 transcripts were identified through Stringtie
software for both accessions. Of those, 4735 transcripts
were identified as unannotated transcripts. The GFF,
BED (identifier and genomic locations), and FASTA files
of all the unannotated transcripts are provided in
DataS1. From the total unannotated transcripts, 1925,
324, 37, and 4 transcripts with class codes ‘u’ (inter-
genic), “o” (generic overlap with known exon), “i” (in-
tronic), and “x” (overlap with a known gene on the
opposite strand) were expressed with CMP > 1. After-
ward, FEELnc identified 2230 lncRNAs among
remaining unannotated transcripts. Then, we assessed
the protein-coding potential of transcripts using the

CPC program and deleted 371 potential coding tran-
scripts. The steps to filter tRNA and rRNAs removed 81
transcripts. Transcripts were then inputted into
CREMA[47] (https://github.com/gbgolding/crema) for
lncRNAs prediction. Utilizing CREMA’s numerical scor-
ing system for lncRNAs prediction, 1327 transcripts with
a prediction score > 0.5 were considered putative
lncRNAs. Using a rigorous filtering pipeline to remove
transcripts with any known protein domains docu-
mented in the Pfam database, housekeeping RNAs such
as tRNAs, rRNAs, snRNAs, and snoRNAs in the Rfam
database, and encoding any conserved protein, 186 tran-
scripts were detected and filtered out from the further
analysis. In total, 1141 transcripts were identified as
lncRNAs in the spinach transcriptome. A file containing
all the identified lncRNAs sequences, along with their
genomic locations, is provided in DataS2. We further
counted the length distribution (Fig. 1B) and character-
ized the subgenome and chromosome location of
lncRNAs. The results indicated that the length distribu-
tion of the lncRNAs ranged from 222 bp to 8,296 bp.
The majority of lncRNAs ( approximately 65.6 %) were
found in a range of 222 to 2,000 nucleotides, while
30.8 % of lncRNAs had a size between 2000 and
5,000 bp, and only 3.5 % had length over 5,000 bp. In
addition, we found that the lengths of lncRNAs were
largely varied than their target genes. Generally, target
mRNAs lengths varied from 126 to 6,207 bp and also

Fig. 1 Identification and characterization of lncRNAs in spinach. (A) Detailed flow diagram of the bioinformatics pipeline for the identification of
lncRNAs. Different filters were applied for the identification of lncRNAs; numbers representing the total number of transcripts identified at each
filter. (B) Length distribution of spinach lncRNAs
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distributed in all spinach chromosomes (Fig. 1B). It was
also found that 43.6 % lncRNAs were distributed across
six spinach chromosomes, and the highest densities of
lncRNAs were detected in chromosome numbers 3 and
4. The comparison result between spinach lncRNAs and
lncRNAs available in the above-mentioned databases in-
dicated that more spinach lncRNAs appear to be exten-
sively conserved. Total 17 putative spinach lncRNAs had
at least one significant hit in CANTATAdb and PLncDB
databases [43, 45] from three plant species (Table S1) in-
cluding Chenopodium quinoa, Solanum lycopersicum,
and Trifolium pratense. Developmental stages compari-
son in each accession revealed 28 and 97 lncRNAs as
significant differentially expressed lncRNAs (DE-
lncRNAs) in accessions Kashan and Viroflay, respect-
ively. Among them, 11 transcripts were shared between
accessions (Fig. S1; DataS3). Among unique DE-
lncRNAs, 8 and 67 genes were up-regulated in the re-
productive stage of Kashan and Viroflay. By comparison
of log fold change (logFC) of DE-mRNAs and DE-
lncRNAs in both accessions, we found that lncRNAs
were expressed at different levels in the Kashan and Vir-
oflay (Fig. 2). Interestingly, the overall expression
changes in mRNAs were higher than lncRNAs.

Functional analysis of the lncRNAs
Since lncRNAs located upstream and downstream of
protein-coding genes may be involved in regulatory activ-
ities (cis and trans roles), we searched protein-coding
genes from 100 kb upstream and downstream of potential
lncRNAs to explore their function in the cis role. By

screening 100 kb upstream and downstream sites of all
identified lncRNAs, we detected 2715 and 1973 target
genes, respectively. As a result, we found that among up-
stream target genes, 66 and 149 genes were DEGs between
stages in accessions Kashan and Viroflay, respectively. Ac-
cording to the results of downstream target genes, 32 and
99 DEGs were screened in accessions Kashan and Viro-
flay, respectively. We further found that DE-lncRNAs in
Kashan and Viroflay were neighbored to 42 and 270 cod-
ing genes. Furthermore, there were two DEGs among the
target genes of DE-lncRNAs in Kashan, while 40 DEGs
were found among the target genes of DE-lncRNAs in
Viroflay. Subsequently, to predict and classify possible
functions of lncRNAs, all target genes were aligned to GO
terms using Gene Classification tools located in Spinach-
Base [48]. According to the details of the GO analysis, of
the 2715 target genes located upstream of lncRNAs, 1423,
1402, and 1280 were successfully annotated with GO as-
signments in the three main categories, including bio-
logical process (BP), molecular function (MF), and cellular
component (CC), respectively. The counterpart numbers
of target genes derived from the downstream of lncRNAs
were 1053, 995, and 765. Concerning the 42 target genes
located upstream and downstream of DE-lncRNAs in ac-
cession Kashan, BP was the dominant category with 23
genes, followed by MF with 18 and CC with 12 genes.
Concerning the accession Viroflay, 138, 139, 87 genes
were involved in different GO terms of BP, MF, and CC
categories, respectively. To obtain a deeper understanding,
the further analysis covered only the GO terms associated
with biological processes (Fig. 3). Enrichment results

Fig. 2 Bean plots of differential expression levels (log-fold change) of lncRNAs and coding genes (mRNAs) detected in each accession under
stages (vegetative and reproductive) comparison. DE represents differentially expressed genes
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exhibited that functional subcategories, including ‘cellular
processes’, ‘metabolic processes’, and ‘biosynthetic pro-
cesses’ were dominant under the biological processes.

Besides that, a significant number of target genes were
classified into reproduction (GO:0000003), carbohydrate
metabolic process (GO:0005975), and flower development

Fig. 3 Gene classification for protein-coding genes spaced less than 100 kb away from the upstream and downstream of all lncRNAs (A) and DE-
lncRNAs (B) detected in each accession under stages (vegetative and reproductive) comparison. The histogram shows the classification of genes
under the biological process category. Values on each bar represent the number of genes identified in that category
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(GO:0009908) subclasses, which are related to the inflor-
escence development activities, flowering and bolting
regulation, and signaling molecules. Additionally, we
found GO terms related to embryo development (GO:
0009790), post-embryonic development (GO: 0009791),
and pollination (GO: 0009856), which are well known to
be involved in the transition from the vegetative stage to
the flowering stage. Compared to specific biological pro-
cesses for accession Viroflay and Kashan, the most GO
terms were dominated in Viroflay. Besides GO analysis,
the KEGG enrichment analysis results showed that the
target genes of lncRNA were mainly enriched in several
flowering-related pathways, including “Starch and sucrose
metabolism”, “MAPK signaling pathway”, “circadian
rhythm”, and “phenylpropanoid biosynthesis” (Fig. 4).

Assessment of conservation and expression of identified
lncRNAs in the spinach flower tissues
In further assessment, we examined the conservation
and expression of identified lncRNAs in flower tissues
through identification and expression analysis of a flower

transcriptome dataset with five different developmental
stages including, FO, SPCP, FM, ODVO, and OM. Ac-
cording to the results, from 1141 lncRNA identified in
this study, 768 (~ 68 %) were found in flower tissue, of
which 8 and 50 were DE-lncRNA in Kashan and Viroflay
respectively. Furthermore, 6 common DE-lncRNAs be-
tween both accessions were found to be expressed in
flower tissue. The expression profile of these lncRNAs
across all the flower-related samples along with the
young leaf-related ones was depicted in the heatmap plot
(Fig. 5). As the plot is shown, lncRNAs exhibited a var-
ied expression pattern during different developmental
stages. The majority of 64 DE-lncRNAs displayed over-
expression in the “FM” stage which among them
vMSTRG.8252.1, vMSTRG4066.1, and vMSTRG4448.1
indicated the highest level of expression.
On the basis of differential expression analysis,

kMSTRG.16845.1 was found as a dominant DE-lncRNA
between different stages (Table 1). The significant down
expression of this lncRNA was observed in the late
stages (“ODVO” and “OM”) of flower development

Fig. 4 KEGG pathway enrichment analysis of target genes within 100 kb upstream and downstream sites of all identified lncRNAs. The x-axis
represents the ratio number of target genes, and the y-axis displays the KEGG pathway terms. The size of the bubble shows the enrichment
significance, while colors indicate the enrichment score
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compared to the early stages (“FO” and “SPCP”) and also
“YL” stage. Similarly, the significant down-regulation of
kMSTRG.8846.1 was detected in “OM” compared to
“YL”, “SPCP” and “FM” stages. Indeed, our results sug-
gested the potential negative regulatory role of
kMSTRG.16845.1 and kMSTRG.8846.1 in flower devel-
opment processes. The expression of kMSTRG.10183.1
showed a down-regulation pattern in “FO” and “ODVO”
compared to “YL”. Another flower-related lncRNA,
vMSTRG.15493.1, appeared with a positive regulatory
role in the development of spinach flower because of its
significant overexpression in each of “FM”, “FO”, and
“SPCP” compared to “YL” stage. Likewise,
vMSTRG.13194.1 was significantly up-regulated in each
of “ODVO” and “SPCP” compared to “YL”. Additionally,
its significant overexpression in the latest stage (“OM”)
in comparison with “FO” and “ODVO” was observed.

Assessment of DE-lncRNA-DEG interaction using LncTar
LncRNAs can directly interact with their complementary
mRNA transcripts by base-pairing [49]. To investigate
whether the neighbouring loci are trans-regulated by
lncRNAs, we employed lncTar (http://www.cuilab.cn/
lnctar) on 28 DE-lncRNAs and 42 up/down stream adja-
cent DEGs detected in Kashan, as well as on 97 DE-
lncRNAs and 270 upstream and 293 downstream neigh-
bouring DEGs in Viroflay. According to the results, in
order, 7 and 8 upstream and downstream DEGs were
identified as potential targets of 10 and 11 DE-lncRNAs
in Kashan respectively. Regarding the annotation of pre-
dicted lncRNA trans-regulated target genes, putative
transcription factor PHYTOCHROME INTERACTING
FACTOR 4 (PIF4:Spo08670) was found as a flowering-
time-related gene among downstream adjacent DEGs in
Kashan. This gene was predicted to be targets for 11

Fig. 5 The heatmap of DE-lncRNAs identified in flower tissues. Rows: flower samples; columns: LncRNAs; colour key indicates LncRNA
expression value,
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DE-lncRNAs, 6 of which were found to be conserved
and expressed in flower tissues during flower develop-
mental stages. In Viroflay, 30 and 32 DE-lncRANs were
detected to target 54 and 56 upstream and downstream
DEGs respectively. Regarding the annotation of trans
target genes located in downstream of DE-lncRNAs in
Viroflay, Serotonin N-acetyltransferase (SNAT2:
Spo03879), Enhancer of AG-4 1 (HUA1:Spo21977), and
EARLY FLOWERING 6 (ELF6: Spo26619) were detected
as flowering-related genes among downstream neigh-
bouring DEGs. Interestingly, it was found DE-lncRNAs
that potentially regulate these three target genes differ-
entially expressed in flower tissue between different
flower developmental stages.
According to the annotation of predicted target genes,

9 upstream DEGs were directly involved in flowering.
These DEGs included CHD3-type chromatin-
remodeling factor PICKLE (PKL:Spo01259), Protein
LEAFY (LFY:Spo05659), E3 ubiquitin-protein ligase
ORTHRUS 2 (ORTH2:Spo05660), Casein kinase II sub-
unit beta-3 (CKB3:Spo06583), PHYTOCHROME-
DEPENDENT LATE-FLOWERING (PHL:Spo09998),
Gibberellin-regulated protein 5 (GASA5: Spo11995),
Folylpolyglutamate synthase (FPGS1: Spo15152), MEDI-
ATOR 13 (MED13:Spo15416) and WD-40 repeat-
containing protein MSI4 (MSI4: Spo19562). All above

flowering-related genes were predicted to be targets of
13 DE-lncRNAs, 7 of which were recognized as DE-
lncRNAs in flower tissue among flower developmental
stages as well. Interestingly, In Kashan and Viroflay ac-
cessions, all predicted flowering-related target genes
were found to be regulated by 11 common DE-lncRNAs
which can demonstrate the close association of these
genes in pathways controlling induction of spinach
flowering.

LncRNA act as endogenous target mimics (eTMs) of
miRNAs
In the present study, 66 DE-lncRNAs were identified as
eTMs of 65 miRNAs (Table S2). Of these, 7 and 54 DE-
lncRNAs were found in accessions Kashan and Viroflay,
respectively, while 5 DE-lncRNAs were commonly
shared between accessions. The results showed that a
total of 61 miRNAs had various target mRNAs ranging
from one to 437 genes. It was also noted that two DE-
lncRNAs, named MSTRG.16566.1 (chr4:76,795,449–
76,796,456) and MSTRG.16121.1 (chr4:38,264,207–
38,266,517), were predicted to be potential eTMs for
miR172, and miR167. Among the predicted targets of
miR-172 (14 targets), we found three genes encoding
AP2/ERF transcription factors (TFs).

Co-expression Network Analysis
It is documented if lncRNAs indicate similar expression
patterns with some mRNAs, those lncRNAs can be sup-
posed as regulators of target mRNAs [28, 50, 51]. Hence,
the read count data belonging to differentially expressed
genes obtained from RNA-Seq of six Kashan and six
Viroflay samples as early and late-bolting accessions
were used to construct the co-expression network. In
this approach, we identified 9 modules (clusters of highly
co-expressed genes) (Fig. 6), labeled by black, blue,
brown, green, red, turquoise, pink, magenta, and yellow,
containing 61 to 668 genes in magenta and turquoise
modules, respectively.
These modules were composed of dozens to hundreds

of mRNAs, with a varied ratio from 1.6 % (pink) to
18.8 % (green) between DE-lncRNAs and mRNAs
(Table 2). The turquoise module contained the largest
number of DE-lncRNAs (32 DE-lncRNAs), followed by
the green module containing 28 DE-lncRNAs.
To reveal enriched pathways contributed by each co-

expressed module, we performed KEGG analysis of
DEGs from each module separately. Through KEGG
functional enrichment analysis, we found only genes in
the turquoise and blue modules were significantly
enriched in 14 and 11 pathways (Fig. 7). Among the top
pathways, phenylpropanoid biosynthesis and circadian
rhythm were common enriched pathways between both
modules. Regarding the role of carbohydrates in

Table.1 DE-lncRNAs identified in leaf tissue which differentially
expressed in flower tissues

IDs logFC Regulation

kMSTRG.16845.1_FMvsODVO -2.261436098 UP_FM_DOWN_ODVO

kMSTRG.16845.1_FMvsOM -2.598384798 UP_FM_DOWN_OM

kMSTRG.8846.1_FMvsOM -2.055652066 UP_FM_DOWN_OM

kMSTRG.16845.1_FOvsODVO -3.055670498 UP_FO_DOWN_ODVO

kMSTRG.16845.1_FOvsOM -3.410995383 UP_FO_DOWN_OM

kMSTRG.16845.1_SPCPvsODVO -2.774997488 UP_SPCP_DOWN_ODVO

kMSTRG.8846.1_SPCPvsOM -2.575980048 UP_SPCP_DOWN_OM

kMSTRG.16845.1_SPCPvsOM -3.115322939 UP_SPCP_DOWN_OM

kMSTRG.10183.1_YLvsFO -2.073944301 UP_YL_DOWN_FO

kMSTRG.10183.1_YLvsODVO -2.152235277 UP_YL_DOWN_ODVO

kMSTRG.16845.1_YLvsODVO -3.776583683 UP_YL_DOWN_ODVO

kMSTRG.16845.1_YLvsOM -4.095162324 UP_YL_DOWN_OM

kMSTRG.8846.1_YLvsOM -3.030554633 UP_YL_DOWN_OM

vMSTRG.13194.1_FOvsOM 2.181675592 DOWN_FOR_UP_OMR

vMSTRG.13194.1_ODVOvsOM 2.229283368 DOWN_ODVOR_UP_OMR

vMSTRG.15493.1_YLvsFM 2.182436621 DOWN_YLR_UP_FMR

vMSTRG.13194.1_YLvsFO -3.271367298 UP_YLR_DOWN_FOR

vMSTRG.15493.1_YLvsFO 2.05220628 DOWN_YLR_UP_FOR

vMSTRG.13194.1_YLvsODVO -3.315337476 UP_YLR_DOWN_ODVOR

vMSTRG.15493.1_YLvsSPCP 2.453248357 DOWN_YLR_UP_SPCPR
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flowering and inflorescence development, we found sev-
eral carbohydrate-related pathways, including “starch
and sucrose metabolism” and “galactose metabolism” in
the turquoise module and “fructose and mannose me-
tabolism” in the blue module. These carbohydrate-
related pathways were equally enriched with “circadian

rhythm” in its correspondent module, suggesting that
they are engaged in the flowering pathway. In previous
researches, the exploration of flower differentiation-
related genes and the information of carbohydrate me-
tabolism that are related have been fully analyzed. In-
deed, previous studies using the different samples at

Fig. 6 The modules identified by WGCNA. Gene hierarchical cluster dendrogram based on a dissimilarity measure of the Topological Overlap
Matrix (1-TOM) calculated by WGCNA. The branches correspond to modules of highly interconnected groups of genes. Two colored bars below
the dendrogram represent the original modules and merged modules

Table.2 The number of genes per module and the percentage of DE-lncRNAs in each module

Module name Number of mRNAs Number of DE-lncRNAs % of DE-lncRNAs

Turquoise 636 32 5.0

Blue 395 20 5.1

Brown 202 9 4.5

Yellow 178 12 6.7

Green 149 28 18.8

Red 115 6 5.2

Black 113 5 4.4

Pink 62 1 1.6

Magenta 60 1 1.7
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different stages of various plant species have indicated
that proteins involved in carbohydrate metabolism are
responsive to flowering time [52–55].
To understand the relationship between modules and

external traits, we performed Pearson correlation coeffi-
cient analysis to connect each of the co-expression mod-
ules with each stage and accession (Fig. 8). It was
observed that most modules had a positive correlation
with the reproductive stage of both accessions, suggest-
ing that genes in these modules may positively regulate
flowering in spinach. Thus, most of these genes should
be up-regulated in the transition from the vegetative
stage to the flowering stage. The red and brown modules
(with r = 0.97 and r = 0.78) highly correlated with the

reproductive stage of accession Kashan; in contrast, yel-
low and black modules (with r = 0.95 and r = 0.78) had a
positive correlation with the reproductive stage of acces-
sion Viroflay. Among modules, only one co-expression
module, the blue module, specifically correlated (r =
0.88) with the vegetative stage of accession Viroflay.
To further understand each co-expressed module’s

particularity concerning their expression patterns in the
different datasets, we plotted eigengene expression
values of the genes belonging to each module along with
each sample. According to these results, we observed
that in all detected modules except the blue module and
some replicates in the brown (KV_2 and KV_3), the gene
expression levels were higher in the reproductive stage

Fig. 7 The top enriched KEGG pathways of genes in turquoise (A) and blue (B) modules
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of both accessions than in the vegetative stage (Fig. 9).
The blue and yellow modules (Fig. 9 A, F) genes ap-
peared to be more relative in expression to the vegeta-
tive and reproductive stages of Viroflay as a late-bolting
accession, confirming the positive correlations observed
earlier in Pearson correlation coefficient analysis be-
tween modules and stages in each accession. In contrast,
the red and brown modules (Fig. 9B, C) genes displayed
a similar trend with more induction in the reproductive

stage of Kashan as an early-bolting accession. According
to obtained results, the turquoise module genes (Fig. 9D)
appeared to be modulated in the vegetative stage of both
accessions through down-regulation, whereas in the
black module (Fig. 9G) genes were positively regulated
in the reproductive stage of Viroflay, suggesting genes in
this module play important central and key roles in
regulating the flowering time of Viroflay as a late-bolting
accession.

Fig. 8 Matrix showing the module-trait relationship of different co-expression modules and external traits. Each row corresponds to a module
eigengene, column to a trait. KV, KR, VV, and VR represent Kashan-vegetative, Kashan-reproductive, Viroflay-vegetative, and Viroflay-reproductive,
respectively. The numbers represent the Pearson correlation coefficient values and P-values. Red and green color represent positive and negative
correlations, respectively. The table is color-coded by correlation according to the color legend
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Fig. 9 Profile of eight major modules, including (A) blue, (B) red, (C) brown, (D) turquoise, (E) green, (F) yellow, (G) black, and (H) magenta. The y
axis indicates the value of the module eigengene, the x-axis the sample type. KV, KR, VV, and VR represent Kashan-vegetative, Kashan-
reproductive, Viroflay-vegetative, and Viroflay-reproductive, respectively. The numbers beside each sample represent replicate
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Networks displaying relationships among genes and
lncRNAs within co-expressed modules
To identify the central and highly connected genes in
the modules, we selected 50 top genes in the four main
modules and visualized these genes by Cytoscape
(Fig. 10). In the turquoise module, we identified 47
protein-coding genes and 3 lncRNAs. In this module,
several well-known TFs, including MADS-box, GATA,
and BZIP, were found in the list of the protein-coding
genes. Further, we found UDP-glycosyltransferases 1
(UGT1, Spo22429) genes, which play a key role in regu-
lating flowering time via the flowering repressor FLC.
The stringent analysis of the expression pattern indi-
cated UGT1 was highly down-regulated in accession
Viroflay at the vegetative stage. In contrast, it showd up-
regulation pattern in accession Kashan at the vegetative
stage. Besides, GATA transcription factor, which delays
flowering through repressing of SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS1 (SOC1)

expression, was found in the turquoise module with a
higher expression in the vegetative stage of accession
Viroflay. Strikingly, we found lncRNAs in the turquoise
module closely linked to UGT1 and TFs, indicating that
these lncRNAs may function as regulators of these genes
in spinach.
In the green module, we identified 36 protein-coding

genes and 14 lncRNAs. In this module, we found Sugar
transporter SWEET gene, which is reported to be associ-
ated with flowering-time control [56]. Moreover, we
identified SQUAMOSA PROMOTER BINDING-LIKE
PROTEIN 6 (SPL6), a candidate gene related to the
aging pathway. Among the hub genes of the green mod-
ule, we reported two TFs, including Myb-like and Trihe-
lix, and two F-box proteins. More investigation on blue
and yellow modules identified one and two lncRNAs
among the 50 top genes of these modules, respectively.
UGT and Early light-induced protein were identified as
putative genes related to the flowering in the blue

Fig. 10 Co-expression network analysis of 50 hub genes from the three modules, including (A) turquoise, (B) green, (C) blue, and (D) yellow.
Different colors represent different modules. Nodes represent the gene and edges indicate the interaction between genes
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module.Network analysis pinpointed UGT and several
putative TFs, including three Ethylene-responsive (ERF2:
Spo20470, ERF5:Spo25961, ERF510:Spo06220), Zinc-
finger, GRAS family, and Heat shock in the yellow mod-
ule that could be important regulators of bolting in
spinach.

qRT-PCR validation of selected DE-lncRNAs from each
module
To validate the expression of DE-lncRNAs obtained
through RNA-Seq, we selected six hub DE-lncRNAs
identified in the four main modules. These DE-lncRNAs
were closely linked to the putative genes related to the
flowering such as TFs, FLC, and UGT1, indicating that
these lncRNAs may function as regulators of these genes
in spinach. The qPCR results showed that the expression
of the lncRNAs, including vMSTRG.13194.1,
vMSTRG.2206.1, and vMSTRG.3613.1 were significantly
up-regulated only in the vegetative stage of accession
Viroflay compared to the reproductive stage (Fig. 11),
whereas kvMSTRG.6436.1 was significantly up-regulated
in the vegetative stage of both accessions. On the con-
trary, the expression of the lncRNA kvMSTRG.1075.1
was significantly down-regulated in the vegetative stage
of both accessions compared to the reproductive stage.
vMSTRG.11356.1 was found to be up-regulated only in
the reproductive stage of accession Viroflay. Importantly,
to evaluate concordance in gene expression between
RNA-seq and qPCR, we focussed our analysis on genes
expression correlation between normalized RT-qPCR
Cq-values and log transformed RNA-seq expression
values (R2 = 0.93), indicating that our analysis of the
RNA-seq data was reliable. In this regards, the results of
expression pattern of all six lncRNAs in qPCR were
similar to the results of transcriptome analysis and didn’t
find any dissimilarities between them.

Discussion
Bolting or early-flowering is considered the main threat
to the productivity of vegetable crops, especially spinach
as a commercial and nutritional crop, and to date, lim-
ited studies have revealed a few molecular aspects of
flowering mechanisms in this crop [13, 57]. Alongside
protein-coding genes, lncRNAs play important roles in
plant developmental pathways such as the transition
from the vegetative to the flowering stage and flowering
time control through regulating the expression of genes
at the transcriptional or post-transcriptional level [21].
Unraveling the association between lncRNAs and func-
tionally related genes requires potential investigations.
One way to extract this information could be facilitated
through sub-categorizing of protein-coding genes and
lncRNAs in gene co-expression networks because it has
been demonstrated that genes in the same module are

presumably contributed in similar biological processes
[58]. Hence, we identified the lncRNAs, analyzed the ex-
pression profile of two early and late-bolting spinach ac-
cessions, compared their expression levels in leaf tissues
before and after flowering and confirmed them in flow-
ering tissues using deep transcriptome data. We also
predicted the potential function of lncRNAs and their
cis-acting and trans targets genes. Additionally, we ac-
quired the lncRNA-related pathway and gene ontology
information and constructed a co-expression network
based on the interaction between lncRNA and mRNA.
In this study, a total of 1,141 potential lncRNAs were
identified, 111 of which were significantly DE between
vegetative and reproductive stages. While analyzing the
characteristics of lncRNAs, we found that the number of
lncRNA in our study was higher than lncRNAs reported
by Li et al., 2020 [57]. As shown in Fig. 2, the expression
profile of DE-lncRNAs was distinct between Kashan and
Viroflay, confirming the accession-specific expression of
lncRNA. Hence, lncRNAs with different expressions in
the accession with different bolting times may be in-
volved in the flowering time control. In further investi-
gation, we examined the conservation and expression of
identified lncRNAs in flower tissues. According to the
results, ~ 68 % lncRNA identified in leaf tissues, were
conserved and expressed in flower tissue. However, spin-
ach lncRNAs were not well-conserved and expressed at
the lower level compared with protein-coding genes,
consistent with other studies examining plant lncRNAs
[14, 59–61]. Notably, no homologous lncRNA was iden-
tified in spinach compared with Arabidopsis in the
NONCODE database [62]. These results suggest that
lncRNAs identified in our study were not conserved with
currently known lncRNAs among different plant species,
possibly due to (1) lncRNAs are not constrained by
codon usage [61], (2) short motifs are not easily identifi-
able by BLAST search [59], and (3) lncRNAs may dir-
ectly interact with RNA-binding proteins through
conserved secondary structures [32]. This finding is
similar to the results observed for lncRNAs in other
plant species [14, 60, 61]. Among the main regulatory
pathways for flowering control, including the photo-
period, vernalization, autonomous, age, and gibberellin
pathways, vernalization is well-known to involve
lncRNAs in the regulation of FLC expression. Recent
studies have demonstrated that at least two types of
lncRNAs, including COOLAIR (located at the 3’ end of
the FLC locus) and COLDAIR, are involved in the
modulation of FLC expression [26, 63–66]. Besides,
genome-wide studies in A. thaliana have identified
lncRNA CDF5 LONG NONCODING RNA (FLORE),
which control flowering through regulating the expres-
sion FLOWERING LOCUS T (FT) [67]. However, no sig-
nificant matches were obtained with COOLAIR.
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COLDAIR, and CDF5/FLORE among the all lncRNAs in
this study. One possible explanation for this observation
is that the regulatory mechanism of FLC and FT differ
between spinach and Arabidopsis.
To improve our understanding of the functions and

regulatory mechanisms of lncRNAs, we predicted cis-
acting target genes of lncRNAs and DE-lncRNAs and
performed the GO classification and KEGG enrichment
analyses of the cis-acting target genes. The GO term
classified in the biological process category was mainly
derived from target genes located upstream of all
lncRNAs and mostly associated with the accession

Viroflay for DE-lncRNAs. Through GO functional en-
richment analysis, we found that cis-acting target genes
of DE-lncRNAs were enriched in terms including
reproduction (GO:0000003), carbohydrate metabolic
process (GO:0005975), and flower development (GO:
0009908), which are directly related to the flowering
regulation. It is proposed that carbohydrates provide en-
ergy sufficient for inflorescence development [10, 68].
Moreover, the cis-acting target genes of lncRNAs were
significantly enriched in 15 pathways via KEGG analysis.
The results of the KEGG enrichment analysis revealed
pathways including “phenylpropanoid biosynthesis”,

Fig. 11 The relative expression of selected lncRNAs determined by qPCR in two accessions Kashan and Viroflay at two vegetative and
reproductive development stages. KV, KR, VV, and VR represent Kashan-vegetative, Kashan-reproductive, Viroflay-vegetative, and Viroflay-
reproductive, respectively. Here the data represented are relative quantification (RQ) values of gene expression. Bars represent the mean of three
biological and technical replicates. ** or * indicate significant differences using Student t-test with p-value < 0.01 or < 0.05, respectively
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“plant hormone signal transduction”, “Starch and su-
crose metabolism”, “MAPK signaling pathway”, and “cir-
cadian rhythm”, which are essential for the growth and
flower development. These findings indicate that
lncRNAs identified in this study are mainly associated
with flowering-related pathways.
In addition to finding cit-targets genes, the novel inter-

actions between DE-lncRNAs and flowering-related
genes were successfully unraveled in both Kashan and
Viroflay accessions using prediction of DE-lncRNAs’s
trans target genes. For instance, an interplay between
the bHLH transcription factor (PIF4) and several DE-
lncRNAs especially those exhibited expression in both
leaf and flower tissues was identified in early bolting Ka-
shan accession. The prominent role of this gene has
been displayed in ambient temperature-mediated flower-
ing time [29]. It is proven that numerous higher plants
increase their growth rate and accelerate the floral tran-
sition in response to warmer ambient temperatures.
PIF4 has been found to activate FT through the
temperature dependent binding to FT promoter [69],
which is known as a key gene involved in flower induc-
tion of many plant species [70]. In the present study, the
upregulation of PIF4 was observed in vegetative stage of
Kashan compared to the reproductive stage. This result
suggested the positive regulatory role of this gene along
with its associated DE-lncRNAs including, MSTR
G.1857.1 and MSTRG.8334.1 in a participatory manner
on floral transition. In contrast, the other regulatory
interaction was unveiled through mediating regulation
by MSTRG.5258.1, MSTRG.7253.1, and MSTRG.1075.1
on PIF4 expression. On the basis of these findings, we
can unveil flowering acceleration in Kashan through the
PIF4/lncRNAs interaction.
In late bolting Viroflay accession, the novel relation-

ship was revealed between SNAT2 and DE-lncRNAs
which were commonly shared between leaf and flower
tissues. Generally, SNAT2 contributes to melatonin syn-
thesis, and by this function modulates various physio-
logical responses. The key role of this gene has been
detected in the GA-related flowering pathway and sup-
pression of FT gene expression as well [71]. Lee et al.
(2019) indicated that knockout of AtSNAT2 led to re-
duction of melatonin levels and also flowering delay.
They attributed delay of flowering time to decrement in
the expression levels of gibberellin biosynthetic genes
like ent-kaurene synthase (KS) and reduction in FT ex-
pression levels. According to this study, the upregulation
of SNAT2 in the Kashan vegetative stage presumably re-
vealed its positive regulatory role on early floral transi-
tion of this accession in comparison with the Viroflay,
which exhibited the downregulation of SNAT2. Add-
itionally, our results unraveled SNAT2/DE-lncRNAs
(MSTRG.6436.1, MSTRG.3613.1, and MSTRG.13194.1)

interaction-mediated flowering time regulation in Viro-
flay. Our results in Viroflay pointed out the interaction
between another flowering-associated gene, HUA1, and
common DE-lncRNAs in both tissues of leaf and flower.
HUA1, as an RNA-binding protein has been turned out
to contribute in regulation of MADS-box floral home-
otic gene AGAMOUS (AG) along with other AG mRNA
processing factors including FLOWERING LOCUS
WITH KH DOMAINS (FLK), PEPPER (PEP) and HUA
ENHANCER 4 (HEN4) genes. It has been illustrated that
the partnership possibly led to floral organ identity and
floral meristem determinacy [72, 73]. In our study, the
probable collaborative-based interaction was observed
between HUA1 and its relevant DE-lncRNAs including
MSTRG.19145.1, MSTRG.13194.1, MSTRG.9452.1 and
MSTRG.7434.1, which emerged as over-expressed genes
in vegetative stage of both accessions. This result might
disclose their positive regulatory role in stimulating spin-
ach flower induction and development. Additionally,
ELF6 was predicted as another downstream-trans target
of DE-lncRNAs in Viroflay. This gene is identified as a
leading gene negatively involved in the regulation of
flowering time through repressing the photoperiodic
floral regulatory pathway [74]. Jeong et al. (2009) dis-
played this gene directly repressing FT gene and inhibit-
ing precocious flowering in Arabidopsis [75]. The
downregulation of ELF6 and the opposite expression
pattern of some associated controlling lncRNAs includ-
ing MSTRG.1857.1, MSTRG.1953.1, MSTRG.8334.1,
and MSTRG.14944.1 in vegetative stage of both Kashan
and Viroflay accessions can unveil the regulatory
mechanisms-mediated lncRNAs mitigating inhibitory ef-
fects of ELF6 on FT expression.
Another novel regulatory interaction was found be-

tween PKL and pertinent De-lncRNAs including, MSTR
G.1857.1, MSTRG.1953.1, and MSTRG.14944.1 in Viro-
flay. PKL is well-known as a CHD3 chromatin-
remodeling factor that promotes flowering initiation
(Henderson et al., 2004). Fu et al. (2016) revealed the
regulatory interaction between PKL and LFYgene which
regulates its own downstream floral meristem genes.
The negative regulatory role of ORTH2 on flowering
time has been proved in Arabidopsis [76]. Kraft et al.
(2008) indicated that transgenic plants over-expressing
ORTH2 exhibited a late-flowering phenotype [77]. For
this gene the opposite changes of expression pattern was
detected between two Kashan and Viroflay accessions in
vegatative stage compared with the reproductive stage.
This difference in expression pattern can divulge the
presumptive role of ORTH2 on flowering time as the
distinct phenotypic attribute between two accessions.
Interestingly, in Viroflay the probable lncRNA-mediated
modulation of ORTH2 expression was discovered
through expression analysis of DE-lncRNAs such as
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MSTRG.575.1, MSTRG.5258.1 and MSTRG.1075.1 that
were predicted as regulators of upstream flowering-
related trans target genes. CK2 as a protein kinase con-
tributes to the modulation of the circadian clock and
photoperiod pathway. It has been demonstrated that
CK2 positively controls flowering time by repressing the
expression of FLC [78]. In our study the positive regula-
tory role of CK2 was also revealed in Viroflay. Moreover,
the potential regulatory role of MSTRG.575.1, MSTR
G.1252.1, MSTRG.1305.1 was observed on overexpres-
sion of CK2, resulting in flowering time regulation.
Based on our expression data, PHL, a nuclear proteins
with an important role in regulating photoperiodic flow-
ering and accelerates flowering through physical interac-
tions with phytochrome B (phyB) and CONSTANS (CO)
[79], emerged as down-expressed genes in vegetative
stage compared to the reproductive stage. Since this ob-
served expression pattern in the vegetative stage might
prolong flowering initiation, we can conclude the prob-
able pivotal role of this gene in induction of late bolting
phenotype of Viroflay. Besides, our results detected
PHL/MSTRG.1856.1 interplay-mediated flowering time
regulation in Viroflay. Similar to PHL, GASA5 emerged
as the overexpressed gene in the vegetative stage. Since
the genetic evidence has explained that GASA5 induces
late flowering by suppressing the expression of the FT
and LFY as major flowering-time genes [80, 81], this re-
sult suggests the possible role of this gene in Viroflay’s
late bolting phenotype excitation as well. Additionally,
the collaborative-based link was discovered between
GASA5 and its associated DE-lncRNAs including MSTR
G.1857.1, MSTRG.1953.1, MSTRG.6436.1, and MSTR
G.706.1.
Numerous studies have reported that plant lncRNAs

could act as eTMs by binding to specific miRNA, com-
peting with the target mRNA of miRNA and thus block-
ing the cleavage and alleviating the repression of its
target gene [82–84]. In our study, two DE-lncRNAs were
identified as eTMs for two miR172 and miR167, which
play critical roles in flowering time [85, 86]. Previous re-
searches have demonstrated that miR172 could affect
the expression level of APETALA-2 (AP2) [85] and also
target some TFs [86, 87]. Here we found three genes en-
coding AP2/ERF as targets of miR172, which known to
have a potential impact to positively/negatively regulate
various processes such as control of metabolism, growth,
and development, as well as flowering regulation
through the photoperiod pathway [88]. These results in-
dicate that the lncRNA-miRNA (MSTRG.16566.1-
mir172) pairs might be important novel regulatory com-
ponents in the flowering/bolting of spinach.
Once we identified final DE-lncRNAs and DEGs sets,

WGCNA was then carried out to construct related-
flowering regulatory networks in spinach with the aim to

elucidate the interaction of protein-coding genes and
lncRNAs and identify key hub genes. Among identified
co-expression modules, the turquoise module contained
the largest number of DE-lncRNAs, including 3 unique
DE-lncRNAs in Kashan, 23 unique DE-lncRNAs in Viro-
flay, and 6 common DE-lncRNAs between both acces-
sions. In this module, we identified Flowering locus T-
like 1 (FLT1), EARLY FLOWERING 4 (ELF4), CON-
STANS-LIKE 1 (COL1), and AGAMOUS-LIKE (AGL)
which are well-known genes in controlling circadian
rhythms and flowering time [89, 90]. Besides, we found
other crucial flowering-related genes including UDP-
glycosyltransferase enzymes (UGTs): regulates flowering
time via the flowering repressor FLC [91], Serine/argin-
ine-rich (SR): delays flowering time [8], Sugar trans-
porter: acts downstream of FLT during the floral
transition [56], Transducin/WD-40: an important gene
in regulating flowering time [92], Dof protein: plays a
key role in photoperiodic flowering time [93], Glutare-
doxin: affects flowering time [94], Frigida-like: can
modulate flowering time [15], Pentatricopeptide repeat
protein: affects flowering time [95], Glutathione S-
transferase: plays roles in regulating flowering time in re-
sponse to light [96], F-box protein: promotes flowering
[97], and Ubiquitin-conjugating enzyme which is in-
volved in the regulation of flowering time [98]. In the
turquoise model, TFs such as ERF, BHLH, AP2/B3-like,
BZIP, MYB, WRKY, GATA, NAC domain, Zinc finger,
MADS-box, and CCAAT-binding factor were also iden-
tified as the paramount regulators of flowering [10, 11,
99–102]. Previous studies have shown that most of these
TFs could act as the target of lncRNAs [33, 61].
By searching against the genes list of the blue module,

we found that 5.1 % of the member transcripts were DE-
lncRNAs, containing two unique DE-lncRNAs in Ka-
shan, 16 unique DE-lncRNAs in Viroflay, and 2 common
DE-lncRNAs between both accessions. The core flower-
ing genes in this module were FLC and FLOWERING
PROMOTING FACTOR 1 (FPF1), along with flowering-
related genes including VQ motif-containing protein
[103], E3 ubiquitin-protein ligase [104], Ubiquitin-
conjugating enzyme h [105], UDP-glycosyltransferase
[91], Transducin/WD40 [92], CASP-like [106], Pentatri-
copeptide repeat [95], F-box protein [97], B-box zinc fin-
ger [105], and Sugar transporter [56], which play
important roles in regulating flowering time. TFs in the
blue module included GRAS, GATA zinc finger,
MYB, ERF, and NAC domain. In the black module,
five DE-lncRNAs were recognized as the flowering-
associated lncRNA, together with four well-known
TFs including zinc finger, F-box, ERF, WRKYand
other neighboring co-expressed mRNAs such as
sugar transporter and UDP-glycosyltransferase. Inter-
estingly, most of the genes mentioned above,
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importantly ELF3 and COL1, were also identified in
the other modules.
Furthermore, the KEGG analysis of genes from two

turquoise and blue modules supports that the candidate
target genes of lncRNAs existing in these modules may
be involved in the regulation of circadian rhythm.
Altogether, we found that novel identified lncRNAs in
this study may be involved in the regulation of key
flowering-related genes and related pathways like circa-
dian rhythm.

Materials and methods
Description of transcriptome datasets
Two transcriptome datasets [13] generated from leaf tis-
sues of two different accessions at vegetative and flower-
ing stages were used to identify bolting-related lncRNAs.
Our previous study has described sampling, RNA extrac-
tion, and sequencing methods [13]. In brief, seeds of two
accessions Viroflay and Kashan as late and early flower-
ing spinach samples, respectively, were sown in plastic
pots with sterilized soil and grown in a growth chamber
under spring growth conditions for 3 months at Isfahan
University of Technology, Isfahan, Iran, in March 2018.
Total RNAs were extracted from leaf samples using the
DENAzist column RNA isolation kit. After quantifica-
tion, RNAs were sent to Personalbio (Shanghai, China)
company for cDNA library preparation and sequencing.
The sequencing was done on an Illumina platform with
150 bp paired-end readers. In the current study, one
dataset included six samples of accession Kashan repre-
senting three biological replicates at each developmental
stage. The second dataset included the same number of
samples at the same stages representing the accession
Viroflay. Datasets were deposited at Sequence Read
Archive (SRA) at NCBI with accession numbers
PRJNA630139.

Identification of unannotated transcripts
The paired-end RNA-Seq reads were subjected to quality
checks and filter out low-quality reads and adaptor se-
quences using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and Trimmomatic
v0.30 program [107](Bolger et al., 2014), respectively.
Trimmomatic software was set to keep reads longer than
50 bp with a minimum Phred score of 30. After trim-
ming, the clean reads from each library were mapped
with the spinach reference genome version 1 located in
SpinachBase[48, 108] using STAR v2.7.1 [109]. To derive
unannotated transcripts, the StringTie v2.0.6 [110] was
used to assemble all transcripts, then StringTie’s merge
was applied to combine the assembled transcripts and
create a unique set of transcripts. In this step, the output
file of StringTie’s merge was compared with the gene an-
notation file (GTF file) of the reference genome using

gffcompare to classify transcripts in different classes.
Then, unannotated transcripts were extracted from
gffcompare output based on the class codes, including
“u” (intergenic lncRNAs), “x” (anti-sense lncRNAs), “i”
(intronic lncRNAs), “o” (generic exonic overlap lncRNAs
with reference transcripts), and “e” (single exon transfrag
overlapping a reference exon). Finally, BEDTools v2.29.2
[111] was used to extract the sequences from the spin-
ach reference genome by defining unannotated tran-
scripts names in a BED file.

LncRNA prediction pipeline
To identify potential lncRNAs, the unannotated tran-
scripts were subjected to some filtering approaches
(Fig. 1 A). First, the unannotated transcripts with CPM
(counts per millione) < 1 and less than 200 nucleotides
were excluded. Second, FEELnc v.0.2 [112] with a shuffle
mode (-m “shuffle”) was used to infer potential lncRNAs
from unannotated transcripts. Third, the coding poten-
tial of predicted lncRNAs was further evaluated using
coding potential calculator (CPC2) software [113].
Fourth, tRNAscan-SE 2.0 [114] and Barrnap 0.9 (https://
github.com/tseemann/barrnap) were applied to filter out
possible transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAs). Fifth, remaining transcript sequences were
then inputted into CREMA (available at www.github.
com/gbgolding/crema) [47] to increase specificity and
accuracy of lncRNA prediction and ranking. Since the
definition of lncRNA is rather arbitrary, various tools
have been developed to evaluate the coding potential of
transcripts and distinguish non-coding RNAs from
protein-coding ones using machine learning approaches.
Hence, we applied additional tools namely RNAplonc
[115] to check and evaluate identified lncRNAs. A search
with BLAST tools was performed against the UniProt re-
lease 2020-02, Pfam release 28.0, and Rfam 14.4 database
to remove transcripts encoding any conserved protein
and domain. Due to the presence of known lncRNAs in
some existing plants, we compared the identified
lncRNAs in this study with the lncRNAs available in
GreeNC [44], CANTATAdb v2.0 [45], lncRNAdb v2.0
[116], and PLncDB v2.0 [43] databases by alignment
using BLASTn to assess the conservation of spinach
lncRNAs and make this set more credible. BLASTN
search was performed at the criteria of e-value 1e-5,
identity > 70 %, and query coverage > 30 %.

Mining of differentially expressed genes (DEGs)
For differential expression analysis, gene read-count data
matrices were produced from assembled transcripts with
python script prepDE.py. Then, the IDEAMEX website
[117] was used to call all DEGs through DESeq2 [118]
software with ‘‘FDR ≤ 0.05, logFC > = 2 and CPM = 1”
parameters.
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Tracking of identified lncRNAs in the spinach flower
tissues
To investigate whether lncRNAs identified in the leaf
samples are also conserved and expressed in flower tis-
sues, we employed the transcriptome dataset of young
leaf (YL) and female flower samples of s. oleracea in five
different developmental stages including, the formation
of ovary (FO), sepal primordia and carpel primordium
(SPCP), floral meristem (FM), ovule differentiates within
the ovary (ODVO), and ovule matures (OM), available
in the European Nucleotide Archive (ENA, https://www.
ebi.ac.uk/ena) under the bioproject accession number
PRJNA649901. To identify lncRNAs expressed in flower
transcriptome, all data processing steps including, qual-
ity control, trimming, mapping, identification of unanno-
tated transcripts, and subjecting to lncRNA filtering
pipeline were performed as described above in “Identifi-
cation of unannotated transcripts” and “LncRNA predic-
tion pipeline” sections. Subsequently, potential lncRNAs
identified in leaf tissues of Viroflay and Kashan acces-
sions at vegetative and reproductive stages were com-
pared to those identified lncRNA in flower samples
using BLASTn search with the criteria of e-value 1e-20
and minimum alignment length of 200 bp. Moreover,
the differential expression analysis of lncRNAs identified
in young leaf and aforesaid flower developmental stages
was carried out as mentioned before in “Mining of dif-
ferentially expressed genes (DEGs)” section.

Prediction of DE-lncRNA’s trans target genes using LncTar
The interaction between DE-lncRNA and trans-
regulated target genes as DEGs was investigated by using
LncTar [119]. For this purpose, DEGs located in 100 kb
upstream and downstream of potential DE-lncRNAs (cis
target genes) identified in Kashan and Viroflay acces-
sions were imported as inputs to LncTar, and tools was
implemented with default parameters. Accordingly, in
this study the biological function of genes located 100
Kbp upstream and downstream of lncRNAs as cis-
regulated potential target genes were investigated via
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG; http://www.genome.jp/kegg/)
pathway enrichment analysis [120].

Identification of DE-lncRNAs that act as eTMs
To identify DE-lncRNAs that can act as eTMs of miR-
NAs, all DE-lncRNAs candidates were used to predict
miRNA mimic sites using the psMimic software [121].
In this way, all previously-known plant miRNAs from
the miRBase database (http://www.mirbase.org/; release
22.1, October 2018) [122] were downloaded and clus-
tered using CD-HIT-EST [123] with the following pa-
rameters: c = 1, n = 10, d = 0, and M = 16,000. Putative
target genes of the predicted miRNAs that had mimicry

with lncRNAs were identified using the plant miRNA
target prediction online software psRobot with moderate
parameters [124].

Detection of lncRNAs expression by qRT-PCR
To verify the abundance of the predicted lncRNAs, the
expression levels of six lncRNAs were detected through
real-time quantitative PCR (qRT-PCR). Hence, total
RNAs were extracted using the DENAzist column RNA
isolation kit and reverse-transcribed into cDNA using
RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher, Co., USA), according to the manufacturer’s in-
structions. Then, specific primers (Table 3) and SYBR
Green PCR Master Mix (BioFACT, Korea) were used to
perform qRT-PCR in three technical replicates using an
ABI system (ABI ViiA 7 Real-time PCR) in a 20 µL final
volume. Actin and GAPDH housekeeping genes were
used as internal reference genes, and the data were ana-
lyzed by the 2-ΔΔCt method.

Coding/non-coding gene co-expression network
To detect similar expression patterns between the
lncRNAs and mRNAs, we used the WGCNA [125] R
software package. First, the normalized fragments per
kilobase of transcript per million fragments mapped
(FPKM) values were used as the input file for signifi-
cantly differentially expressed lncRNAs and mRNAs.
Based on log2 (FPKM + 1) values, a similarity matrix was
generated by calculating Pearson’s correlation between
all pairs of genes and then transformed into an adja-
cency matrix. According to the scale-free topology cri-
terion [126], soft power was set to 9. After that, the
topological overlap measure (TOM) and corresponding
dissimilarity (1-TOM) were calculated using the adja-
cency matrix. Then, the modules, which are clusters of
highly interconnected genes, were identified by hierarch-
ical clustering of 1-TOM and the DynamicTree Cut

Table 3 LncRNAs and primers set used for qRT-PCR analysis

Gene IDs Primers Sequence Product Size

vMSTRG.3613.1_F CCTTGGTGGAGGCTTATTGA 197

vMSTRG.3613.1_R TTCCTCCTCCAGTTCACCAC

vMSTRG.13194.1_F TCACCCTCTGACCAAAAAGC 209

vMSTRG.13194.1_R TTTGAGGCCTTAGGCAAAGA

kvMSTRG.6436.1_F CATTTTTGCGCACTTGCTAA 206

kvMSTRG.6436.1_R GGTGGAGGAAGATGGTGAGA

vMSTRG.11356.1_F GCTTTTGGTTTCGCTCAAAG 227

vMSTRG.11356.1_R AGAGCAGTAGGTGGCAAGGA

kvMSTRG.1075.1_F GCATAACCGCACATCAACAC 165

kvMSTRG.1075.1_R TAGTGTAACCGGCCAAGACC

vMSTRG.2206.1_F GGAAAAATTGGAACGAAGCA 164

vMSTRG.2206.1_R GCCCGAAAATAAGTCAGCAG
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algorithm [125]. Additionally, correlations among gene
expression modules and phenotypic traits were investi-
gated; day to flowering [46] was chosen as our interest-
ing trait. Modules that were significantly correlated with
the trait (r > 0.7, P-value < 0.05) were identified; and
genes in significant modules were then exported for fur-
ther analysis. Finally, to determine the genes that are
highly connected in the modules, we selected the 50 top
hub genes through the Cyto-Hubba plugin [127] and vi-
sualized these genes by Cytoscape [128] as an unsigned
network.
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