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The chloroplast genomes of four Bupleurum
(Apiaceae) species endemic to
Southwestern China, a diversity center of
the genus, as well as their evolutionary
implications and phylogenetic inferences
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Abstract

Background: As one of the largest genera in Apiaceae, Bupleurum L. is well known for its high medicinal value. The
genus has frequently attracted the attention of evolutionary biologist and taxonomist for its distinctive
characteristics in the Apiaceae family. Although some chloroplast genomes data have been now available, the
changes in the structure of chloroplast genomes and selective pressure in the genus have not been fully
understood. In addition, few of the species are endemic to Southwest China, a distribution and diversity center of
Chinese Bupleurum. Endemic species are key components of biodiversity and ecosystems, and investigation of the
chloroplast genomes features of endemic species in Bupleurum will be helpful to develop a better understanding of
evolutionary process and phylogeny of the genus. In this study, we analyzed the sequences of whole chloroplast
genomes of 4 Southwest China endemic Bupleurum species in comparison with the published data of 17
Bupleurum species to determine the evolutionary characteristics of the genus and the phylogenetic relationships of
Asian Bupleurum.

Results: The complete chloroplast genome sequences of the 4 endemic Bupleurum species are 155,025 bp to
155,323 bp in length including a SSC and a LSC region separated by a pair of IRs. Comparative analysis revealed an
identical chloroplast gene content across the 21 Bupleurum species, including a total of 114 unique genes (30 tRNA
genes, 4 rRNA genes and 80 protein-coding genes). Chloroplast genomes of the 21 Bupleurum species showed no
rearrangements and a high sequence identity (96.4–99.2%). They also shared a similar tendency of SDRs and SSRs,
but differed in number (59–83). In spite of their high conservation, they contained some mutational hotspots,
which can be potentially exploited as high-resolution DNA barcodes for species discrimination. Selective pressure
analysis showed that four genes were under positive selection. Phylogenetic analysis revealed that the 21
Bupleurum formed two major clades, which are likely to correspond to their geographical distribution.
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Conclusions: The chloroplast genome data of the four endemic Bupleurum species provide important insights into
the characteristics and evolution of chloroplast genomes of this genu, and the phylogeny of Bupleurum.

Keywords: Bupleurum, Chloroplast genome, Comparative analysis, Phylogenetic analyses

Background
Bupleurum L., with more than 180 species, represents
one of the largest genera of the family Apiaceae and is
distributed in the north temperate zone (mainly in Eur-
asia, the Mediterranean, North Africa, Asia and North
America) [1, 2]. Different from other genera of Apiaceae,
life forms in Bupleurum vary greatly, ranging from herbs
to shrubs [3]. The genus has frequently attracted the at-
tention of evolutionary biologists and taxonomists for its
distinctive characteristics in the Apiaceae family [1–6].
Bupleurum is easily distinguished from other genera of

the family for its simple and entire leaves as well as con-
spicuous bracts and bracteoles, which are almost unique
morphology characteristics in the family [1, 4]. Molecu-
lar phylogenetic studies in the recent two decades based
on plastid and nuclear markers suggest that it should be
considered as an identifiable tribe [7–12]. Interspecific
phylogeny of Bupleurum presents a long standing prob-
lem in the systematics. The genus shows broad intra-
specific morphological variations with poorly defined
inter-specific boundaries, making the taxonomy based
on traditional classification systems extremely difficult as
increasing species being discovered [5, 6, 13]. In spite of
the efforts at phylogenetic analysis in previous studies,
some essential problems concerning the phylogenetic re-
lationship of Bupleurum based on nrDNA (ITS) and
various plastid sequences (e. g. rps16, trnH-psbA, and
matK) still remain to be solved [1, 4, 13, 14].
Compared with nuclear and mitochondrion genome,

gene density of chloroplast genome is larger and the
evolution rate is moderate, and the segments with differ-
ent evolution rates may serve for different research pur-
poses [15–19]. The evolution of chloroplast genomes
has long fascinated and puzzled evolutionary biologists.
The understanding of the evolutionary connection
among the plant species, the features they shared, and
their differences from other taxonomic groups [20] all
benefit from comparative analysis of whole chloroplast
genomes that provide insights into the phylogenetic rela-
tionships and species evolution in different taxa [21–28].
In general, chloroplast genome has long been considered
to be conserved and affected little by adaptive evolution
in many genera [18–20]. However, rearrangements, dif-
ferences in structure, size, gene content and order, and
positively selected genes have been documented in some
genera, such as Amphilophium [29], Amorphophallus
[30] and the apiaceous genus Ligusticum [31]. For such a

diversified and wide-distributed genus like Bupleurum,
we can not assert that there is absolutely no variation in
chloroplast genome in a certain group without detailed
study. It is important to investigate chloroplast genomes
of the taxonomically significant genera, for understand-
ing how infrageneric species are linked, what features
are shared among them, and how they are different from
other taxonomic groups [20, 29]. The advancement of
the high-throughput sequencing technologies has dras-
tically lowered the cost of analysis of the whole chloro-
plast genome sequences. Previous studies have reported
the sequence data of chloroplast genomes for some spe-
cies of Bupleurum [32–40], but unfortunately the
changes in the structure of chloroplast genomes or the
selective pressure in the genus were seldom addressed.
As a result, the evolution of chloroplast of the genus is
poorly understood. In the study by Li et al. [37], the
chloroplast genomes of only five Bupleurum species
were reported, but few of the species are endemic to
Southwest China. Southwest China, which harbors an
extremely high species diversity [41, 42] and is a distri-
bution and diversity center of Chinese Bupleurum (ca.
21 species), including 12 species and 8 varieties endemic
to China, 11 species and 5 varieties endemic to South-
west China. As key components of biodiversity and eco-
systems, endemic species has long attracted the interest
of ecologists and evolutionary biologists [43–47]. Investi-
gation of the chloroplast genome features of endemic
Bupleurum species may provide important insights into
the evolution and phylogeny of the genus, especially the
endemic Bupleurum species, thus helping to clarify the
phylogenetic relationships and evolutionary aspects in
the genus.
Bupleurum shanianum, B. yunnanense, B. kweicho-

wense and B. rockii are endemic to Southwest China [2,
6]. B. shanianum, B. yunnanense and B. kweichowense
are 3 perennial herbs with height ca. 6–35(− 58) cm, 12–
35 cm, 20–40 cm, respectively, while B. rockii has a rela-
tively higher height ca. 60–100 cm. B. shanianum and B.
yunnanense grow among grassy places, bushes, or under
forests at altitudes of 3200–4400m and 2500–5000 m,
respectively, distributed in the alpine area of eastern
Himalayas (Southeast Tibet), Sichuan and Yunnan Prov-
inces of China. B. rockii grows in open forests and
grasses on mountain slopes at altitudes of 1900–4200 m,
occurring in Sichuan and northwest Yunnan Provinces
of China. The documentation of B. kweichowense is
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extremely poor and only a few collections from north-
east Guizhou Province (Fanjing Shan) of China are avail-
able. It grows on gravelly slopes in sunny places at
altitudes ca. 2100m.
In this study, we used high-throughput sequencing

technologies to sequence the chloroplast genomes of
four Bupleurum species (B. shanianum, B. yunna-
nense, B. kweichowense and B. rockii) and assembled
their whole chloroplast genomes. Previously pub-
lished chloroplast genomes of 17 Bupleurum species
[32–40], including herbs and one shrub (B. dracae-
noides), were downloaded for comparative analysis,
and the 21 species are distributed roughly in 3 re-
gions (Southwest China; Northwest China; Northeast
China, Korea and Japan; Additional file 1: Fig. S1
and Additional file 2: Table S1), which vary greatly
in geomorphology and climate. Environmental het-
erogeneity plays an important role in evolutionary
trajectories and ecological adaption of species. It has
been reported that the positive selection on some
plastid genes (e. g. clpP, ndhF and matK) were ob-
served on some plastid genes in some genera, which
indicate that these genes might be subject to adap-
tive evolution in response to distinct ecological se-
lective pressures [29–31]. However, to date, adaptive
evolution of chloroplast genes in Bupleurum has not
been fully understand. The sequence data of the
chloroplast genomes provide a clue to the evolution
and phylogeny of Bupleurum. Here, we attempted to
answer the following questions: (1) Are there differ-
ences in the gene and structure of chloroplast ge-
nomes among Bupleurum species with different life
forms and distributions? (2) Do the genes of
Bupleurum species suffer positive selection under
different habitats? We also constructed a phylogeny
using 80 protein-coding genes (PCGs) of 21
Bupleurum species and 2 outgroups to explore the
interspecific phylogenetic relationship of Bupleurum
species in these regions.

Results
Chloroplast genome features of four Bupleurum species
endemic to Southwest China
The sequences of the 4 Bupleurum chloroplast genomes
ranged from 154,925 bp (B. kweichowense) to 155,323 bp
(B. yunnanense), all having the typical quadripartite
structure, comprising a SSC (17,478–17,575 bp) and a
LSC (84,920–85,228 bp) region separated by a pair of
IRs (52,572–52,649 bp) (Table 1, Fig. 1). The LSC re-
gions exhibited the greatest standard deviation in se-
quence length (cv = 0.3%), followed by the IR regions
(cv = 0.1%) and SSC regions (cv = 0.08%). The overall GC
content was highly similar across the 4 chloroplast se-
quences (37.7–37.8%) (Table 1).
The chloroplast gene contents of the 4 Bupleurum

species were identical (Table 1). Each Bupleurum
chloroplast genome encoded a total of 114 unique genes,
consisting of 30 tRNA genes, 4 rRNA genes and 80
protein-coding genes (PCGs) with the same gene order
(Table 1). The SSC region contained 11 PCGs (ndhF,
rpl32, ccsA, ndhD, psaC, ndhE, ndhG, ndhI, ndhA,
ndhH, and rps15) and 1 tRNA (trnL-UAG), while the
LSC region contained 60 PCGs and 22 tRNAs (Table 2).
A total of 20 genes were duplicated in the IR regions, in-
cluding 8 tRNAs (trnA-UGC, trnG-UCC, trnI-GAU,
trnI-CAU, trnL-CAA, trnN-GUU, trnR-ACG, and trnV-
GAC), 8 PCGs (rps7, rpl2, rpl23, ndhB, rps7, rps12, ycf2
and ycf15), and 4 rRNAs (rrn4.5, rrn5, rrn16 and rrn23)
(Table 2). Eighteen genes contain introns, 15 of which
contain a single intron, whereas the other 3 (clpP, ycf3
and rps12) harbored 2 introns (Table 2). In this study,
the incomplete copy of ycf1 and rps19 in the IR regions
were regarded as pseudogenes.

Comparative analysis of chloroplast genome structure of
Bupleurum
The Mauve alignment analysis revealed that there
was no rearrangement in coding and non-coding re-
gions of the 21 Bupleurum chloroplast genomes

Table 1 Summary of chloroplast features in four Bupleurum species

B. shanianum B. yunnanense B. kweichowense B. rockii

Total length (bp) 154,925–155,258 155,211–155,323 155,025 155,120–15,121

Total GC content (%) 37.8 37.8 37.7 37.8

IRa length (bp) 26,261–26,271 26,212–26,279 26,299 26,322

IRb length (bp) 26,261–26,300 26,212–26,279 26,299 26,327

SSC length (bp) 17,478 17,487–17,530 17,575 17,515

LSC length (bp) 84,921–85,208 85,148–85,228 84,920 84,959–84,960

Number unique genes 114 114 114 114

Protein coding 80 80 80 80

tRNA genes 30 30 30 30

rRNA genes 4 4 4 4
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(Fig. 2), indicating that the chloroplast genomes were
conserved. Among the 21 Bupleurum species, the
genes rpl22 and rpl2 flanked the LSC/IRb junction,
and gene rps19 traversed the LSC and the IRb re-
gion (JLB line), with 50–82 bp occurring in the IR
region (Fig. 3). On the other side of the IRb/SSC
was the gene ndhF, which was 15–39 bp away from
the IRb/SSC junction. The ycf1 gene traversed the
SSC and IRa region, with 1797–2140 bp occurring in
the IR region (Fig. 3).

Simple sequence repeats (SSRs) analysis showed that
total number of SSR loci ranged from 59 (B. dracae-
noides) to 83 (B. thianschanicum). The patterns of SSRs
distribution were similar among the 21 Bupleurum, as
shown in Additional file 1: Fig. S2. Mono-nucleotides
were the most frequent in the SSRs (61.5–71.2%),
followed by di-nucleotides (10.1–19.7%). Tri-nucleotides
and tetra-nucleotides were more frequent than penta-
and hexa-nucleotides (Additional file 1: Fig. S2). Short
dispersed repeats (SDRs) analysis showed that total

Fig. 1 Chloroplast genome map of the four Bupleurum species. Genes shown outside of the larger circle are transcribed clockwise, while genes
shown inside are transcribed counterclockwise. Thick lines of the smaller circle indicate IRs and the inner circle represents the GC variation across
the genic regions
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number of SDRs ranged from 34 (B. candollei and B.
shanianum) to 49 (B. longiradiatum). The species of
group I showed less SDRs than those of group II and III
(Additional file 1: Fig. S3). The 21 Bupleurum species
tended to generate more forward and palindromic re-
peats rather than reverse repeats, and lacked comple-
ment repeats (Additional file 1: Fig. S3).

Genome divergent hotspot regions in Bupleurum species
Comparative sequence analysis of the 21 Bupleurum
species using mVISTA revealed a high sequence identity
across the 21 species (Additional file 1: Fig. S4), with
identity ranged from 96.4 to 99.2%, suggesting that
Bupleurum chloroplast genomes were fairly conserved.
Overall, the coding regions (identity = 99.7 ± 0.8%) were
less divergent than non-coding regions (identity: =
96.7 ± 4.1%), and the IR regions (identity = 99.5 ± 1.1%)
were more conserved than LSC (identity = 97.1 ± 3.1%)
and SSC (identity = 98.2 ± 2.4%) regions. Variations were

observed in some intergenic spacers, including trnK-
rps16, rps16-psbK, trnG-trnR, atpI-rps2, trnC-trnT,
petA-psbJ, psaC-ndhG and ycf1-trnR. A few divergent
regions were also observed in some coding regions in-
cluding psbD, atpB, ndhD and ycf1.
The nucleotide diversity (Pi) of the chloroplast ge-

nomes in the 21 Bupleurum species was also calculated
to assess the sequence divergence level of these species.
In the LSC region, Pi values averaged 0.01087 (range
0.00063–0.03092), and in the SSC region, the average
value was 0.01527 (range 0.00394–0.03107); the IR
region had the lowest average value of 0.00215 (range 0–
0.00963) (Additional file 1: Fig. S5). Most of the se-
quences with high Pi values were spacer regions between
genes. Among these spacer regions, trnK-rps16, rps16-
psbK, trnG-trnR, atpI-rps2, trnC-trnT, petA-psbJ, psaC-
ndhG and trnR-ycf1 were the 8 regions having Pi values
> 0.02000. Only 4 coding regions (psbD, atpD, ndhD and
ycf1) had high Pi values over 0.02000.

Table 2 List of genes encoded in four Bupleurum plastomes

Gene Category Genes Number

Ribosomal RNAs rrn4.5 (×2); rrn5 (×2); rrn16 (×2); rrn23 (× 2) 4

Transfer RNAs trnA-UGC (×2)a; trnC-GCA; trnD-GUC; trnE-UUC; trnF-GAA; trnfM-CAU; trnG-GCC; trnG-UCC a; trnH-GUG; trnI-
CAU (× 2); trnI-GAU (× 2) a; trnK-UUU a; trnL-CAA(× 2); trnL-UAA a; trnL-UAG; trnM-CAU; trnN-GUU (× 2); trnP-UGG;
trnQ-UUG; trnR-ACG (× 2); trnR-UCU; trnS-GCU; trnS-GGA; trnS-UGA; trnT-GGU; trnT-UGU; trnV-GAC (× 2); trnV-
UAC a; trnW-CCA; trnY-GUA

37

Subunits of photosystem I psaA; psaB; psaC; psaI; psaJ; ycf3b; ycf4 7

Subunits of photosystem II psbA; psbB; psbC; psbD; psbE; psbF; psbH; psbI; psbJ; psbK; psbL; psbM; psbN; psbT; psbZ; 15

ATP-dependent protease
subunit P

clpPb 1

Large subunit of rubisco rbcL 1

NADH dehydrogenase ndhA; ndhB (×2) a; ndhC; ndhD; ndhE; ndhF; ndhG; ndhH; ndhI; ndhJ; ndhK 12

Ribosomal protein (large
subunit)

rpl2 (×2) a; rpl14; rpl16 a; rpl20; rpl22; rpl23 (× 2); rpl33; rpl32; rpl36 11

Small subunit of ribosomal
proteins

rps2; rps3; rps4; rps7 (×2); rps8; rps11; rps12 (× 2)b; rps14; rps15; rps16 a; rps18; rps19 14

DNA-dependent RNA
polymerase

rpoA; rpoB; rpoC1; rpoC2 4

Subunits of ATP synthase atpA; atpB; atpE; atpF a; atpH; atpI 6

C-type cytochrome synthesis
gene

ccsA 1

Subunits of cytochrome b/f
complex

petN; petA; petL; petG; petB a; petD a 6

Envelop membrane protein cemA 1

Maturase matK 1

Hypothetical chloroplast
reading frames

ycf1; ycf2 (×2) 5

Subunits of Acetyl-CoA-
carboxylase

accD 1

Pseudogenes infA; rps19c; ycf1c; ycf15 (×2) 4

Total 114 single-copy genes, 132 in total.

(×2): Two gene copies in the IRs; a Gene containing one intron; b Gene containing two introns; c means the incomplete copy located in the IR of the gene
straddling the IR and LSC/SSC regions
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Selective pressure analysis
The rate of synonymous substitutions and non-
synonymous substitutions (Ka/Ks) of 80 protein-coding
genes were calculated to assess the selection pressure be-
tween Bupleurum species. At the species level, by con-
catenating all of the 80 genes into a super-matrix, the
Ka/Ks ratios ranged from 0.50 (B. commelynoideum vs
B. pusillum) to 5.0 (B. longiradiatum vs B. boissieua-
num), with an average ratio of 0.92 (Fig. 4). The Ka/Ks
ratios between group II and group III were the highest
(averaging 1.10) (Additional file 2: Table S2). The Ka/Ks
ratios within group II (averaging 0.98) and group III

(averaging 0.92) were higher than those between group I
and group II, (averaging 0.83), between group I and
group III (averaging 0.71), and within group I (averaging
0.69) (Additional file 2: Table S2).
The Ka/Ks ratios were also calculated for all the 80

protein-coding genes in the chloroplast genomes of the
21 Bupleurum species separately (Additional file 2: Fig.
S6 and Fig. S7). Among the genes, matK had highest Ka/
Ks ratios (around 1.0, especially in group II), following
by ycf2, accD, and clpP. The remainder had Ka/Ks ratios
ranged from 0 to 0.6. The mean Ka/Ks ratios of protein-
coding genes in LSC (0.10) and SSC regions (0.15) were

Fig. 2 MAUVE alignment of 21 Bupleurum species chloroplast genomes using Geneious. Within each of the alignments, local collinear blocks are
represented by blocks of the same color and linked

Huang et al. BMC Genomics          (2021) 22:714 Page 6 of 15



lower than those in the IR regions (0.19). After sorting
the genes into functional categories and groups, Ka/Ks
of the photosynthetic genes (0.0412 ± 0.0683) were lower
than those of genes related to self-replication (0.2507 ±
0.2197) as well as other genes (0.2065 ± 0.1812).

Phylogenetic analysis
Results of Bayesian and ML analyses of the 21 Bur-
pleurum and 2 outgroup chloroplast genomes are pre-
sented in Fig. 5. The phylogenic trees estimated from
the Bayesian and ML analyses showed congruence in

their topologies, high bootstrap support values (BS >
90%) and strong posterior probabilities (PP = 1) for most
of the nodes. The two phylogenetic trees highlighted
two clades (clade I and II), containing 4 (PP = 100, BS =
100%) and 17 species (PP = 100, BS = 100%), respectively.

Discussion
Differences in gene and structure of chloroplast genomes
among Bupleurum species
We for the first time described the chloroplast genomes
of the 4 Bupleurum species endemic to Southwest

Fig. 3 Comparison of the LSC, SSC and IR junction among the 21 Bupleurum cp genomes
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China, which provide important insights into the charac-
teristics of plastid genomes of the members of this
genus. Previous studies have suggested that the
Bupleurum is a monophyletic group based on morph-
ology and molecular (nrDNA and chloroplast fragments)
evident. In present study, we provide new insight into
the evolution of Bupleurum in term of chloroplast ge-
nomes [1, 4, 7–14]. Our results showed that the chloro-
plast genomes of Bupleurum species are extremely
similar, indicating their high level of conservation espe-
cially in terms of chloroplast genome organization, ten-
dency of SDRs and SSRs, gene content. The results
support that Bupleurum is a monophyletic group in the
aspect of chloroplast genomes as they are remarkably
conserved.
The chloroplast genomes of the 21 Bupleurum species

displayed the typical quadripartite structure, comprising
a pair of IR regions which were separated by a LSC and
a SSC region. The chloroplast genomes size of
Bupleurum, ranging from 154,925 to 156,108 bp, is lar-
ger than those of the other genera in the Apiaceae family
(e. g. Angelica, Arracacia, Coriandrum, Glehnia, Hera-
cleum, Ligusticum, Ostericum, Pastinaca, Pimpinella,
Saposhnikovia, Semenovia, Seseli, Tetrataenium [45–
48]). The chloroplast genomes of the Bupleurum species

showed only minor differences (~ 1 kb) in sizes. Previous
studies suggested that the size variations of the chloro-
plast genomes resulted from expansion and contraction
of the IR regions [20, 24, 48–50]. The IR boundary com-
parative analysis revealed that gene distributions at SC/
IR junctions of Bupleurum chloroplast genomes were al-
most identical, and only minor differences were found in
length of these genes (rps19 and ycf1) and SC/IR bor-
ders. However, the LSC/IR borders showed differences
among Bupleurum species and some Apiaceae taxa. For
instance, while the LSC/IRb junction was located within
the rps19 gene in Bupleurum species as well as some
taxa in Apiaceae (Anthriscus, Daucus, Tiedemannia,
[48]), it resided within the rps12 gene in Anethum [48],
Foeniculum [48], Prangos [51, 52], Petroselinum [48, 52].
Our repetitive sequences analysis in addition to previous
studies [32–40] showed that the tendency of SDRs and
SSRs were similar among Bupleurum species, while the
certain diversity in numbers varied.
The gene/intron content and relative gene positions

were highly conserved in Bupleurum species and almost
identical to those in other members of the Apiaceae
family [48, 51–56]. Two genes were found to be pseudo-
genes in Bupleurum species. The genes ycf1 and rps19,
located in the IRa/SSC and LSC/IRb boundaries,

Fig. 4 Pairwise Ka/Ks ratios in Bupleurum. This heatmap shows pairwise Ka/Ks ratios between every sequence in the multigene nucleotide
alignment. The original satellite imagery was obtained from Google Maps (Map data: Google, TerraMetrics; https://maps.google.com/), and
modified with Adobe Illustrator CS6 (Adobe Systems Incorporated, San Jose, CA, USA)
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respectively, were identified as pseudogenes on account
of an incomplete duplication of the normal functional
copy.

High variable regions for potential molecular markers
Most Bupleurum species have important pharmaceutical
values and their accurate identification is crucial to their
utilization. However, the morphological similarities of
the Bupleurum species make their authentication ex-
tremely difficult. With the development of the molecular
technology, many of the chloroplast genome regions, es-
pecially the mutational hotspots (e.g. ndhF, matK, trnS-
trnG), have been widely implemented [21, 22, 57], while
none of the commonly used region in chloroplast gen-
ome were effective for identification for different plant
taxa.
In a comparative analysis of the complete plastid gen-

ome of 5 Bupleurum species, only 8 highly variable
regions (Pi > 0.01) (e. g. petN-psbM, rbcL-accD and ccsA-
ndhD) were identified, and all of them were spacer regions
between genes [37]. In the present study, we obtained a
different result with the supplement of another 17
Bupleurum species. The results of mVISTA and slide win-
dow analysis showed that the IR regions were more con-
servative and less variable than the SC regions, possibly as
a result of copy number differences in the inverted repeats
sequences caused by gene conversion [58]. Different from
the findings by Li et al. [37], we identified 4 coding regions

(psbD, atpD, ndhD and ycf1) with high Pi values (> 0.02)
and the 17 regions reported by Li et al. [37] were not
found to be the most variable regions in this study. In-
stead, another 8 intergenic regions (trnK-rps16, rps16-
psbK, trnG-trnR, atpI-rps2, trnC-trnT, petA-psbJ, psaC-
ndhG and trnR-ycf1) were identified, which contained fre-
quent interspecies mutation (Pi > 0.02). As more species
were included in our analysis, we propose that the 4 genes
and 8 intergenic regions we identified can have much po-
tentially to serve as high-resolution DNA barcodes in spe-
cies authentication of Bupleurum.

Do the genes of Bupleurum suffer positive selection
under different habitats?
Plants are subjected to different selection pressures due
to different types of stresses in varied habitats, and genes
related to a specific environment are usually assumed to
be under positive selection [59]. The Bupleurum species
growing at different latitudes and different altitudes are
exposed to different light intensities and temperature,
and positive selection is likely to occur among these spe-
cies in different regions.
Our results indicated that Bupleurum species under

different habitats suffer positive selection, especially in
Northeast China and Northwest China. We found that
some genes, including matK, ycf2, accD, and clpP, were
subjected to positive selection, suggesting that adaptive
changes may have occurred more frequently in response

Fig. 5 Molecular phylogenetic trees of 21 Bupleurum and 2 Chamaesium constructed by Maximum likelihood (left) and Bayesian inference (right)
analysis based on 80 coding genes. Bootstrap support values (> 50%) based on maximum-likelihood (ML) and posterior probabilities analysis are
labelled at each node

Huang et al. BMC Genomics          (2021) 22:714 Page 9 of 15



to the highly selective conditions in different habitats.
These genes have also previously been found under posi-
tive selection [60–62]. The clpP gene is essential for
plant cells and encodes clpP proteases that degradants
polypeptides [63]. The matK gene is one of the fastest
evolutionary genes, which functions in light-regulated
activities and plant development [64, 65]. The accD gene
encodes the β-carboxyl transferase subunit of Acetyl-
CoA carboxylase that is essential for the synthesis of
products required for the extraplastidic processes needed
for leaf development [66]. Gene ycf2 encodes products
that are essential for cell survival [67] and chloroplast
protein import [68]. These positively selected genes may
contribute to the adaptation of species in Bupleurum to
various environments. However, our analyses also
showed strong purifying selection on most of the genes.
Previous studies suggest that purifying selection acting
on the genes generally leads to low synonymous and
non-synonymous DNA substitution rates in chloroplast
genomes of angiosperms, such as Araceae [69, 70] and
Liliaceae [71, 72]. Purifying selection, one of the most
prevalent mechanisms in natural selection, constantly
eliminates deleterious mutations [73]. Most of the genes
in these chloroplast genomes were thus subjected to ex-
tensive purifying selection to retain conserved functions
in Bupleurum. The distribution of Ka/Ks indicated that
most of the genes in the SSC region have experienced
higher selection pressures than those in other chloro-
plast genome regions, whereas the IR region is more
conserved. In addition, the genes involved in photosyn-
thesis tend to have lower rates of evolution than genes
related to self-replication and other functions. These dif-
ferences are likely the results of variations in generation
time, gene expression level, gene function, lengths of the
encode protein products, and relaxed selection [74–77].

Phylogenetic inference from plastid genomes of the
genus Bupleurum in East Asia
Currently there is no widely acceptable infrageneric clas-
sification system of Bupleurum [78–80]. East Asian, es-
pecially China, is one of the diversity center for the
genus Bupleurum. Bupleurum species in these regions
are diverse, exhibiting various life forms (including herbs
and shrubs) and pollen types (e. g. subrhomboid, sub-
spheroid and subellipsoid) [40, 81]. However, there are
gaps in phylogenetic relationships of East Asian
Bupleurum, only a few efforts have been made based on
morphology [81] and several DNA fragments [4, 13, 14].
Shu et al. proposed to divide Chinese Bupleurum into
monotypic subgenus Longifolia (Wollf) Yuan and sub-
genus Eubupleura (including section Falcata and section
Ranunculoidea) [81], while Wang et al. [4] did not sup-
port this treatment and proposed to divide the genus
Bupleurum into two clades corresponding to the two

subgenera (subg. Penninervia, subg. Bupleurum) of
Neves and Watson [1]. The 21 Bupleurum species here
have various life forms and widely distribute throughout
East Asia (Southwest China; Northwest China; Northeast
China, Korea and Japan), providing an opportunity to
study the phylogenomic relationship in East Asian
Bupleurum species. Based on the results of phylogenetic
analysis, we propose to divide the 21 Bupleurum species,
which were all from Asia, into two clades (clade I and
clade II). The phylogenetic relationships within
Bupleurum based on chloroplast genomes we presented
herein are largely congruent to that of Wang et al. [4,
13] with only a few differences. B. rockii occurred in
clade I in our study, but in another clade by Wang et al.
[3, 13]. The two clades are likely to correspond to their
geographical distribution, not the characteristics of brac-
teoles. The clade I consists of 4 species from Southwest
China, with two endemic species to Southwest China (B.
shanianum and B. yunnanense) and two species (B. mar-
ginatum and B. candollei) with extended distribution in
such Himalayan countries as Bhutan, India, Kashmir,
Myanmar, Nepal, Pakistan and Sikkim. The species in
the clade II, except for B. dracaenoides, B. rockii and B.
kweichowense, occur at higher latitudes of China such as
Northwest and North China, Japan and Korea. Our re-
sults do not fully support Shu et al.’s treatment on
Bupleurum [81], which divided the subg. Eubupleura
into sect. Ranunculoidea and sect. Falcata based on the
difference of bracteoles characteristic. However, the sub-
genus subdivision of the genus Bupleurum remains un-
resolved in this present study because of the lack of
chloroplast genome data from subg. Penninervia, most
species of which are distributed in the Mediterranean re-
gion. To access a complete reassessment of the interspe-
cific relationship of Bupleurum, more complete plastid
genomes information is required, especially the data of
subg. Penninervia.

Conclusion
In this study, we for the first time described 7 full
chloroplast genomes of 4 Bupleurum species endemic to
Southwestern China. Comparative analysis of chloroplast
genomes of the 4 species against the published data of
17 Bupleurum species revealed that the chloroplast ge-
nomes of Bupleurum species were extremely conserved
with similarities in terms of chloroplast genome
organization, tendency of SDRs and SSRs, and gene con-
tent. In spite of the highly conservation of the chloro-
plast genomes of the Bupleurum species, some
mutational hotspots have been detected, which can be
potentially used as high-resolution DNA barcodes in dis-
crimination of Bupleurum taxa. Bupleurum species
under different habitats suffer positive selection, and
some genes (matK, ycf2, accD, and clpP) are also
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subjected to positive selection. Phylogenetic analysis re-
vealed that the 21 Bupleurum formed two clades, which
are likely to correspond to their geographical distribu-
tion. The chloroplast genomes information reported
herein and the comparative analysis of Bupleurum
chloroplast genomes provide important insights into the
evolution of the chloroplast genomes and phylogeny of
Bupleurum.

Methods
Sample collection
Leaf from a total of 7 individuals of the 4 Bupleurum
species (two individuals for each of B. shanianum, B.
yunnanense, B. rockii, while one for B. kweichowense)
were collected from the wild and were dried with silica
gel, and stored at − 80 °C until required for DNA extrac-
tion. Voucher specimens were collected for each samples
and deposited at the herbarium of Southern Medical
University. All species were authenticated by prof. Zhi
Chao (Southern Medical University). Details information
of the samples and voucher numbers of the specimens
were shown in Additional file 2: Table S3.

DNA extraction, library construction and sequencing
Total DNA was extracted from silica-dried leaf material
using a modified extraction method described by Yang
et al. [82]. The quality and concentration of the ex-
tracted DNA were detected by 1.0% agarose gel electro-
phoresis and by a NanoDrop 2000C spectrophotometry
(Thermo Fisher, US). The extraction genomic DNA (ap-
proximately 1 μg) was subjected to random degradation
by Covaris (E210), and then fragments with a size of
200–400 bp were selected by using Agencourt AMPure
XP-Medium kit. The selected fragments were amplified
after suffering from end repair, 3′-adenylation and
adaptor ligation. Then, they were heat denatured to sin-
gle strand after purification. The single strands were cir-
cularized, and single strand circle DNA was obtained as
the final library. The final library was sequenced by
BGISEQ-500 (BGI, Shenzhen, China) to generate raw
reads. The details of the quantity and quality of raw
reads, and coverage depth of the assembled genomes
were provided in Additional file 2: Table S4.

Genome assembly and annotation
The generated raw sequencing data was filtered using
program SOAPnuke [83] with default parameters to re-
move adapters, low-quality reads with quality value ≤10,
to final obtain high-quality reads. Then, the high-quality
reads were aligned to the published B. commelynoideum
chloroplast genome (NCBI accession MT162552) using
Geneious v 10.2.2 [84] with default settings. Subse-
quently, the matched reads were selected for de novo as-
sembled with SPAdes v3.11.1 [85]. The accuracy of

assembly was evaluated by detecting the sequence cover-
age and the reading segment coverage at the contig
connection.
The assembled chloroplast genome annotations

were annotated using GeSeq [86] with the reference
chloroplast genome of B. commelynoideum (NCBI ac-
cession MT162552). All the tRNAs were scanned with
tRNAscan-SE [87] and ARAGORN [88]. The visual
presentations of the physical circular maps of the ge-
nomes were generated using OGDRAW [89]. Finally,
the annotated chloroplast genomes of the 4
Bupleurum species were submitted to the National
Center for Biotechnology Information database
(NCBI) under the accession numbers MW135450-
MW135456, which were listed in Additional file 2:
Table S3.

Genome structure and comparative analysis
First, the chloroplast genome characteristics of the 4
Bupleurum species were described. Therein, Geneious
R8.1 [90] was employed to conduct the GC content.
MISA-web (https://webblast.ipk-gatersleben.de/misa/)
was implemented to search simple sequence repeats
(SSRs) with minimum numbers of 10, 5, 4, 3, 3, 3 repeat
units for mono-, di-, tri- tetra-, penta-, and hexa-
nucleotide SSRs, respectively. Short dispersed repeats
(SDRs) analysis was implemented in REPuter [91] with
the following parameters: a minimal repeat size of 30 bp,
and sequence identity≥90% (hamming distance of 3 kb).
To determine the IR expansion/contraction, genes dis-
tributed in and beside the borders of LSC, SSC and IR
regions were compared.
In order to examine the divergence hotspots among the

Bupleurum species, the whole chloroplast sequences of
the 4 Bupleurum species, together with 17 published
chloroplast genomes of Bupleurum species downloaded
from NCBI database (Additional file 2: Table S5), were
aligned using Geneious software. Subsequently, they were
compared and visualized using mVISTA (http://genome.
lbl.gov/vista/mvista/submit.shtml) with the reference
chloroplast genome sequence of B. commelynoideum
(NCBI accession MT162552). DnaSP v. 6.0 was used for
sliding window analysis for computing nucleotide diversity
(pi) among the chloroplast genome sequences [92], with
600 bp windows size and 200 bp step size.
Selective pressure estimation for the 21 Bupleurum

species was carried out by calculating the ratio of the
non-synonymous substitution (Ka) to the synonymous
substitution rate (Ks) for all protein-coding genes se-
quences in DnaSP v6.

Phylogenetic analysis
In order to gain insight into the phylogeny of East Asian
Bupleurum, a total of 19 available chloroplast complete
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genomes of 17 Bupleurum species were downloaded
from the NCBI database (Additional file 2: Table S4).
The chloroplast genomes data of two Chamaesium spe-
cies (C. paradoxum, NCBI accession MK780227; C. spa-
tuliferum, NCBI accession MN119371), belonging to
subfamily Apioideae, were also downloaded and set as
outgroups (Additional file 2: Table S4). Only a dataset of
80 protein-coding genes (PCGs) was used for the phylo-
genetic analyses. A 23-taxon sequence matrix including
two outgroups were aligned using the Geneious
software.
Phylogeny was conducted through two approaches,

namely the Maximum likelihood (ML) analyses and a
Bayesian inference (BI) analyses. ML phylogenetic ana-
lysis was performed in RAxML v8.2.4 [93]. First, the best
likelihood tree was obtained from 100 starting trees
using rapid bootstrap analyses with 1000 replicates. Mul-
tiparametric bootstrapping analyses with 1000 replicates
was conduct to obtained the bootstrap for each node.
Substitution model for the two analyses were GTRGAM
MA model. Bayesian inference (BI) was conducted in
MrBayes v3.2.6 [94, 95]. The best-fit nucleotide substitu-
tion model (GTR + I + GAMMA) for Bayesian analysis
was inferred from jModelTest v. 2.1.10 under the Akaike
information criteria (AIC) [96]. Markov chain Monte
Carlo (MCMC) analysis was performed with 50 million
generations and sampling trees every 5000 generations.
The first 10% of trees were discarded as burn fraction,
and the remaining trees were combined to synthesized
the consistent tree and estimate posterior probabilities.
The resulting trees were rooted with C. paradoxum and
C. spatuliferum and visualized with FigTree v 1.4 (http://
tree.bio.ed.ac.uk/software/fgtree/).
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