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Abstract

Background: Aging and inflammation are important components of Parkinson’s disease (PD) pathogenesis and
both are associated with changes in hematopoiesis and blood cell composition. DNA methylation (DNAm) presents
a mechanism to investigate inflammation, aging, and hematopoiesis in PD, using epigenetic mitotic aging and
aging clocks. Here, we aimed to define the influence of blood cell lineage on epigenetic mitotic age and then
investigate mitotic age acceleration with PD, while considering epigenetic age acceleration biomarkers.

Results: We estimated epigenetic mitotic age using the “epiTOC” epigenetic mitotic clock in 10 different blood cell
populations and in a population-based study of PD with whole-blood. Within subject analysis of the flow-sorted
purified blood cell types DNAm showed a clear separation of epigenetic mitotic age by cell lineage, with the
mitotic age significantly lower in myeloid versus lymphoid cells (p = 2.1e-11). PD status was strongly associated with
accelerated epigenetic mitotic aging (AccelEpiTOC) after controlling for cell composition (OR = 2.11, 95 % CI = 1.56,
2.86, p = 1.6e-6). AccelEpiTOC was also positively correlated with extrinsic epigenetic age acceleration, a DNAm
aging biomarker related to immune system aging (with cell composition adjustment: R = 0.27, p = 6.5e-14), and
both were independently associated with PD. Among PD patients, AccelEpiTOC measured at baseline was also
associated with longitudinal motor and cognitive symptom decline.

Conclusions: The current study presents a first look at epigenetic mitotic aging in PD and our findings suggest
accelerated hematopoietic cell mitosis, possibly reflecting immune pathway imbalances, in early PD that may also
be related to motor and cognitive progression.
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Introduction
The human blood-system performs numerous vital func-
tions, including the circulation of oxygen and nutrients,
temperature homeostasis, and constant immune surveil-
lance of the entire body [1]. As a result, blood cells must
be in constant supply and hundreds of billions of cells

are made daily to maintain normal function [2]. Meeting
the demand for renewal falls on a relatively small pool of
hematopoietic stem cells (HSC) that give rise to all
hematopoietic and immune cells through a process of
organized, stepwise lineage commitment [3]. To main-
tain steady-state hematopoiesis (formation and develop-
ment of blood cells), the HSCs are mostly quiescent,
while a series of progenitor cells actively proliferate to
contribute the bulk of expansion in cell numbers on a
daily basis [3–5]. A number of factors can directly
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influence this process, including inflammation, which is
now recognized as an important regulator of HSC biol-
ogy and hematopoiesis [6, 7]. While short-term, acute
hematopoietic responses to pro-inflammatory signals are
critical for dealing with a range of inflammatory insults
(i.e. infection, tissue damage, etc.), long-term, chronic
pro-inflammatory states can age the hematopoietic sys-
tem, leading to functional decline in both the innate and
adaptive immune systems and a skew towards the
myeloid-lineage in output [3, 7].
Immune dysregulation and inflammation along with

aging are important components of Parkinson’s disease
(PD) pathogenesis [8]. Pathologically, PD is character-
ized by the progressive death of dopaminergic neurons
in the substantia nigra and the presence of Lewy bodies,
intraneuronal aggregates composed of misfolded α-
synuclein (αSyn) [9, 10]. There is now ample research
that shows that important, systemic immune signals ori-
ginating outside the brain contribute to PD pathogenesis
[11, 12]. Immunosenescence, defined as age-related
changes in the immune system, and inflamm-aging, or
chronic, low-level inflammatory states, have also been
widely linked to neurodegenerative changes and PD,
summarized in a number of meta-analyses and reviews
[13–18]. Recent reports further indicate that inflamm-
aging propagates from the periphery to the brain and
vice versa [19]. Additionally, αSyn is notably also widely
expressed and abundant in hematopoietic cells as well as
neurons [20]. While our understanding of the function
of αSyn both peripherally and within the central nervous
system (CNS) is still developing, several studies have in-
dicated that it may play an important role in the
hematopoietic system related to exo- and endocytosis,
apoptosis, autophagy, maturation, and differentiation of
hematopoietic cells [20–23]. Thus, there is good ration-
ale to study the intersection between inflammation,
aging, and hematopoiesis in PD.
Changes in DNA methylation (DNAm) patterns have

been observed to track cell divisions and reflect the pro-
liferative history of different tissues [24–26]. During cell
division, DNAm changes occur that appear to accumu-
late in the stem cells of a tissue in line with and repre-
senting the stem cell division rate and chronologic age
[24, 27]. These DNAm changes are the basis for the
DNAm epigenetic mitotic clock, “epiTOC” (Epigenetic
Timer of Cancer), a biomarker that uses methylation
patterns to provide an estimate of the relative stem cell
division rate of a tissue in an individual [24]. This epi-
genetic mitotic clock enumerates cellular proliferation of
the tissue (i.e. the number of cell divisions) and records
the acceleration of the mitotic “tick rate”, or measure of
cell divisions, beyond what would be expected with
aging based on controls [24]. The epiTOC epigenetic
mitotic tick rate has been found to be universally

accelerated in cancer tissues and pre-cancerous lesions
[24]. Here we propose that the epigenetic mitotic tick
rate, tracking the mitotic history of circulating
leukocytes with whole-blood DNAm, may also have in-
triguing implications for Parkinson’s and other diseases
of aging with inflamm-aging and immune-related
components.
Furthermore, while the epigenetic mitotic clock repre-

sents the history of cell divisions of blood cells, epigen-
etic aging clocks (i.e. DNAm biomarkers of aging), are
reflective of the biologic aging process of the tissue [28].
Our previous research indicates that PD patients show
more advanced biologic aging markers (i.e. faster bio-
logic than chronologic aging) than controls, with ac-
celerated immune system aging showing the strongest
associations of the blood-based measures [29–31]. Al-
terations in immune profiles in PD patients measured
with blood epigenetics have since been replicated
[32]. We will now further investigate the proliferative
history of blood through the epigenetic mitotic clock,
and assess how this relates to immune system aging
in relation to PD.

Background and Aims
We hypothesize that PD patients exhibit an accelerated
hematopoietic mitotic tick rate relative to controls inde-
pendent of age, which is reflective of chronic, low-level
systemic immune activation, inflammation, and PD-
specific pathogenesis. Accordingly, we aimed to investi-
gate whether the epigenetic mitotic tick rate, as an
indicator of the proliferative history of blood and
hematopoiesis, is associated with early PD and longitu-
dinal PD symptom development among patients. Our
analysis and conceptual model can be viewed in Fig. 1A.
Several key concepts are directly relevant to this ana-

lysis (Fig. 1B): (1) Aging and inflammation are both asso-
ciated with a myeloid-bias in hematopoiesis leading to
increased numbers of progenitor and mature myeloid
cells (aging is associated with myeloid-biased HSCs and
inflammation enhances myeloid-lineage production) [3].
(2) The hematopoietic expansion of cell populations is
achieved mainly through vast, daily proliferation of pro-
genitor cells at different stages of development, while
adult HSCs replicate relatively slowly (estimated every
40 weeks; mostly quiescent), to minimize accumulation
of mutations in these parent cells [33, 34]. Given differ-
ences in cell turnover rate, the number of cells required
daily for homeostasis, and lineage-dependent daily pro-
liferation, different cell types within a whole-blood sam-
ple likely have different proliferative histories. (3)
DNAm heterogeneity exists between blood cell types
and cellular composition may explain substantial vari-
ability observed in whole-blood DNAm [35].
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Thus, our aims are two-fold, first, define the influence
of blood cell lineage and composition on the epiTOC es-
timated mitotic age using DNAm from purified blood
cells, and then, with whole-blood DNAm, associate epi-
genetic mitotic aging with PD considering the impact of
cell composition.

Results
For analysis we used two data sources, DNAm from
flow-sorted purified blood cell types [36] and data from
the Parkinson’s disease, Environment, and Genes (PEG)
study [37], a population-based study of PD (n = 807)
[37]. Characteristics of the PEG study analysis popula-
tion can be found in Table 1. Of the 807 participants in-
cluded in the study (n = 569 PD patients and n = 238
population-controls), 62.6 % of patients and 53.4 % of
controls were male. The mean age at blood draw was
67.5 years (SD = 12.8) for controls and 70.5 years (SD =
9.8) for PD patients, and the mean PD duration at blood

draw (i.e. time from PD diagnosis to blood draw) for the
patients was 2.7 years (SD = 2.0).
We calculated the DNAm-based mitotic age of blood,

denoted by pcgtAge, using the epiTOC model based on
published methods [24]. We regressed pcgtAge on chro-
nologic age to remove the variation explained by age,
using a linear regression model, defining AccelEpiTOC
as the corresponding raw residual.

DNAm Epigenetic mitotic age differs by myeloid and
lymphoid lineage
Whole blood consists of many distinct cell populations
with varying proportions, important differences in
DNAm across cell types, and different rates of cell turn-
over and proliferation (Fig. 1B) [36]. In order to assess
the influence of cell heterogeneity on the epiTOC
estimated the mitotic age (pcgtAge), we used paired, Illu-
mina 450k DNAm data from 10 different cell popula-
tions in blood, from six, adult male donors (mean age
38 ± 13.6 years), including DNAm from flow-sorted
myeloid cells (granulocytes, neutrophils, eosinophils, and
CD14 +monocytes) and lymphocytes (CD8 + and CD4 +
T cells, CD56 + natural killer cells, and CD19 + B cells);
GEO accession number GSE35069 [36]. We then calcu-
lated the mitotic age (pcgtAge) based on DNAm from
the different cell types within the same individual.
Within subject there was a clear separation in mitotic

age by blood cell lineage (Fig. 2 A). pcgtAge was signifi-
cantly lower among the myeloid cell types (granulocytes,
eosinophils, neutrophils, and monocytes) versus lymph-
oid cells (Bcells, CD4 + and CD8 + T cells, and NK cells)
within the same individuals (β for myeloid lineage rela-
tive to lymphoid= -0.06, SE = 0.007, p = 2.1e-11 (Supple-
mental Table 1)). That is, within subject, the pcgtAge

Fig. 1 (A) Conceptual model of the relationship between mitotic age and the estimated epigenetic mitotic age (epiTOC pcgtAge), aging,
inflammation/inflamm-aging, hematopoiesis, and Parkinson’s disease. (B) Current understanding of hematopoietic cell lineages for the circulating
leukocytes estimated with the Houseman method. Cell lifespan and the normal proportion of cells in white blood cell (WBC) counts are displayed
in the grey box, as well as the suggested influence of aging and inflammation. See A. Wickrema 2009 for more detail[4]

Table 1 Study population characteristics: PEG participants with
DNA methylation data (n = 807)

PD patients (n = 569) Controls (n = 238)

Mean (SD) or n (%)

Age at Blood Draw (SD) 70.5 (9.8) 67.5 (12.8)

Male Sex (%) 356 (62.6) 127 (53.4)

Ancestry (%):

White 468 (82.4) 228 (95.8)

Hispanic 84 (14.8) 9 (3.8)

Never Smoker (%) 301 (53.2) 96 (40.3)

Ex-Smoker (%) 240 (42.4) 125 (52.5)

Current Smoker (%) 25 (4.4) 17 (7.1)
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based on DNAm from CD8 + T cells, for example, was
considerably higher on average than the pcgtAge based
on DNAm from granulocytes (paired t-test, mean differ-
ence between CD8 + T cells and granulocytes: 0.08 (95 %
CI 0.04, 0.11)).
In fact, as expected from the visual comparisons, when

modeling pcgtAge in a repeated measure mixed effects
model (lme R function), with cell type as the predictor
and a random effect for subject, all cell types except
Bcells were significantly associated with a lower pcgtAge
relative to CD8 + T cells (Supplemental Table 1). Inter-
estingly, when we assessed the mean methylation of 27k
CpGs (Illumina 27k array) across cell types, we observed
a similar pattern, where the mean methylation was sig-
nificantly lower among myeloid cells relative to lymph-
oid (β=-0.02, SE = 0.001, p = 9.3e-15; Supplemental
Table 2; Fig. 2B). This supports a previous observation
of DNAm depletion in cells of the myeloid-lineage, per-
haps as a mechanism of lineage-commitment [38].
In the PEG study with whole blood DNAm, we esti-

mated the proportion of CD8 + T cells, CD4 + T cells,
natural killer, B cells, monocytes, and granulocytes [39]
and also counts of exhausted CD8 + T cells (defined as
CD28-CD45RA-), naïve CD4 + T and naïve CD8 + T
cells (defined as CD45RA + CCR7+), and plasmablasts
[40, 41]. We first correlated pcgtAge with chronologic
age, and observed pcgtAge was positively correlated with
age (Fig. 2 C; R = 0.27, p = 2.7e-15 (Rsq = 0.07)) to a

similar degree as previously reported by Yang el al. (Dis-
covery Rsq = 0.07; Replication Rsq = 0.13 [24]). In strati-
fied analysis, pcgtAge was slightly more positively
correlated with age among controls than PD patients
(control: R = 0.34, p = 5.5e-8; PD: R = 0.25, p = 1.9e-9).
Pairwise Pearson correlations (R) between AccelEpi-

TOC (i.e. pcgtAge after excluding the variation explained
by chronologic age) and all DNAm cell composition
markers can be visualized in Fig. 3 A. AccelEpiTOC was
negatively correlated with the proportion of granulocytes
and positively correlated with the proportion of CD8 + T
cells, natural killer cells, and Bcell lymphocytes. AccelE-
piTOC was also negatively correlated with the counts of
plasmablast and CD8 naïve cells. Given the purified cell
results (Fig. 2 A & 2B), the correlation directions are as
expected. For instance, AccelEpiTOC is strongly nega-
tively correlated with granulocytes (R=-0.60, p = 1.3E-79)
in the PEG study. When assessing DNAm in whole-
blood in PEG, those individuals with a higher percentage
of granulocytes will have their whole blood mean
pcgtAge weighted more heavily by the granulocyte spe-
cific pcgtAge, which was substantially lower than the
pcgtAge from lymphoid cells within-subject (Fig. 2 A).

Accelerated epigenetic mitotic aging in Parkinson’s
disease
PD status was strongly associated with AccelEpiTOC
when controlling for blood cell composition (Fig. 3B).

Fig. 2 EpiTOC and Blood Cell Composition. (A) EpiTOC pcgtAge based on DNAm from 10 purified cell types, using n = 6 subjects with paired
data. Line graph displays the calculated epiTOC pcgtAge at each cell types, with each line representing one participant. B) Mean methylation level
across 27k CpGs (Illumina 27k array) based on DNAm from the 10 purified cell types. C) Correlation between epiTOC pcgtAge and chronologic
age among the PEG study participants (n = 807)
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Specifically, one standard deviation (SD) increase in
AccelEpiTOC was associated with a two-fold increased
risk of being a PD patient, indicating the PD patients ex-
hibited a more accelerated mitotic tick rate in blood
than controls (AccelEpiTOC OR per SD = 2.11, 95 %
CI = 1.56, 2.86, p = 1.6e-6), after controlling for age, sex,
ancestry, blood cell composition, and two principal com-
ponents (PCs) to control for potential technical variation
in the DNAm. For reference, there was no association
without controlling for blood cell composition (cell-un-
adjusted AccelEpiTOC OR per SD = 0.93, 95 % CI = 0.80,
1.08, p = 0.35). Due to the strong negative correlation be-
tween granulocytes and AccelEpiTOC and the strong posi-
tive association between granulocytes and PD, negative bias
due to confounding by cell composition is expected [42].
The best fitting model for PD included only granulocytes
and CD8 +T cells as sufficient to control for cell type het-
erogeneity (Supplemental Fig. 1). The results stratified by
sex are shown in Supplemental Table 3. The AccelEpiTOC

association with PD was observed in both men and women
(Men: AccelEpiTOC OR per SD, OR = 2.34, 95 % CI = 1.54,
3.55; Women, OR = 1.86, 95 % CI = 1.17, 2.95).
AccelEpiTOC was also positively correlated with two

different measures of epigenetic age acceleration (EAA)
in our sample (Fig. 3 A): the pan-tissue epigenetic clock
(Horvath AgeAccel) and extrinsic epigenetic age acceler-
ation (EEAA), a measure of biologic aging in immune re-
lated components based on the Hannum clock [43] that
is somewhat dependent on leukocyte concentrations
known to change with age [29]. We have previously
shown that PD patients also show faster EEAA and
IEAA (intrinsic epigenetic age acceleration, which is the
Horvath epigenetic aging measure independent of blood
cell counts) [29]. Therefore, we modeled PD including
AccelEpiTOC, IEAA, and EEAA along with blood cell
composition and other covariates in the same model.
The three epigenetic biomarkers were each independ-
ently associated with PD (Fig. 3 C): per SD increase in

Fig. 3 (A) Correlations between AccelEpiTOC, DNAm measures of blood cell composition, and other DNAm age acceleration measures in PEG,
based on DNAm from whole blood (n = 807). Correlations with |R| ≥ 0.25 included as text(B & C) Results from a logistic regression, with
AccelEpiTOC predicting PD. (B) Model 1: PD association for AccelEpiTOC, adjusting for measures of blood cell composition (all blood cell
estimates per SD) and other covariates (below) with. (C) Model 2: PD association for AccelEpiTOC and DNAm epigenetic age measures, adjusting
for blood cell composition (all blood cell estimates per SD) and other covariates. For both models, all terms are included in the same logistic
regression model, also adjusting for age, sex, smoking history, AIMs derived ancestry (European/Hispanic ancestry), and two PCs for DNAm
technical variation. The epigenetic mitotic age acceleration (AccelEpiTOC) was centered around zero and scaled per SD. (D) Epigenetic mitotic
age acceleration and signs of PD symptom progression: predicted change on MMSE, UPDRS-III; and the Tremor UPDRS-III sub-score over follow-
up at two levels of AccelEpiTOC (± 2 SD from mean (0)). The y-axis displays the predicted value of the three exam measures, including MMSE
(higher score indicates higher cognitive performance), UPDRS-III (higher score indicates more motor symptoms, assessed by neurologist), and
UPDRS-III tremor (tremor sub-score of the UPDRS III; higher score indicates more tremor motor symptoms). Analysis based on symptom
progression among PD patients only. Results based on linear repeated measures mixed models including an interaction between epigenetic
mitotic aging and time to assess how epigenetic mitotic aging influences change on the exams over time. Models control for age, sex, smoking
history, race/ethnicity (AIMs derived European/Hispanic ancestry), PEG study wave, PD duration at baseline, measures of blood cell composition
(CD8.naive, CD8pCD28nCD45Ran, plasmablast, CD8 + T cells, B cells, monocytes, and granulocytes), and the two PCs for DNAm technical variation.
β (SE) term shown: interaction between AccelEpiTOC*time, representing yearly change on predicted exam score according to AccelEpiTOC.
Epigenetic mitotic age acceleration (AccelEpiTOC) was centered around zero and scaled per SD
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each measure, AccelEpiTOC OR = 1.53 (95 % CI = 1.12,
2.07, p = 0.007), IEAA OR = 1.28 (95 % CI = 1.04, 1.58,
p = 0.02), EEAA OR = 1.43 (95 % CI = 1.11, 1.84, p =
0.006). EEAA, which represents accelerated epigenetic
aging of immune factors, in particular, was related to
AccelEpiTOC (from best fit linear regression model of
AccelEpiTOC, EEAA β = 0.27, SE = 0.03, p = 2.2e-25;
Supplemental Table 4). The results with the three epi-
genetic biomarkers stratified by sex are shown in Sup-
plemental Table 5.
To assess progression, we relied on 336 PD patients

with repeated examinations of the UPDRS-III and
MMSE (2–4 follow-up exams and a mean follow-up of
4.7 years (SD = 2.8)), and used repeated measures linear
regression, controlling for age, sex, ancestry, blood cell
composition, the two technical variation PCs, PD dur-
ation at baseline, PEG patient recruitment wave, educa-
tion, and baseline exam score. AccelEpiTOC measured
at baseline was suggestively associated with longitudinal
decline over follow-up on both exams. Specifically, Acce-
lEpiTOC was associated with faster decline on the
MMSE (AccelEpiTOC *time (per year) β=-0.06, SE =
0.02, p = 0.01; Fig. 3D) and perhaps faster development
of motor symptoms as measured by the UPDRS-III
(AccelEpiTOC *time β = 0.19, SE = 0.11, p = 0.08;
Fig. 3D), with the UPDRS-III tremor sub-score showing
the strongest association among motor symptom do-
mains (β = 0.05, SE = 0.02, p = 0.02; Fig. 3D).

Discussion
In the current study, our findings suggest that PD pa-
tients exhibit a considerably accelerated hematopoietic
mitotic tick rate (AccelEpiTOC) compared with age-
similar community controls, as measured by the epiTOC
mitotic clock. This clock estimates the relative stem cell
division rate of a tissue, blood in the present study,
based on DNAm [24]. This association was apparent
after we removed the variation in epiTOC pcgtAge ex-
plained by age and corrected for blood cell composition.
In fact, our findings in purified cells indicate that epigen-
etic mitotic age is strongly dependent on blood cell
lineage, which can thus act as a strong confounder. We
also observed associations between accelerated epigen-
etic mitotic aging and accelerated epigenetic immune
system aging (EEAA). This is in line with our hypothesis,
that accelerated epigenetic mitotic aging in this elderly
PD population is at least partially reflective of more im-
mune activation, as AccelEpiTOC and EEAA likely rep-
resent both age-related and disease-related immune
changes. Furthermore, among PD patients, AccelEpi-
TOC was also associated with longitudinal cognitive de-
cline and motor symptom increases as measured by
changes on the MMSE and UPDRS-III scores.

HSCs and the different lineages of progenitor cells
provide a constant supply of blood cells, which, depend-
ing on the cell type, turn over relatively quickly (hours
to days; e.g. granulocytes) to more slowly (months to
even years; e.g. memory T cells and B cells) [44]. In
healthy adults, leukocyte populations are generally main-
tained at a reasonably constant size through steady-state
hematopoiesis, reflecting a balance between blood cell
production and loss [4, 45]. The importance of main-
taining normal hematopoiesis in aging and age-related
diseases is increasingly being recognized [46]. Inflamma-
tion exerts a strong influence on hematopoiesis. All
blood cell types contribute to the initiation and reso-
lution of inflammatory events [6], and these responses
are often accompanied by systemic changes in blood cell
composition, including overproduction of myeloid cells
as “first-responders” (e.g. granulocytes, monocytes) [6,
47]. Pro-inflammatory cytokines, including interleukin
(IL)-1, tumor necrosis factor-α (TNF-α), interferons
(IFNs), and others, can upregulate or suppress the nor-
mal hematopoietic output [6, 48]. Over time, as the
DNAm changes that arise during cell division accumu-
late throughout the lineage of HSCs and progenitor pop-
ulations (e.g. multipotent progenitors and common
myeloid or lymphocyte progenitors), alterations in the
hematopoietic output due to sustained, low-level inflam-
mation, as hypothesized in PD, will be reflected in the
mitotic tick rate of the blood tissue accordingly.
In PD, hematopoiesis or alterations in normal blood

turnover rates have not been widely studied, most cer-
tainly due to the difficulty of quantifying stem cells and
progenitors and their turnover for epidemiologic studies.
However, one study of 123 individuals investigated this by
establishing a colony-forming cell assay and compared
HSCs extracted from venous blood of Parkinson’s patients
and controls [49]. The authors reported a strong upregula-
tion in the percentage of monocyte precursors and early
granulocyte/monocyte precursors in the peripheral blood
of PD patients [49]. Our methylation-based results also
support that PD patients have a different leukocyte profile
from controls, most notably they exhibit a higher propor-
tion of granulocytes and lower proportion of lymphocytes
[29]. Here we show for the first time that the DNAm esti-
mated hematopoietic mitotic tick rate itself is actually fas-
ter in patients than controls. That is, the PD patients not
only differ in the proportions of blood cell types from con-
trols, but their hematopoietic cells have indeed been pro-
liferating more on average, based on the epiTOC pcgtAge
mitotic tick rate.
Neuroinflammation has been widely and consistently

connected to neurodegeneration, with several lines of
evidence also pointing toward peripheral immune sys-
tem involvement. A meta-analysis of measured, periph-
eral inflammatory cytokine levels across 25 studies,
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found higher levels of IL-6, IL-1β, IL-2, IL-10, TNF, and
C‐reactive protein in PD patients relative to controls
[16]. PD patients may also have altered phagocytic activ-
ity in peripheral monocytes [50, 51]. A recent cell line
study showed that peripheral blood derived immune
cells from PD patients survived for a shorter time in cul-
ture, and patients’ cells were less responsive to stimula-
tion than those of controls [17]. Furthermore, studies
have also shown that neurodegenerative disease patients
experience lymphocyte infiltration from the periphery in
the central nervous system (CNS) [15, 52], challenging
the conventional belief that the CNS is “immune privi-
leged”, i.e. protected from peripheral immune mediators.
It is unclear whether αSyn may be involved in the
hematopoietic alterations in PD apart from inducing in-
flammation. However, αSyn is expressed in erythrocytes,
T and B lymphocytes, monocytes, natural killer (NK)
cells, and megakaryocytes [53], and knock-out mice have
shown a number of hematologic abnormalities [20].
Studies have linked αSyn to the hematopoietic system
through exo- and endocytosis, apoptosis, autophagy,
maturation, and differentiation of hematopoietic cells
[20–23]. For instance, in the absence of αSyn, mice
showed hematologic abnormalities including anemia and
smaller platelets, reduced B cell lymphopoiesis, and de-
fects in immunoglobulin G production and in the devel-
opment of T lymphocytes [21].
Thus, while there is biologic plausibility to support our

findings, a brief discussion of the epiTOC model and its
limitations is warranted (we also refer the reader to
more in-depth discussions [24, 54, 55]). The epiTOC
pcgtAge score is based on DNAm over 385 promoter
polycomb group target (PCGT) CpGs, all initially
unmethylated in fetal tissues and which exhibit hyper-
methylation with aging. Increases in DNAm at these
sites define the epiTOC tick rate, which correlates with
stem cell division rates across a number of normal tis-
sues. EpiTOC was found to be universally accelerated in
cancer and pre-cancer tissues [24]. The model assumes
that changes in methylation at the informative loci oc-
curs via mitosis, which would lead to accumulation in
the stem cells and progenitors which is passed down the
lineage to circulating blood cells. However, other sources
of methylation are possible. Additionally, the model does
not consider the size of the hematopoietic cell popula-
tions (i.e. concentration of the progenitor populations)
and how this might influence the tick rate.
Our analysis of purified cells suggests that the epiTOC

pcgtAge varies quite considerably with blood cell type
within the same person, but there is a clear separation be-
tween lymphocyte and myeloid cell types. In fact, in paral-
lel, mean methylation across 27k CpGs also varied
considerably, and in a similar pattern. This is not entirely
unexpected. A previous report of DNA methylation

dynamics across 17 hematopoietic cell types found that
the distribution of DNA methylation levels was similar
across all stem and progenitor cell types, while there was a
shift toward lower methylation levels in differentiated cells
of the myeloid lineage [38]. This study also reported that
DNA methylation levels at regulatory and many other
genomics regions were on average lower in myeloid pro-
genitors and differentiated myeloid cells relative to cells of
the lymphocyte lineage [38]. It is therefore possible that
this broader DNAm depletion is contributing to the lower
pcgtAge score we observed in myeloid cells. This also sup-
ports the notion that it is more predominantly cell com-
position influencing DNAm levels overall and in turn
epiTOC CpGs as well specifically through general DNAm
depletion, versus pcgtAge influencing cell composition and
thus acting as a collider. It is also likely there is some het-
erogeneity in the mitotic age in different cell types. The
vast majority of blood cell expansion is achieved mainly
through proliferation of progenitor cells that are at differ-
ent stages of development. Differences in cell turnover
rate, the number of cells required daily for homeostasis,
and lineage-dependent daily proliferation, mean different
cell types within a whole-blood sample likely have differ-
ent proliferative histories. This illustrates the need to con-
trol for cell heterogeneity in pcgtAge analysis using whole
blood methylation, which may otherwise exert strong con-
founding if left unchecked.

Conclusions
The technology and methodology to enumerate the mi-
totic history of tissues with DNAm is in its infancy. We
expect it will continue to be developed and improve,
while addressing existing limitations. The current study
provides a first look and presents striking findings impli-
cating accelerated hematopoietic cell mitosis, possibly
reflecting imbalances in immune pathways, in early PD
that may also contribute to progression. This
methylation-based mitotic clock may have utility in
assessing immune system contributions to PD onset and
progression, and neurodegenerative research in general,
allowing us to explore systemic immune contributions
to brain disorders and eventually inspire preventative or
therapeutic strategies to slow the process.

Methods
PD Study Population
PEG is a population-based study of residents of Califor-
nia’s Central Valley, designed first as a case-control
study to investigate PD etiology (2001–2007 & 2010–
2016; n = 849 PD patients early in disease; n = 1021
population-based controls), and second as a longitudinal
cohort with prospective follow-up of PD patients for
progression (n = 525, 2–4 follow-up exams and a mean
follow-up of 4.7 years (SD = 2.8)) [56, 57]. PD case-
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control analysis was restricted to n = 807 participants
(n = 228 controls and n = 569 PD patients) for whom we
currently have blood-based DNAm data available. All
patients in PEG were seen by movement disorder spe-
cialists (lead by J.B.) at least once at baseline, many on
multiple occasions, and confirmed as having probable
idiopathic PD based on published criteria [58]. We also
have follow-up data for n = 336 of PD patients with
methylation data available. PD patient demographic
characteristics with/out methylation data were similar:
62 % vs. 65 % male, 77 % vs. 76 % European ancestry,
mean age 70.4 years (SD = 11.7) vs. 70.5 years (SD = 9.8).
Further information on the study population is provided
in the supplemental materials.
DNA was extracted from peripheral whole blood and

we profiled and processed DNA samples using the Illu-
mina Infinium 450k platform (486k CpGs) by applying
standard settings. DNA methylation β values were pre-
processed using the background normalization method
from the Genome Studio software and corrected for type
I/type II probe bias with BMIQ using the champ.norm
function in the ChAMP R package [59]. More detail has
been published [60, 61], and the data is available on
Gene Expression Omnibus (GEO), accession numbers
GSE72774 and GSE72776. To account for possible tech-
nical factors due to array or batch effects, we calculated
principal components based on the DNAm levels of the
848 control probes included on the 450 K DNAm array.
We used the first two PCs, which explained the majority
of variation in the probes, to capture technical variation.
Informed consent was obtained from all subjects and

the study protocol was approved by the UCLA institu-
tional review board.

epiTOC epigenetic mitotic clock
We calculated the DNAm-based mitotic age of blood,
representing the cell division history reflected within the
DNAm, using the epiTOC model based on published
methods [24]. The epigenetic mitotic age estimate from
epiTOC is denoted by pcgtAge, based on the nomencla-
ture by Yang el al. [24]. EpiTOC is a DNAm-based, age-
correlative model which approximates a mitotic clock in
both normal and cancer tissue [24]. It focuses on 385
CpG promoter sites that localize to Polycomb group tar-
get genes that are unmethylated in 11 different fetal tis-
sue types. Increases in DNA methylation at these sites
define the epiTOC tick rate, which correlates with the
rate of stem cell division in normal tissues as estimated
in stem cell research [62]. EpiTOC was trained using
Illumina 450k DNAm data from 656 whole blood sam-
ples from healthy individuals spanning an age range of
over 80 years, correcting for changes in blood cell com-
position [43], and was validated in an independent 450k
dataset of > 300 healthy controls [24]. We regressed

pcgtAge on chronologic age to remove the variation ex-
plained by age, using a linear regression model and de-
fining AccelEpiTOC as the corresponding raw residual
(i.e. the difference between the observed value of epi-
TOC pcgtAge minus its expected value). AccelEpiTOC
was transformed into units of standard deviation (SD).

Blood Cell Composition and DNAm from Purified Cells
In order to assess the influence of cell heterogeneity on
the epiTOC estimated pcgtAge, we calculated pcgtAge in
paired, Illumina HumanMethylation450 BeadChip data
from 10 different cell populations in blood, from six,
adult male donors, including DNAm from flow-sorted
myeloid cells (granulocytes, neutrophils, eosinophils, and
CD14 +monocytes) and lymphocytes (CD8 + and CD4 +
T cells, CD56 + natural killer cells, and CD19 + B cells);
GEO accession number GSE35069 [36].
In PEG, we estimated whole blood cell (WBC) com-

position using two different methods. First, we used the
Houseman estimation method [39] that estimates the
proportion of CD8 + T cells, CD4 + T cells, natural killer,
B cells, monocytes, and granulocytes. Second, we
employed the Horvath blood cell estimation method [40,
41], to estimate counts of exhausted CD8 + T cells (de-
fined as CD28-CD45RA-), naïve CD4 + T and naïve
CD8 + T cells (defined as CD45RA + CCR7+), and plas-
mablasts. We also estimated DNAm epigenetic age ac-
celeration using three epigenetic aging clocks: the
Horvath clock age acceleration (termed as Horvath
AgeAccel; pan-tissue epigenetic clock) [41]; intrinsic epi-
genetic age acceleration (IEAA; epigenetic aging measure
independent of blood cell counts) [29]; and extrinsic epi-
genetic age acceleration (EEAA; measure of biologic
aging in immune related components based on the Han-
num clock [43] and somewhat dependent on leukocyte
concentrations known to change with age) [29].

Statistical Analysis
To assess the influence of cell composition on epigenetic
mitotic age (pcgtAge) within person, we used a repeated-
measures linear mixed model, treating repeated mea-
sures pcgtAge across cell types as the outcome and cell
type (categorical) as the predictor, with a random effect
for subject (n = 6 subjects with 10 pcgtAge estimates
from different cell types, 60 observations). We also
assessed global methylation differences across cell types
with a repeated measures model, using mean methyla-
tion across 27k CpGs included in the Illumina 27k
methylation array.
To assess associations between the epigenetic mitotic

tick rate (AccelEpiTOC) and PD status in the PEG
study, we used logistic regression to estimate odds ratios
(ORs) and 95 % CIs, controlling for age, sex, ancestry de-
rived from ancestry informative markers (AIMS), blood
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cell composition, and the two technical variation PCs.
We selected the most parsimoniously adjusted and best
fitting model for PD based on step-wise variable selec-
tion and minimized Akaike information criterion (AIC).
We assessed the association between AccelEpiTOC and
PD symptom progression measured by the Unified Par-
kinson’s disease Rating Scale, Part III (UPDRS-III, motor
symptoms) and Mini-Mental State Exam (MMSE, cogni-
tive symptoms), with repeated-measures linear mixed
models. We included an interaction term between Acce-
lEpiTOC and follow-up time (in years) to estimate the
change in symptom score over time according to Acce-
lEpiTOC. The regression coefficient (β) for the inter-
action term with time represents the estimated
difference in annual change in outcome score (UPDRS-
III or MMSE) according to AccelEpiTOC. We also
present Pearson correlations between epiTOC pctAge,
AccelEpiTOC, blood cell composition, and the epigen-
etic clock age acceleration measures. All analyses were
done using R software.

Abbreviations
αSyn: α-synuclein; AIC: Akaike information criterion; AIMs: ancestry
informative markers; CD4T: CD4+ T cells; CD8T: CD8+ T cells; CNS: Central
nervous system; DNAm: DNA methylation; EEAA: Extrinsic epigenetic age
acceleration; Gran: Granulocytes; HSC: Hematopoietic stem cell; IEAA: Intrinsic
epigenetic age acceleration; IL: Interleukin; MMSE: Mini-Mental State Exam;
NK: CD56+ natural killer cells; PCGT: promoter polycomb group target;
PD: Parkinson’s disease; PEG: Parkinson’s Environment and Genes Study;
TNF: Tumor necrosis factor; UPDRS-III: Unified Parkinson’s Disease Rating
Scale, part III

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-08009-y.

Additional file 1.

Additional file 2: Supplemental Table 1. Output from linear mixed
effects repeated measures regression model of epiTOC pcgtAge, among
6 participants with DNAm from purified cell types.

Additional file 3: Supplemental Table 2. Output from linear mixed
effects repeated measures regression model of 27k CpG mean
methylation, among 6 participants with DNAm from purified cell types.

Additional file 4: Supplemental Table 3. Output from logistic
regression model of PD, with AccelEpiTOC and all covariates, stratified by
Sex. All terms included as covariates in the same model. Model 1 in
manuscript, stratified by sex.

Additional file 5: Supplemental Table 4. Output from the best fit,
linear regression model of AccelEpiTOC. Full model shown, AccelEpiTOC
is the outcome and all terms listed are included as covariates in the same
model.

Additional file 6: Supplemental Table 5. Output from logistic
regression model of PD, with AccelEpiTOC and all covariates, stratified by
Sex. All terms included as covariates in the same model. Model 2,
includes other DNAm age markers.

Additional file 7: Supplemental Figure 1. Best fitting logistic model
of PD.

Acknowledgements
Not applicable.

Authors' contributions
Substantial contributions to the conception and design of the work: KCP, SH,
BR; Substantial contributions to the acquisition, analysis, or interpretation:
KCP, AMB, CK, QY, IDR, YY, JB, SH, BR; Drafted the work: KCP, BR; All authors
contributed to revision/editing the manuscript. All authors read and
approved the final manuscript.

Funding
This work was supported by the National Institure of Aging
(K01AG07204401) and the National Institute of Environmental Health Science
(grant numbers R21ES024356, 2R01ES010544, U54ES012078). The funding
body played no role in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets analyzed during the current study are available in the GEO
repository, accession numbers GSE72774 and GSE72776 (PEG), and the
purified blood cell DNAm data at GSE35069.

Declarations

Ethics approval and consent to participate
The PEG study was approved by the UCLA Institutional Review Board (IRB#
11-001530) and informed written consent was obtained from all individuals.
Our research conformed to the Declaration of Helsinki.

Consent for publication
Not applicable, this manuscript does not contain any individual person’s data
in any form, e.g. individual details, images, or videos.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Neurology, David Geffen School of Medicine at UCLA, Los
Angeles, California, USA. 2Population Sciences in the Pacific Program,
University of Hawaii Cancer Center, Honolulu, Hawaii, USA. 3Department of
Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California,
USA. 4Department of Human Genetics, David Geffen School of Medicine at
UCLA, Los Angeles, California, USA.

Received: 25 April 2021 Accepted: 13 September 2021

References
1. NIH Stem Cell. NIH Stem Cell Information Home Page - Stem Cell Basics.

Stem Cell Inf [World Wide Web site]; 2016.
2. Hoggatt J, Kfoury Y, Scadden DT. Hematopoietic Stem Cell Niche in Health

and Disease. Annu Rev Pathol Mech Dis. 2016.
3. Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H. Inflamm-aging of

hematopoiesis, hematopoietic stem cells, and the bone marrow
microenvironment. Frontiers in Immunology. 2016.

4. Wickrema A, Kee B. Molecular basis of hematopoiesis. Molecular Basis of
Hematopoiesis. 2009.

5. Ogawa M. Differentiation and proliferation of hematopoietic stem cells.
Blood. 1993.

6. Pietras EM. Inflammation. A key regulator of hematopoietic stem cell fate in
health and disease. Blood. 2017.

7. Hormaechea-Agulla D, Le DT, King KY. Common Sources of Inflammation and
Their Impact on Hematopoietic Stem Cell Biology. Current Stem Cell Reports. 2020.

8. Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease
and the immune system — associations, mechanisms and therapeutics.
Nature Reviews Neurology. 2020.

9. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein
in filamentous inclusions of Lewy bodies from Parkinson’s disease and
dementia with Lewy bodies. Proc Natl Acad Sci U S A; 1998.

10. Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson’s disease.
Vol. 66, Neurology. 2006.

11. Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells:
D-Day for neurodegenerative disease? Journal of Neuroimmune
Pharmacology. 2009.

Paul et al. BMC Genomics          (2021) 22:696 Page 9 of 10

https://doi.org/10.1186/s12864-021-08009-y
https://doi.org/10.1186/s12864-021-08009-y


12. Monahan AJ, Warren M, Carvey PM. Neuroinflammation and peripheral
immune infiltration in Parkinson’s disease: An autoimmune hypothesis. In:
Cell Transplantation. 2008.

13. Costantini E, D’Angelo C, Reale M. The role of immunosenescence in
neurodegenerative diseases. Mediators of Inflammation. 2018.

14. FRANCESCHI C, BONAFÈ M, OLIVIERI VALENSINS, DE LUCA F M, OTTAVIANI E,
et al. Inflamm-aging: An Evolutionary Perspective on Immunosenescence.
Ann N Y Acad Sci. 2006.

15. Clark LF, Kodadek T. The Immune System and Neuroinflammation as Potential
Sources of Blood-Based Biomarkers for Alzheimers Disease, Parkinsons Disease,
and Huntingtons Disease. ACS Chemical Neuroscience; 2016.

16. Qin X-Y, Zhang S-P, Cao C, Loh YP, Cheng Y. Aberrations in Peripheral
Inflammatory Cytokine Levels in Parkinson Disease. JAMA Neurol. 2016.

17. Nissen SK, Shrivastava K, Schulte C, Otzen DE, Goldeck D, Berg D, et al.
Alterations in Blood Monocyte Functions in Parkinson’s Disease. Mov
Disord. 2019.

18. Phani S, Loike JD, Przedborskia S. Neurodegeneration and inflammation in
Parkinson’s disease. Park Relat Disord. 2012.

19. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and
‘Garb-aging.’ Trends in Endocrinology and Metabolism. 2017.

20. Pei Y, Maitta RW. Alpha synuclein in hematopoiesis and immunity. Heliyon.
2019.

21. Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW. Late stages of
hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key
player in Parkinson’s disease. Immunobiology. 2014.

22. Shameli A, Xiao W, Zheng Y, Shyu S, Sumodi J, Meyerson HJ, et al. A critical
role for alpha-synuclein in development and function of T lymphocytes.
Immunobiology. 2016.

23. Tashkandi H, Shameli A, Harding CV, Maitta RW. Ultrastructural changes in
peripheral blood leukocytes in α-synuclein knockout mice. Mol Dis: Blood
Cells; 2018.

24. Yang Z, Wong A, Kuh D, Paul DS, Rakyan VK, Leslie RD, et al. Correlation of
an epigenetic mitotic clock with cancer risk. Genome Biol. 2016.

25. Yatabe Y, Tavaré S, Shibata D. Investigating stem cells in human colon by
using methylation patterns. Proc Natl Acad Sci U S A. 2001;98:19.

26. Kim JY, Tavaré S, Shibata D. Counting human somatic cell replications:
Methylation mirrors endometrial stem cell divisions. Proc Natl Acad Sci U S
A. 2005;102:49.

27. Kramer A, Challen GA. The epigenetic basis of hematopoietic stem cell
aging. Seminars in Hematology. 2017.

28. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic
clock theory of ageing. Nature Reviews Genetics. 2018;1–14.

29. Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the
blood of Parkinson’s disease patients. Aging. 2015;7(12):1130–42.

30. Chuang Y-H, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B.
Parkinson’s disease is associated with DNA methylation levels in human
blood and saliva. Genome Med. 2017;9(1).

31. Chuang YH, Lu AT, Paul KC, Folle AD, Bronstein JM, Bordelon Y, et al.
Longitudinal Epigenome-Wide Methylation Study of Cognitive Decline and
Motor Progression in Parkinson’s Disease. J Parkinsons Dis. 2019.

32. Henderson-Smith A, Fisch KM, Hua J, Liu G, Ricciardelli E, Jepsen K, et al.
DNA methylation changes associated with Parkinson’s disease progression:
outcomes from the first longitudinal genome-wide methylation analysis in
blood. Epigenetics [Internet]. 2019;14(4):365–82. Available from: https://doi.
org/10.1080/15592294.2019.1588682.

33. Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG. Dynamic
variation in cycling of hematopoietic stem cells in steady state and
inflammation. J Exp Med. 2011.

34. Catlin SN, Busque L, Gale RE, Guttorp P, Abkowitz JL. The replication rate of
human hematopoietic stem cells in vivo. Blood. 2011.

35. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol. 2014;15(2).

36. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, et al.
Differential DNA methylation in purified human blood cells: Implications for
cell lineage and studies on disease susceptibility. PLoS One. 2012.

37. Ritz BR, Paul KC, Bronstein JM. Of Pesticides and Men: a California Story of
Genes and Environment in Parkinson’s Disease. Curr Environ Heal reports.
2016;3(1).

38. Farlik M, Halbritter F, Müller F, Choudry FA, Ebert P, Klughammer J, et al.
DNA Methylation Dynamics of Human Hematopoietic Stem Cell
Differentiation. Cell Stem Cell. 2016.

39. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinformatics. 2012;13(1).

40. Horvath S, Levine AJ. HIV-1 infection accelerates age according to the
epigenetic clock. J Infect Dis. 2015.

41. Horvath S. DNA methylation age of human tissues and cell types. Genome
Biol. 2013;14(10).

42. VanderWeele TJ, Hernán MA, Robins JM. Causal directed acyclic graphs and
the direction of unmeasured confounding bias. Epidemiology. 2008.

43. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al.
Genome-wide Methylation Profiles Reveal Quantitative Views of Human
Aging Rates. Mol Cell. 2013.

44. Rao MS, Mattson MP. Stem cells and aging: Expanding the possibilities.
Mechanisms of Ageing and Development. 2001.

45. Westera L, van Hoeven V, Drylewicz J, Spierenburg G, van Velzen JF, de Boer
RJ, et al. Lymphocyte maintenance during healthy aging requires no
substantial alterations in cellular turnover. Aging Cell. 2015.

46. Groarke EM, Young NS. Aging and hematopoiesis. Clin Geriatr Med. 2019;
35(3):285–93.

47. Mirantes C, Passegué E, Pietras EM. Pro-inflammatory cytokines: Emerging
players regulating HSC function in normal and diseased hematopoiesis.
Experimental Cell Research. 2014.

48. King KY, Goodell MA. Inflammatory modulation of HSCs: Viewing the HSC as
a foundation for the immune response. Nature Reviews Immunology. 2011.

49. Funk N, Wieghofer P, Grimm S, Schaefer R, Bühring HJ, Gasser T, et al.
Characterization of peripheral hematopoietic stem cells and monocytes in
Parkinson’s disease. Mov Disord. 2013.

50. Grozdanov V, Bliederhaeuser C, Ruf WP, Roth V, Fundel-Clemens K, Zondler
L, et al. Inflammatory dysregulation of blood monocytes in Parkinson’s
disease patients. Acta Neuropathol. 2014.

51. Wijeyekoon RS, Kronenberg-Versteeg D, Scott KM, Hayat S, Jones JL,
Clatworthy MR, et al. Monocyte function in Parkinson’s disease and the
impact of autologous serum on phagocytosis. Front Neurol. 2018.

52. Cao W, Zheng H. Correction to: Peripheral immune system in aging and
Alzheimer’s disease. Mol Neurodegener. 2018.

53. Shin EC, Cho SE, Lee DK, Hur MW, Paik SR, Park JH, et al. Expression patterns
of α-synuclein in human hematopoietic cells and in Drosophila at different
developmental stages. Mol Cells. 2000.

54. Teschendorff AE. A comparison of epigenetic mitotic-like clocks for cancer
risk prediction. Genome Med. 2020.

55. Christensen BC, Kelsey KT. A new timepiece: An epigenetic mitotic clock.
Genome Biol. 2016.

56. Paul KC, Rausch R, Creek MM, Sinsheimer JS, Bronstein JM, Bordelon Y, et al.
APOE, MAPT, and COMT and Parkinson’s Disease Susceptibility and
Cognitive Symptom Progression. J Parkinsons Dis. 2016;6(2):349–59.

57. Paul KC, Schulz J, Bronstein JM, Lill CM, Ritz BR. Association of polygenic risk
score with cognitive decline and motor progression in Parkinson disease.
JAMA Neurol. 2018;75(3).

58. Hughes AJ, Ben-Shlomo Y, Daniel SE. Lees a J. What features improve the
accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic
study. Neurology. 1992;42(6):1142–6.

59. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK,
et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. 2014.

60. Chuang Y-H, Paul KCKC, Bronstein JMJMJM, Bordelon Y, Horvath S, Ritz B.
Parkinson’s disease is associated with DNA methylation levels in human
blood and saliva. Genome Med [Internet]. 2017;9(1):76. Available from:
http://genomemedicine.biomedcentral.com/articles/https://doi.org/10.1186/
s13073-017-0466-5.

61. Paul KC, Chuang YH, Cockburn M, Bronstein JM, Horvath S, Ritz B.
Organophosphate pesticide exposure and differential genome-wide DNA
methylation. Sci Total Environ. 2018.

62. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al.
The cancer genome atlas pan-cancer analysis project. Nature Genetics. 2013.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Paul et al. BMC Genomics          (2021) 22:696 Page 10 of 10

https://doi.org/10.1080/15592294.2019.1588682
https://doi.org/10.1080/15592294.2019.1588682
http://genomemedicine.biomedcentral.com/articles/
https://doi.org/10.1186/s13073-017-0466-5
https://doi.org/10.1186/s13073-017-0466-5

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Background and Aims
	Results
	DNAm Epigenetic mitotic age differs by myeloid and lymphoid lineage
	Accelerated epigenetic mitotic aging in Parkinson’s disease

	Discussion
	Conclusions
	Methods
	PD Study Population
	epiTOC epigenetic mitotic clock
	Blood Cell Composition and DNAm from Purified Cells
	Statistical Analysis
	Abbreviations

	Supplementary Information
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

