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Abstract

Background: The American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource
(ClinGen) presented technical standards for interpretation and reporting of constitutional copy-number variants in
2019 (the standards). Although ClinGen developed a web-based CNV classification calculator based on scoring
metrics, it can only track and tally points that have been assigned based on observed evidence. Here, we
developed AutoCNV (a semiautomatic automated CNV interpretation system) based on the standards, which can
automatically generate predictions on 18 and 16 criteria for copy number loss and gain, respectively.

Results: We assessed the performance of AutoCNV using 72 CNVs evaluated by external independent reviewers
and 20 illustrative case examples. Using AutoCNV, it showed that 100 % (72/72) and 95 % (19/20) of CNVs were
consistent with the reviewers’ and ClinGen-verified classifications, respectively. AutoCNV only required an average of
less than 5 milliseconds to obtain the result for one CNV with automated scoring. We also applied AutoCNV for the
interpretation of CNVs from the ClinVar database and the dbVar database. We also developed a web-based version
of AutoCNV (wAutoCNV).

Conclusions: AutoCNV may serve to assist users in conducting in-depth CNV interpretation, to accelerate and
facilitate the interpretation process of CNVs and to improve the consistency and reliability of CNV interpretation.
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Background
As a major component of human genetic variation, copy
number variants (CNVs) are often reported to be associ-
ated with human diseases, such as congenital malforma-
tions and intellectual disability, developmental delay, and
autism spectrum disorder [1, 2]. Changes in gene dosage,
gene fusion, gene disruption, or position effects caused
by CNVs may lead to a wide variety of diseases in
humans. To date, a number of methods have been devel-
oped for the detection of CNVs at the genome scale, in-
cluding microarray-based methods3 and massively
parallel sequencing (MPS) [3, 4]. The resolution of CNV
detection strongly improved with the rapid development
of MPS, progressing from the chromosome level down
to the single gene/exon level. Despite the rapid advances
in the methodology of CNV detection, the interpretation
and understanding of CNVs is still lagging.
To facilitate the interpretation of CNVs, many data-

bases have been developed, such as ClinGen [5], DE-
CIPHER [6] and the Database of Genomic Variants
(DGV) [7]. For the purpose of CNV dosage analysis, the
International Standards for Cytogenomic Assays (ISCA)
Consortium began to evaluate genomic regions and
genes in 2011 [8]. Storing CNV information and the
CNV-disease relationship of individuals affected with
genetic diseases and normal individuals along with accu-
mulating scientific literature is highly useful in facilitat-
ing the interpretation of CNVs. Despite the rapid
development of databases and scientific literature for
CNV analysis, the establishment of systematic guidelines
for CNV interpretation is necessary to facilitate the
process of CNV interpretation and to promote the
consistency of interpretation.
To standardize CNV interpretation in clinical set-

tings, the ACMG (the American College of Medical
Genetics and Genomics) reported the recommended
standards for CNV interpretation in 2011 [9]. This
guideline primarily focused on CNVs generated using
microarray-based technology [9]. With the continued
widespread implementation of microarray-based and
MPS technology, various types of CNVs have been
identified and reported, which makes the interpret-
ation of CNVs more complicated and challenging. To
reduce discordance in the clinical classification of
CNVs, the ACMG and ClinGen updated the guide-
lines (the 2019 ACMG/ClinGen Technical Standards
for CNVs) for CNV interpretation in 2019 [1]. In the
2019 ACMG/ClinGen Technical Standards for CNVs
(the standards), a quantitative, evidence-based scoring
framework combining a total of 80 criteria was devel-
oped, and a five-tier classification system (pathogenic,
likely pathogenic, uncertain significance, likely benign,
and benign) was recommended for CNV interpret-
ation [1].

Although a more comprehensive criteria and scoring
system was provided by the ACMG and ClinGen, the
successful application of these guidelines in the process
of CNV interpretation remains challenging. First, a stan-
dardized scoring pipeline is required to ensure reprodu-
cibility. In this context, reproducibility means that the
results generated by the same clinical scientist are con-
sistent at different times. CNV interpretation is highly
complicated and requires highly specific expertise in this
domain. Without a standardized pipeline, the results of
CNV interpretation might not be reproducible by the
same clinical scientist due to human error. Second, a
standardized scoring pipeline is required to reduce in-
consistencies among different clinical scientists in the
same lab or different labs. Without a standardized pipe-
line, inconsistency may be easily caused by the usage of
different tools and databases in the CNV interpretation
process. However, a standardized scoring pipeline is dif-
ficult to develop for many clinical scientists at present.
Third, the complete fulfillment of the updated standards
in the CNV interpretation process for clinical scientists
remains complicated and time-consuming. For each
standard, various tools and databases must be used.
Using these tools, searching databases and gathering the
results for a specific CNV is complicated and time-
consuming. Some tools have been developed to over-
come these challenges, such as ClassifyCNV [10] and
AnnotSV [11]. However, ClassifyCNV is a command-
line program, a web-based version of ClassifyCNV
should be developed to provide a more user-friendly way
for CNV interpretation, especially for clinical scientists.
As for AnnotSV, no options of user adjustment can be
made in the web-based version of AnnotSV. Some cri-
teria still require the input of point values by users to
generate final classification of the CNV according to
case information from published studies, databases, in-
ternal lab data, or inheritance pattern/family history for
the case being studied. Considering all these issues for
CNV interpretation, a highly automated tool is urgently
needed to combine all the databases and to provide a
standardized pipeline for CNV interpretation.
In this study, we developed a tool, AutoCNV, to en-

able consistent and reliable CNV interpretation based on
the various standards. AutoCNV included a total of 6
databases and implemented all 80 criteria for the anno-
tation and interpretation of CNVs. We also tested the
performance of AutoCNV using 72 CNVs evaluated by
external independent reviewers [1], 20 illustrative case
examples and data from the dbVar database [12]. This
report presents a crucial first step in the establishment
of a standardized workflow for CNV interpretation and
paves the way for the clinical application of various CNV
detection methods and for the integration of scientific
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investigations and clinical practice. AutoCNV is freely
available at https://github.com/zhonghua-wang/autocnv.

Results
Features and functionality of AutoCNV
There are 3 steps for AutoCNV: CNV annotation,
CNV scoring, and reporting (Fig. 1). First, AutoCNV
performs annotation for CNV interpretation according
to user input. Second, AutoCNV implemented a scor-
ing system according to Tables 1 and 2 in the stan-
dards [1]. Finally, a five-tier classification for both
copy-number loss and copy-number gain (i.e., patho-
genic, likely pathogenic, uncertain significance, likely
benign, and benign) is generated. The CNV classifica-
tion of AutoCNV is consistent with the CNV inter-
pretation scoring framework reported in the standards

(pathogenic: 0.99 or more points; likely pathogenic:
0.90 to 0.98 points; variant of uncertain significance:
-0.89 to 0.89 points; likely benign: -0.90 to -0.98
points; benign: -0.99 or fewer points) [1].

Workflow of AutoCNV
To illustrate the workflow of AutoCNV, we intro-
duced a clinical case (Case 1) as an example. Case 1,
a 35-year-old female, exhibited nephrotic syndrome
(HP:0000100) and syncope (HP:0001279), and the
WES result showed an approximate 1.5-Mb heterozy-
gous copy number loss in chromosome 22 with coor-
dinates of 18,761,827 − 20,307,561 (GRCh37/hg19). In
this instance, we showed the scoring logic for the de-
tected deletion of Case 1 as an example to illustrate
the workflow of AutoCNV.

Fig. 1 Workflow of the three steps of AutoCNV
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1) Automated scoring on each of the 18 criteria

Users can use the genomic coordinate of the CNV
(chr22: 18,761,827 − 20,307,561) as input. According to
the annotation result of the deletion, it spans protein-
encoding genes, and a suggested point value of 0 (cat-
egory 1 A) was first assigned by AutoCNV automatically.
The deletion completely spans an established HI gen-
omic region (nssv1184570, chr22: 18,912,231 −
20,287,208), and a suggested point value of 1 (category
2 A) was then assigned. The deletion contains a total of
32 protein-encoding genes, and a suggested point value
of 0.45 (category 3B) was further added. In this section,
a total of 1.45 suggested points were assigned to the de-
letion by automated scoring.

2) Manual review and adjustment of specific criteria

A score of > 0.99 was obtained, and the CNV classifi-
cation of the deletion was made before manual adjust-
ment; therefore, no further assessment was needed. In
this part, no suggested point value was assigned to the
deletion by manual scoring.

3) Final scoring and CNV classification to arrive at a
final interpretation

A final point value of 1.45 was automatically generated
by AutoCNV. A corresponding CNV classification of
“pathogenic” was then assigned to the deletion.

wAutoCNV: web version of AutoCNV
AutoCNV is a command-line program written in Py-
thon. The source code is available on GitHub with a free
license for noncommercial use (https://github.com/
zhonghua-wang/autocnv). wAutoCNV (https://phoenix.
bgi.com/autocnv/) is a web-based version of AutoCNV
that can provide user-friendly CNV interpretation for
clinical scientists. Clinical scientists can directly input
CNVs into wAutoCNV by chromosomal coordinates
(Fig. 2). wAutoCNV performs annotation analysis first
according to the user input. Next, automated interpret-
ation is performed. The wAutoCNV server provides de-
tailed criteria and supportive evidence for the CNV,
which can then be used for user-specific adjustments.
After adjustment, wAutoCNV generates a final interpret-
ation for the CNV. Clinical scientists can quickly search
specific CNVs and reach a final classification.
In the standards, to allow user flexibility, a range is

provided for most scoring categories. Taking category
2D-4 for copy number loss as an example, if there is
additional evidence to suggest a detrimental effect on
the protein, upgrading from the default score is sug-
gested. However, no exact upgrading/downgrading

points are provided from the suggested default number
of points. AutoCNV does not apply the scoring range
setting and assigns the suggested default number of
points for these scoring categories automatically. To en-
able user flexibility, a range is provided for most scoring
categories in wAutoCNV (Fig. 2). An upgrading/down-
grading point of 0.05 from the suggested default number
of points was provided by wAutoCNV, which is consist-
ent with the setting in the web-based ClinGen CNV In-
terpretation Calculator [1].

Interpretation of 72 CNVs and 20 illustrative case
examples using AutoCNV
To assess the performance of AutoCNV, we assessed 72
CNVs evaluated by external independent reviewers2

using AutoCNV. As a result, 100 % of CNVs were con-
sistent with the reviewers’ classifications using
AutoCNV, including 15 pathogenic, 3 likely pathogenic,
51 variants of uncertain significance (VUS), 1 likely be-
nign and 2 benign.
Twenty illustrative case examples were also used to as-

sess the performance of AutoCNV. As a result, 95 % of
CNVs (19/20) were consistent with ClinGen verified
clinical classification using AutoCNV (Supplementary
Table 1), including 9 pathogenic, 4 VUS, 1 likely benign
and 5 benign CNVs. The only difference was in Case X.
The ClinGen verified “benign” duplication in Case X
(Supplementary Table 1) was classified as “likely benign”
by AutoCNV. We further investigated this difference in
Case X. AutoCNV applied evidence 1 A (0), 3 A (0), 4 N
(-0.9) and 5 F (0) for classification (point value − 0.9,
likely benign), while ClinGen included all these points as
well as 4D (-0.3). ClinGen applied 4D (individual case
evidence-phenotype inconsistent) because numerous in-
stances with varied indications were observed in their in-
ternal database. Therefore, a suggested point value of
-1.2 and classification of “benign” was assigned, resulting
in the inconsistent classification of the duplication in
Case X.
AutoCNV can significantly reduce the annotation

and classification burden by automating steps that
can be automated. We compared the time spent by
AutoCNV and complete manual interpretation for the
72 CNVs and 20 illustrative case examples for the re-
sults that can be automatically generated by
AutoCNV. For human curation, more than 215 s
were required for one CNV by manual interpretation.
For automated generated pre-classification, AutoCNV
only required an average of less than 5 milliseconds
to obtain the result for one CNV, which was approxi-
mately 43,000 times faster than complete manual in-
terpretation. The most time-consuming process for
complete manual interpretation is database searching
and results gathering.
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Fig. 2 Illustration of wAutoCNV
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Interpretation of 64 CNVs from the ClinVar database
We further assessed the performance of AutoCNV using
64 CNVs from the ClinVar database (accessed on April
4th, 2021). The 64 CNVs consist of 28 pathogenic, 3
likely pathogenic, 32 VUS and 1 benign CNVs. As a re-
sult, 61 % (39/64) of the 64 CNVs were consistent with
the original classifications when using AutoCNV (Sup-
plementary Table 2).
28 % of the dis-concordant CNV classifications (7/25)

between the original classifications in the ClinVar data-
base and classifications using AutoCNV happened in the
automating steps. The automated generated pre-
classification of these 7 CNVs was classified as patho-
genic or likely pathogenic by AutoCNV, while the ori-
ginal classification was VUS. One possible explanation is
that some of the original classifications in ClinVar may
be incorrect based on the 2019 ACMG/ClinGen Tech-
nical Standards. In addition, original classifications of
“pathogenic” and “likely pathogenic” were classified as
“VUS” in 15 CNVs and 2 CNVs by AutoCNV, respect-
ively (Supplementary Table 2). According to the 2019
ACMG/ClinGen Technical Standards, evidences using
cases from published literature, public databases, and/or
internal lab data (Sec. 4) can not warrant the upgrade in
these CNVs. With an original classification of “benign”,
the duplication in RCV001270910 (proven in tandem)

was classified as “VUS” by AutoCNV. According to the
2019 ACMG/ClinGen Technical Standards, no evidences
from published literature (Sec. 4) support that this is a
benign CNV.

Interpretation of CNVs in the dbVar database
To apply AutoCNV in a larger database, we assessed
3,982 CNVs in study nstd101 from dbVar using
AutoCNV, including 2,125 copy number losses (53 %)
and 1857 copy number gains (47 %). These CNVs were
classified into 3 categories (pathogenic category: patho-
genic or likely pathogenic; VUS category; benign cat-
egory: benign or likely benign) (Fig. 3). The CNV
classifications by AutoCNV were based on the results
that can be automatically generated by AutoCNV.
As a result, AutoCNV generated concordance rates of

56.3 % (1274/2263), 97.6 % (1202/1231) and 67.0 % (327/
488) for the pathogenic category, VUS category and be-
nign category, respectively. As shown in Fig. 3, most of
the discordance occurred in pathogenic and benign cat-
egories, where pathogenic/likely pathogenic or benign/
likely benign CNVs were classified as VUS by AutoCNV.
One explanation for these findings is that the CNV clas-
sifications by AutoCNV were only based on the results
that can be automatically analyzed. Manual adjustment
step was needed before obtaining the final CNV

Fig. 3 Automated interpretation of CNVs in nstd101 by AutoCNV
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classification. However, detailed evidences used for CNV
classification in dbVar database are not available for this
dataset. Another possible explanation is that is that some
of the classification in nstd101 may be incorrect or in-
complete. Part of the CNVs in nstd101 were collected
from ClinVar. It has been reported that re-evaluation of
246 CNVs in the ClinVar database showed updated clin-
ical classifications in more than 64 % of cases [13]. Dis-
crepancies in assigning CNVs to either pathogenic or
benign categories warrant further manual evaluation.
Notably, one benign CNV (nssv578203, copy number

loss, chr11: 55,213,165 − 56,882,257) in nstd101 was clas-
sified as “likely pathogenic” by AutoCNV. This deletion
contains more than 35 genes (49 genes), and a suggested
point value of 0.9 and classification of likely pathogenic
should be assigned (category 3 C). Further manual ana-
lysis showed that this deletion was submitted in 2012,
and no detailed information was provided for the assess-
ment of the deletion. This deletion might be incorrectly
cataloged as benign in nstd101.
Two pathogenic CNVs (nssv579666 and nssv577383)

in nstd101 were classified as “benign” by AutoCNV.
nssv579666 is entirely within a common population vari-
ation (gssvL6983, chr1:196,757,278–196,796,716), which
was deposited in the DGV database with a frequency of
12.45 % (case number > 1,000). According to this evi-
dence, this deletion was classified as “benign” by
AutoCNV (4O). Further manual interpretation showed
no additional evidence in support of pathogenicity.
nssv577383 is also entirely within a common population
variation (gssvL23855, chr12:27,170,449–27,973,050),
which was deposited in the DGV database with a fre-
quency of 4 % (case number > 1,000). According to this
evidence, this deletion was also classified as “benign” by
AutoCNV (4O). nssv579666 and nssv577383 were sub-
mitted to nstd101 in 2012 and 2011, and no detailed in-
formation was provided for the assessment of these two
deletions. Therefore, both deletions might be incorrectly
cataloged as pathogenic in nstd101.

Discussion
In this study, we developed a semiautomatic tool,
AutoCNV, for CNV interpretation based on the stan-
dards. ClinGen has provided a tool (ClinGen CNV Inter-
pretation Calculator) to evaluate the clinical significance
of both copy number loss and copy number gain. Briefly,
this tool is designed only to track and tally the points
that have been assigned based on the observed evidence.
AutoCNV, on the other hand, provides a complete pack-
age by providing both annotation information and scor-
ing to facilitate the interpretation process. To date,
AutoCNV has combined a total of 6 databases and pro-
vides a standardized pipeline for CNV interpretation.
The main functionality of AutoCNV is to provide

consistent and reliable CNV interpretation based on the
standards. AutoCNV may help to enable reproducible
CNV interpretation by the same clinical scientist and to
facilitate consistent and reliable CNV interpretation by
clinical scientists from the same or different labs.
For the purpose of automated interpretation, some cri-

teria in the standards need to be clarified. To find a solu-
tion, these criteria were also discussed with the ACMG
Document Support Team through e-mail. First, Table 2
(CNV interpretation scoring metric: copy-number gain)
in the standards2 lists suggested points for CNVs over-
lapping with established TS genes (category 2A, 2B), HI
genes (2H, 2I), and gene(s) of no established clinical sig-
nificance (2L). However, there are no suggested points
for CNVs that overlap with other disease-associated
genes, such as the FGFR2 gene. As a solution, if a gene
has not been evaluated by ClinGen Dosage Sensitivity, a
suggested point value of 0 is assigned to the CNV by
AutoCNV. The user can utilize Sec. 4 (evidence from
the literature) to accumulate an appropriate number of
points. Second, functionally important elements are used
for initial assessment of genomic content in Sec. 1; how-
ever, no exact definition or database is available to deter-
mine functionally important elements. Regions with a
haploinsufficiency/triplosensitivity score of 1, 2 or 3 in
ClinGen are recognized as functionally important ele-
ments. This practice was also applied in the illustrative
case examples from the standards [1]. Third, Table 2 in
the standards2 listed suggested points values for CNVs
overlapping with established benign copy-number gain
genes or genomic regions (2 C-2G). However, there are
two more scenarios (Supplementary Fig. 1): 1) the CNV
overlaps but does not include additional protein-
encoding genes while potentially interrupting protein-
encoding genes (2E’), and 2) the CNV overlaps but does
not include additional protein-encoding genes while not
potentially interrupting protein-coding genes (2 F’). As a
solution, CNVs with the scenario 2E’ is classified utiliz-
ing category 2E of the scoring metrics, while CNVs with
the scenario 2 F’ is classified utilizing category 2 F of the
scoring metrics by AutoCNV.
There are some limitations to the current version of

AutoCNV. To assess the performance of AutoCNV
compared to complete manual interpretation, we used
72 CNVs evaluated by external independent reviewers
and 20 illustrative case examples for comparison. We do
know that these CNVs are not enough to draw the con-
clusion that interpretation using AutoCNV is consistent
with complete manual interpretation by experienced
clinical scientists. Further assessment is still warranted.
In summary, we developed a highly automated CNV

interpretation tool, AutoCNV, and a web-based server
wAutoCNV (https://phoenix.bgi.com/autocnv/) for CNV
interpretation based on the standards. AutoCNV
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combines a total of 6 databases and provides a standard-
ized pipeline for CNV interpretation. Clinical scientists
may use AutoCNV to accelerate and facilitate the anno-
tation and interpretation process of CNVs, to improve
the consistency and reliability of CNV interpretation and
to conduct in-depth research and clinical diagnosis for
CNV interpretation. The source code of AutoCNV is
available on GitHub (https://github.com/zhonghua-
wang/autocnv).

Methods
Annotation of CNV
AutoCNV enables users to input a genomic coordinate
(start/end) of a given CNV, which is in the format of
chromosome number: genomic coordinates (for ex-
ample, chr1:1-1000). After the input of the genomic co-
ordinate of a given CNV, annotation is conducted by
AutoCNV to obtain genomic content, overlap informa-
tion and gene number of the CNV (Fig. 1). The hg19/
GRCh37 assembly of the human genome was used for
annotation. In this process, a total of 6 databases were
included in AutoCNV for annotation. RefGene (accessed
on July 7th, 2020), ClinGen (accessed on July 7th, 2020),
ClinVar (accessed on July 7th, 2020), GnomAD (V2.1.1)
and DECIPHER (version 9.31) were employed to anno-
tate genomic content, to establish/predict haploinsuffi-
ciency (HI) and triplosensitivity (TS) and to establish
benign genes/genomic regions and gene number of the
CNV. GnomAD (V2.1.1) and DGV (version
DGV.GS.2016) were employed to annotate polymor-
phisms. For genes with multiple transcripts, the tran-
script selection criteria in AutoCNV are consistent with
autoPVS1 [14], which is a classification tool for PVS1 in-
terpretation. All the databases can be updated every two
weeks automatically through our internal script.

Scoring system of AutoCNV
For the 40 criteria for copy number loss, AutoCNV can
automatically generate predictions on 18 criteria (45 %)
to facilitate the process of interpretation. The remaining
22 criteria require the input of point values by users to
generate final classification of the CNV according to
case information from published studies, public data-
bases, internal lab data, or inheritance pattern/family
history for the sample being studied. For the 40 criteria
for copy number gain, AutoCNV can automatically gen-
erate predictions on 16 criteria (40 %) to facilitate the
process of interpretation. The remaining 24 criteria re-
quire input of point values to generate the final classifi-
cation of the CNV according to case information from
published literature, public databases, internal lab data,
or inheritance pattern/family history for the patient be-
ing studied. In general, the framework of the scoring sys-
tem of AutoCNV assigns points in ascending order

(from Secs. 1 to Sec. 5). A given CNV goes through all
the sections in the standards before obtaining the final
point and CNV classification (Supplementary Fig. 2,
Supplementary Fig. 3).

Scoring for Sec. 1: initial assessment of genomic content
For both copy number loss and gain, the scoring system
of AutoCNV began from the automated scoring for the
first evidence category (Sec. 1) of the CNV interpretation
scoring metric (Supplementary Fig. 2, Supplementary
Fig. 3) [1]. AutoCNV implements the database of Ref-
Gen (accessed on July 7th, 2020) and ClinGen (accessed
on July 7th, 2020) for genomic content annotation (pro-
tein-encoding or functionally important elements). In
this instance, AutoCNV uses human protein-coding
genes (labeled with “protein-coding” in the RefSeq data-
base) in the RefGene database (accessed on July 7th,
2020) for genomic content annotation of protein-
encoding genes. Regions in ClinGen with a haploinsuffi-
ciency/triplosensitivity score of 1, 2 or 3 were employed
to determine the functionally important elements.
AutoCNV automatically assesses the genomic content of
the CNV. For both copy number loss and gain, a sug-
gested point of -0.60 is assigned to the CNV by
AutoCNV if it does not contain protein-encoding genes
or other known functionally important elements. A sug-
gested point of 0 is assigned if the CNV contains
protein-encoding or other known functionally important
elements. Then, the CNV is further assessed for Sec. 2
of the evidence scoring metric.

Scoring for Sec. 2 (copy-number loss): haploinsufficiency
(HI) or established benign evaluation
In this section, a given deletion is automatically evalu-
ated for Sec. 2 of the CNV interpretation scoring metric
by AutoCNV (Supplementary Fig. 2). In this evidence
category, AutoCNV automatically evaluates the overlap
of a deletion with established dosage-sensitive genes or
genomic regions or any established benign genes or gen-
omic regions. For the scoring of copy number loss,
AutoCNV implements the ClinGen database (accessed
on July 7th, 2020) for the annotation of HI or benign
genes/genomic regions. To enable user flexibility,
AutoCNV provides a range for most scoring categories
when considering evidence of different relative
strengths.
First, AutoCNV automatically assesses the overlap of

the deletion with established HI genes/regions according
to the annotation results.
If the given deletion completely spans one or more

established HI genes or genomic regions (category 2 A),
a suggested point of 1 is assigned. If a deletion partly
overlaps the region of an established HI genomic region
that contains no known HI gene(s) or if the deletion
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does not contain any HI genes in the HI genomic region
(category 2B), 0 is assigned.
For deletions partly overlapping an established HI

gene, further evaluation is conducted by AutoCNV ac-
cording to the genomic content of the deletion. To de-
termine the potential functional effect, AutoCNV
considers both breakpoint location and involvement of
coding sequence. When the deletion under evaluation
partially overlaps with the 5’ end of the gene, a default
point of 0.9 (range: 0.45-1) or 0 (range: 0-0.45) is
assigned to the deletion when it involves (category 2 C-
1) or does not involve (category 2 C-2) an additional
coding sequence. When the deletion under evaluation
partially overlaps with the 3’ end of the gene, the in-
volved exons are further evaluated. If the deletion in-
volves only the last exon, a default point of 0.9 (range:
0.45–0.9) is assigned to the deletion by AutoCNV when
established pathogenic variants have been documented
in that exon (category 2D-2). Here, established patho-
genic variants refers to recorded pathogenic or likely
pathogenic in ClinVar with an allele frequency < 1 % in
GnomAD. Information of star level and time since last
evaluation in ClinVar was not used. Otherwise (category
2D-3), a default point of 0.3 (range: 0-0.45) is assigned
to the deletion by AutoCNV. If the deletion involves
other exons in addition to the last exon (category 2D-4),
a default point of 0.9 (range: 0.45–0.9) is assigned to the
deletion by AutoCNV. When the deletion under evalu-
ation is completely within an established HI gene (cat-
egory 2E), the deletion effect on the protein is further
evaluated by autoPVS1 [14], which is an automatic clas-
sification tool for supporting PVS1 interpretation under
the guidance for interpreting loss-of-function (LoF)
PVS1 ACMG/AMP variants [15]. In summary, PVS1 in-
terpretation for exonic deletion is based on its effect on
reading frame and NMD, importance of altered regions,
high-frequency putative LoF variants and biologically
relevant transcripts. If the truncated/altered region dis-
rupts the reading frame and is predicted to undergo
nonsense-mediated mRNA decay (NMD) and if the exon
is present in biologically relevant transcripts, PVS1 can
be applied, and a default point of 0.9 (range: 0.45–0.9) is
assigned to the deletion by AutoCNV. If the truncated/
altered region does not disrupt the reading frame or is
not predicted to undergo NMD, the frequency of LoF
variants in the altered region and the amount of protein
removed by the deletion is further evaluated by
autoPVS1. If the altered region is critical to protein
function, PVS1_Strong is applied, and a default point of
0.45 (range: 0.3–0.9) is assigned to the deletion. If the
protein function of the altered region is unknown, LoF
variants in the region are not frequent in the general
population, and exons are present in biologically relevant
transcripts, PVS1_Strong or PVS1_Moderate is applied

when the amount of protein removed by the deletion is
> 10 % or < 10 %. Next, a corresponding default point of
0.45 (range: 0.3–0.9) or 0.3 (range: 0.15–0.45) is assigned
to the deletion. If the deletion meets the conditions
listed above, all evidence remains, but only the highest
score is calculated.
Second, if no established HI gene/genomic region

overlaps with the deletion, predicted HI genes are fur-
ther analyzed. If it is shown that the deletion involves at
least one gene with a GnomAD pLI score > = 0.9 (with
the upper bound of the observed/expected confidence
interval < 0.35) and a DECIPHER HI index of < = 10 %
(category 2 H), a suggested point of 0.15 is assigned, and
Sec. 2 is further analyzed for this deletion.
Finally, the established benign genes or genomic re-

gions are analyzed. If the deletion is completely within
established benign genes or genomic regions or the
protein-encoding genes of the deletion are entirely the
same as established benign genomic regions (category
2 F), a final point of -1 is then automatically calculated,
and a final CNV classification of “benign” is arrived at
and assigned for the deletion, then no further assess-
ment is performed. If the deletion overlaps with an
established benign CNV (but includes additional gen-
omic material (category 2G)) or no benign CNVs over-
lap, then further assessment is conducted.

Scoring for Sec. 2 (copy-number gain): haploinsufficiency
(HI), triplosensitivity (TS) or established benign evaluation
In this section, a given duplication is automatically eval-
uated for Sec. 2 of the CNV interpretation scoring
metric by AutoCNV (Supplementary Fig. 3). In this evi-
dence category, AutoCNV automatically evaluates the
overlap of a duplication with established dosage-
sensitive genes or genomic regions or any established
benign genes or genomic regions. For the scoring of
copy number gain, AutoCNV implements ClinGen
(accessed on July 7th, 2020) for the annotation of TS
genes/genomic regions, HI genes or established benign
regions. To enable user flexibility, AutoCNV also pro-
vides a range in this category.
First, AutoCNV automatically assesses the overlap of

the duplication with TS genes/regions according to the
annotation results. If the given duplication completely
spans one or more established TS gene or genomic re-
gion, a suggested point of 1 is assigned to the
duplication.
Second, for duplications partly overlapping with the

region of an established benign gene or genomic region,
if the duplication is the same as a benign copy number
gain (category 2 C), -1 is assigned. If the duplication in-
volves additional genomic material (category 2G) or po-
tentially interrupts protein-encoding genes (category
2E), 0 is assigned. Otherwise (category 2D, 2 F), a point

Fan et al. BMC Genomics          (2021) 22:721 Page 9 of 12



of -1 is then automatically calculated. For category 2 F, a
range score of (-1-0) is provided to users.
Finally, if the duplication is completely within an

established HI gene (category 2I), autoPVS1 is also
employed for assessment. PVS1 interpretation for exonic
duplication is based on tandem status and effect on
reading frame and NMD. If a duplication with reading
frame disrupted and NMD predicted to occur is detected
in tandem, PVS1 is applied, and a point of 0.9 is assigned
to the duplication. If the duplication is assumed in tan-
dem, PVS1_Strong is applied, and a point of 0.45 is
assigned. For duplications partly overlapping the region
of an established HI gene, categories 2 J and 2 K is fur-
ther manually evaluated by the user according to the
phenotype of the case. For duplications overlapping
gene(s) of no established clinical significance (2 L), 0 is
assigned.

Scoring for Sec. 3: gene number evaluation
As shown in Supplementary Fig. 2 and Supplementary
Fig. 3, a given CNV is automatically evaluated and
scored for protein-encoding gene number by AutoCNV.
AutoCNV implements the RefGene database (accessed
on July 7th, 2020) to annotate protein-encoding genes.
After the input of the genomic coordinate of a given
CNV, all the protein-encoding genes located in the gen-
omic coordinate of a given CNV (with > = 1 bp overlap)
will be recorded in the annotation step. In this step for
gene number evaluation, AutoCNV will count the exact
gene number for a given CNV. Then, for copy number
loss, a suggested point of 0.45 is assigned automatically
by AutoCNV to deletions containing between 25 and 34
protein-encoding genes (category 3B), and a suggested
point value of 0.9 is assigned automatically to deletions
containing more than 35 protein-encoding genes (cat-
egory 3 C). For copy number gain, a suggested point
value of 0.45 is assigned automatically to duplications
containing between 35 and 49 protein-encoding genes
(category 3B), and a suggested point value of 0.9 is
assigned automatically to deletions containing more than
50 protein-encoding genes (category 3 C).

Scoring for Sec. 4: genomic content evaluation using cases
from published literature, public databases, and/or internal
lab data
For both deletions and duplications, manual evaluation
of genomic content using cases from published studies
and public databases is implemented in AutoCNV
(Fig. 1). According to the scoring metric (4 A-4 N) in
the standards, users can adjust this criterion according
to individual case evidence in the manual adjustment
step.
It is recommended that if a given CNV overlaps with a

common population variation, category 4O can be

applied [1]. In AutoCNV, common population variation
is defined as when the frequency of the variant is > = 1 %
(test samples > = 1,000) in the DGV standard dataset
[16] or when the allele frequency is > = 1 % (total allele
count > = 2,000) in the GnomAD databases [16]. If a
given CNV is completely within a common variation
with the same dosage (copy number loss or gain), a de-
fault score of -1 is assigned automatically by AutoCNV
(category 4O). If a given CNV overlaps a common vari-
ation with the same dosage but does not contain other
protein-encoding genes, the percentage of the overlap
region is further calculated. If the percentage of the
overlap region in the given CNV is > = 50 %, a default
score of -1 is applied (category 4O). Otherwise, 4O can-
not be used.

Scoring for Sec. 5: inheritance pattern/family history
evaluation for patient being studied
Manual evaluation of inheritance patterns/family history
for the case being studied is implemented in AutoCNV
(Fig. 1). According to the scoring metric in the stan-
dards, users can adjust this criterion according to the
family history of the case (if possible) in the manual ad-
justment step.

Reporting: final scoring and CNV classification
According to the scoring metric of the standards, the
scoring system of AutoCNV evaluates evidence and as-
signs points to a given CNV in ascending order (from
Secs. 1 to Sec. 5). Finally, AutoCNV automatically calcu-
lates the final point value of a given CNV, and the corre-
sponding CNV classification is also generated
simultaneously (Fig. 1). AutoCNV enables users to apply
points for individual evidence categories for a given
CNV.

Comparative analysis
To assess the performance of AutoCNV, 72 CNVs evalu-
ated by external independent reviewers, 20 illustrative
case examples [1] and 64 CNVs from the ClinVar data-
base were used in this study. In the standards, 114 CNVs
were used for validation of the CNV scoring metrics by
outside reviewers and committee members [1]. Seventy-
two CNVs (72/114) were evaluated by 2 independent re-
viewers, and both reviewers’ classifications matched
using the CNV scoring metrics. The 20 illustrative case
examples consist of 5 copy number losses and 15 copy
number gains, including 4 case examples from the stan-
dards2 and 16 additional case examples (accessed on July
1st, 2020) from the CNV Technical Standards Web
Series (https://clinicalgenome.org/tools/cnv-webinar/
examples/). The 64 CNVs from the ClinVar database
were more recent CNV submissions (submitted between
November 2019 to April 2021). All the 64 CNVs were
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germline CNVs (containing more than 2 genes and with
a CNV size of > 50 bp), including 34 copy number losses
and 30 copy number gains. Comparative analysis of
these CNVs (final classification) by complete manual in-
terpretation and interpretation using AutoCNV (both of
the automated interpretation step and manual adjust-
ment step) were conducted simultaneously. All the
methods were performed in accordance with the rele-
vant guidelines and regulations.
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