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Abstract

performance of DE analysis.

Background: Differential expression (DE) analysis of RNA-seq data typically depends on gene annotations. Different
sets of gene annotations are available for the human genome and are continually updated-a process complicated
with the development and application of high-throughput sequencing technologies. However, the impact of the
complexity of gene annotations on DE analysis remains unclear.

Results: Using “mappability”, a metric of the complexity of gene annotation, we compared three distinct human
gene annotations, GENCODE, RefSeq, and NONCODE, and evaluated how mappability affected DE analysis. We found
that mappability was significantly different among the human gene annotations. We also found that increasing
mappability improved the performance of DE analysis, and the impact of mappability mainly evident in the
quantification step and propagated downstream of DE analysis systematically.

Conclusions: We assessed how the complexity of gene annotations affects DE analysis using mappability. Our
findings indicate that the growth and complexity of gene annotations negatively impact the performance of DE
analysis, suggesting that an approach that excludes unnecessary gene models from gene annotations improves the
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Background

Human gene annotations are still growing, with several
being available for the human genome such as GENCODE
[1] and RefSeq [2]. GENCODE is the default gene anno-
tation for the Ensembl project and is focused on collect-
ing nonsense transcripts, such as long non-coding RNAs
(IncRNAs), pseudogenes, and alternative splicing. RefSeq
is the oldest sequence database built by the National Cen-
ter for Biotechnology Information (NCBI) and is widely
used. These annotations are far from complete [3] and are
continually updated. For example, in GENCODE human
gene annotation release 31, released in 2019, a total of
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17858 novel IncRNA transcripts, approximately 60% com-
pared with the previous release, were added [1] (see
Additional File 1: Figure S1). In addition, the growth of
gene annotations has accelerated with the development
and application of high-throughput sequencing technolo-
gies [4, 5]. Gene annotation provides information on gene
models and is essential for differential expression analysis.

DE analysis is a primary application in RNA-seq analysis
that can be applied to a diverse range of research subjects
such as the identification of differences between tissues [6]
and exploring biomarkers [7]. Generally, DE analysis con-
sists of the following three steps: First, RNA-seq reads are
mapped (aligned) to a reference genome or transcriptome.
Second, the abundance of each gene or transcript is esti-
mated from the alignments. Third, differentially expressed
genes (DEGs) or transcripts are identified from abund-
ance estimates for each sample using statistical methods.
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Gene annotation provides information on gene models
required for splice-aware alignment and abundance esti-
mation in DE analysis. With the increasing demand for
RNA-seq, many tools for DE analysis have been developed
(8, 9].

The impact of the complexity of gene annotations on
DE analysis remains unclear. One of the difficulties faced
during this analysis is the uncertainty of mapped reads,
as RNA-seq reads are too short to uniquely map them to
a gene locus or an isoform [10]. Complex gene models
defined in gene annotation contribute to this uncertainty.
Several benchmark studies have focused on analytical
tools [11-21], whereas the impact of gene annotation is
discounted. Although a few studies have focused on gene
annotation [3, 22, 23], it is still unclear how the increasing
complexity resulting from the growth of gene annotation
affects DE analysis tools.

Here, we assessed how the complexity of gene annota-
tion affects DE analysis. First, we compared three human
gene annotations, GENCODE, RefSeq, and NONCODE,
and characterized these complexities using “mappability,’
the fraction of reads derived from a transcript that aligned
to the original transcript (see also “Materials and meth-
ods”). Next, we focused on GENCODE gene annotation
and evaluated the impact of mappability on the perfor-
mance of DE analysis using several metrics (a schematic
illustration of the experimental design is shown in Fig. 1).
Finally, we propose a filtering approach for gene mod-
els that uses mappability and abundance to improve DE
analysis performance.

Materials and methods

Reference sequences and gene annotations

The GRCh38 reference genome (chromosomes only) and
the GENCODE release 31 gene annotations (Comprehen-
sive and Basic) were downloaded from the GENCODE
website. RefSeq release 109 (20190607) gene annota-
tions were downloaded from the NCBI website. RefSeq-
Curated annotation was created by extracting “BestRef-
Seq” and “Curated Genomic” records from the full set of
RefSeq. NONCODE version 5 was downloaded as a gene
annotation of IncRNAs from the NONCODE website.

Calculation of mappability

We utilized “mappability” as a metric to represent the
complexity of gene annotation. Mappability is computed
for each transcript or gene sequence, where a gene
sequence is composed of one or multiple transcript
sequences. Given a gene annotation, to calculate the map-
pability, we generated a set of subsequences (termed
reads) from all transcript sequences (termed transcrip-
tomes) using sliding windows of 50, 100 and 150 bases.
These reads were then mapped to the transcriptome using
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Bowtie2 [24] with the ‘—sensitive’ option. When a read is
mapped to N (N >1) distinct locations, we assign a 1/N
read count for each mapped location. In the case that a
transcript/gene contains a mapped location, a read count
will be added to this transcript/gene. For a transcript/gene
sequence S, suppose that n reads are generated from S
and m reads are mapped (or assigned) to S (0 < m < n,
where m can be a non-integer), then its mappability can
be expressed as m/n. The value of mappability ranges
from O to 1, with higher values indicating lower uncer-
tainty for mapping reads to the corresponding transcript
or gene; if the mappability is equal to 1 for a transcript,
all the reads from the transcript are mapped to the orig-
inal transcript). It should be noted that the above defini-
tion of mappability is slightly different from the original
definition [25]. Mappability scores can evaluate the map-
ping complexity due to both intra- and intergenic shared
sequences.

Dataset

We used a benchmarking RNA-seq dataset established
by the Microarray Quality Control (MAQC) project [26].
The dataset includes two types of samples: universal
human reference from a mixture of tissue types (shown
hereafter as MAQC-A) and human brain reference from
brain tissue (shown hereafter as MAQC-B). In particu-
lar, we chose the stranded RNA-seq dataset generated
by a third-party group [27] because the strand informa-
tion was considered important to distinguish overlapping
transcripts such as pairs of protein-coding and anti-sense
RNAs. From the dataset, we extracted samples prepared
by Ribo-zero, intact, and had sufficient input amount (> 5
ng) and used them for analysis. This dataset was used as
input for the RNA-seq read simulation and the evaluation
of real RNA-seq data. For comparison, MAQC-A samples
were used as control for MAQC-B samples.

Simulation of RNA-seq read datasets

We simulated an RNA-seq read dataset by the following
steps: (1) Align MAQC-A/-B stranded RNA-seq reads to
a reference genome using STAR [28], and estimate tran-
script abundance using RSEM [25] with custom parame-
ters (described in Additional File 3); (2) Estimate param-
eters for each transcript ¢; and fold-change (fold-change
was used as regulating factor 6;) of the negative binomial
(NB) distribution with edgeR [29]; (3) Draw a read count
for each transcript from the NB distribution (this read
count was used as ground-truth); (4) Generate simulated
RNA-seq read data using polyester read simulator [30]
with the count matrix as input. Following a previous study
[19], the count matrix of each group of samples is defined
by the following formulas:
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Fig. 1 Overview of the evaluation. In this study, we evaluated the impact of the complexity of gene annotation using experimental and simulated
datasets. Overview of evaluation After a literature survey, we selected five major DE analysis pipelines: TopHat2-Cufflinks, STAR-RSEM-EBSeq,
HISAT-StringTie-Ballgown, Kallisto-Sleuth, and Salmon-DESeq?2 (see also “Materials and methods”). We used a benchmarking RNA-seq dataset
established by the MicroArray Quality Control (MAQC) project as both the experimental dataset and simulation input

Yool ~ NB(ui, i1+ dissa),
Y45 ~ NB(Biguis Oipai(1 + $ibins)),

where Yj; is the read count of transcript isoform i in bio-
logical replicate j, i = 1,...,¢ are transcript isoforms,
j = 1,...,n is biological replicates, NB(mean, variance)
is a negative binomial distribution, p; denotes the mean
value of isoform i, u;(1 + ¢;u;) denotes the variance of
isoform i, ¢; is the dispersion parameter, and 6; stands for
the regulating factor of transcript isoform i between con-
trol and case samples. Note that 0; was set to 1 for non-DE
transcript.

As a result, simulated read data for a library size of 40
million reads, read length of 100 bases, and the layout of
paired, replicate number n = 3 were obtained. The simu-
lated read data were compared to the source experimental
read data using countsimQC [31] (see Additional File 2).

RNA-seq analysis pipelines

To choose tools for this evaluation, we surveyed the litera-
ture on current RNA-seq pipelines. Although DE analysis
consists of several analysis steps, in this study, we focused
on three major steps: read alignment, quantification, and
DE testing. While choosing tools, we considered the fol-
lowing three important aspects: (1) availability to quantify
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at the transcript level; (2) algorithm comprehensiveness
(alignment-based or alignment-free, and count-based or
fragments per kilobase of transcript per million reads
mapped (FPKM)-based); and (3) number of citations. As a
result, we listed 12 tools from five pipelines (see Table 1).
The parameters for each tool are described in Additional
File 3. We defined genes or transcripts with |log2 fold-
change| >=1 and FDR < 0.05, as DE.

Evaluation of mappability impact on simulated RNA-seq
datasets

In quantification and DE evaluations, transcripts with
under 0.25 CPM (approximately the same as 10 raw
counts) in any of the samples of ground-truth were
removed to avoid inflation of the metrics. All calculation
results are saved in Additional File 4.

Alignment step

We evaluated the results of the alignment step with the
following metrics: Recall = TP/(TP + EN), Precision =
TP/(TP + FP), F1 = 2 - (recall - precision)/(recall +
precision), where True Positive (TP) is the number of
reads mapped to the original transcript, False Positive (FP)
the number of reads NOT mapped to the original tran-
script, and False Negative (FN) the number of unmapped
reads.

Quantification step

The results of the quantification step were converted
to a count matrix via tximport [32] (excluding Cuffd-
iff2). For Cuffdiff2, a count matrix was obtained from
‘isoforms.read_group_tracking’ file. Counts per million

Table 1 Tools evaluated in this study
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(CPM) were calculated for each transcript to express the
corresponding abundance. For convenience, the CPM val-
ues are shown on the log2 scale hereafter. We evaluated
the results of the quantification step with Spearman’s rho
of log2 CPM and normalized root mean squared error
(NRMSE) of log2 CPM between the estimated value and
the ground-truth value.

DE step

We evaluated the results of the DE step with Spearman’s
rho of log2 fold-change value, NRMSE of log2 fold-change
value, and the Area Under the Receiver Operating Charac-
teristic (ROC) Curve (AUC) between the estimated value
and the ground-truth value. We defined transcripts with a
0 greater than or equal to 2 in absolute values as true DEs.
True positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) are defined based on a com-
parison between the estimated differentially expressed call
and true DEs.

Evaluation of mappability impact on experimental
RNA-seq datasets

We downloaded the TagMan Quantitative Reverse Tran-
scription Polymerase Chain Reaction (QRT-PCR) mea-
surements provided by the MAQC project from the
Gene Expression Omnibus (GEO) under accession num-
ber GSE5350, and used as a “gold-standard” We converted
the RefSeq gene ID to GENCODE gene ID using the con-
version metadata provided by GENCODE. Following a
previous study [25], non-expressed genes were filtered. As
aresult of conversion and filtering, 839 genes expressed in
both MAQC-A and MAQC-B were obtained.

Tool Abbrv.*! Version Category*?2 #Citations*3 References Year
TopHat2 Th 211 alignment 11740 [33, 34] 2009 (ver.1), 2013 (ver.2)
STAR Sr 26.1d alignment 5443 [28] 2013
HISAT Hs 2.1.0 alignment 1799 [35, 36] 2015 (ver.1),2019 (ver.2)
Cufflinks Cu 221 assembly, quantification, DE 8102 [37,38] 2010 (ver.1), 2013 (ver.2)
RSEM Rs 1.3.1 quantification 4335 [25] 2011
StringTie St 206 assembly, quantification 721 [39] 2015
Kallisto Ka 0.46.1 quantification 312 [40] 2016
Salmon Sa 150 quantification 517 [41 2017
DESeq2 De 1.26.0 DE 6865 [42,43] 2010 (ver.1),2014 (ver.2)
EBSeq Eb 1.26.0 DE 468 [44] 2013
Ballgown Ba 2.180 DE 102 [45] 2015
Sleuth SI 0.30.0 DE 170 [46] 2017

*1 Abbreviations specified above are used in this study.

*2 The category of tools indicates the following: alignment, tools to map RNA-seq reads to reference, quantification, tools to estimate abundances, DE, and tools to identify

DEs using the statistical method.
*3 Number of citations reported by the Web of Science in October 2019
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We evaluated the experimental RNA-seq dataset with
Spearman’s rho of log2 fold-change, and NRMSE of log2
fold-change between the RNA-seq estimated value and
the TagMan qRT-PCR measurements at the gene-level.
The Kallisto-Sleuth pipeline was excluded from this evalu-
ation because it cannot output the gene-level fold-change
value. Furthermore, genes with a mappability of 1 were
excluded to avoid being occupied by a single value. Finally,
we evaluated 502 genes.

To confirm the tendency of false positives in these
pipelines, we also counted the number of DEs detected by
regular comparison (MAQC-A vs. MAQC-B) and mock
comparison (MAQC-A vs. MAQC-A) for all transcripts
defined in the annotation at the transcript-level.

Results

Gene model complexity was significantly different among
human gene annotations

First, to clarify the differences among human gene anno-
tations, we summarized basic statistics (see Table 2). For
this analysis, we used three gene annotations: GENCODE,
RefSeq, and NONCODE. To confirm the difference in
transcript selection within an annotation, GENCODE and
RefSeq were compared with their subsets, GENCODE-
Basic and RefSeq-Curated, respectively (see “Materials
and methods” for details of these annotations). NON-
CODE is a gene annotation that consists of only IncRNAs.
NONCODE was added to this analysis to confirm the dif-
ferences in RNA type. Most of the transcripts defined in
RefSeq were aggregated in the same gene locus, and it
was difficult to identify the original transcripts of RNA-
seq reads. Compared with GENCODE, RefSeq showed a
decreased average percentage of unique exons per gene
(70.4% for RefSeq vs. 85.5% for GENCODE), a lower
genomic coverage of exon regions (4.11% vs. 4.72%), and
a higher average number of transcripts per gene (4.09
vs. 3.74). In GENCODE-Basic, the uncertainty of map-
ping reads to the annotated transcriptome was lower
than that of GENCODE. Compared with GENCODE,
GENCODE-Basic showed an increased average percent-
age of unique exons per gene (89.0% for GENCODE-Basic

Table 2 Basic statistics of major human gene annotations
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vs. 85.5% for GENCODE) and a decreased average num-
ber of transcripts per gene (1.79 vs. 3.74). Note that,
in GENCODE-Basic, the comprehensiveness of isoforms
was also reduced. In RefSeq-Curated, the uncertainty for
mapping reads was reduced compared to RefSeq. It should
be noted that the comprehensiveness of genes, isoforms,
and RNA types was reduced. Compared with RefSeq,
RefSeq-Curated showed an increased average percentage
of unique exons per gene (75.1% for RefSeq-Curated vs.
70.4% for RefSeq) and significant decreases in the num-
ber of genes (28784 vs. 39280) and transcripts (73442 vs.
160796). This result was caused by the exclusion of most
non-coding RNAs (ncRNAs) by the manual curation pro-
cess of RefSeq. NONCODE consists of gene loci that have
a simpler gene model than other gene annotations. Com-
pared to GENCODE and RefSeq, NONCODE showed
the highest average percentage of unique exons per gene
(95.7% for NONCODE vs. 85.5% for GENCODE vs. 70.4%
for RefSeq) and the lowest average number of transcripts
per gene (1.79 vs. 3.74 vs. 4.09% ), although it showed
a similar level of genomic coverage of exon regions
to GENCODE (4.71% for NONCODE vs. 4.72% for
GENCODE).

Next, to quantify the complexity of gene models in
more detail, we calculated the transcript mappability,
the fraction of reads aligned to its original transcript.
NONCODE showed the highest average mappability, fol-
lowed by GENCODE-Basic, GENCODE, RefSeq-Curated,
and RefSeq. Unlike other annotations in RefSeq, distri-
bution peaks were observed in the range of low map-
pability (0.069-0.10) (see Fig. 2C). These transcripts
with low mappability were mainly generated by auto-
mated annotation because they have been excluded from
RefSeq-Curated (see Fig. 2D). Compared with GEN-
CODE, GENCODE-Basic showed higher average mappa-
bility (0.58 for GENCODE-Basic vs. 0.44 for GENCODE;
see Fig. 2A and B). This change was caused by the drastic
exclusion of ncRNAs, including non-stop decay, retained
intron, nonsense-mediated decay, and IncRNA. In NON-
CODE, most transcripts showed high mappability (see
Fig. 2E). This result indicates that most transcripts defined

GENCODE GENCODE-Basic RefSeq RefSeq-Curated NONCODE
Release 31 31 109.20190607 109.20190607 5
# of genes 60603 60603 39280 28784 96308
# of transcripts 226882 108243 160796 73442 172216
Genomic coverage of exon regions*! 4.72% 3.88% 411% 2.81% 4.71%
Avg. # of transcripts per gene 3.74 1.79 4.09 2.55 1.79
Avg. percentage of unique exons per gene*? 85.5% 89.0% 70.4% 75.1% 95.7%

*! Non-coding gene loci included.
*2 Average percentage of exons with distinct junctions for each gene.
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Fig. 2 Complexity of gene models was significantly different among human gene annotations. We calculated mappability, the fraction of reads
derived from a transcript that aligned to the original transcript, using 100 bases length reads for each transcript annotated in major human gene
annotations (see also “Materials and methods”). The value of mappability ranges from 0 to 1, with higher values indicating lower uncertainty for
mapping reads. (A)-(E) show the distribution of transcript mappability for GENCODE, GENCODE-Basic (a subset of GENCODE), RefSeq,
RefSeg-Curated (a subset of RefSeq), and NONCODE, respectively. Colored bars indicate the frequency of mRNAs (blue), INcRNAs (yellow), and other
biotypes (red). Dotted vertical lines indicate the average mappability for each gene annotation

Others

in NONCODE are uniquely mappable to the NONCODE
transcriptome. In each annotation, protein-coding genes
showed lower mappability than IncRNAs, and their gene
models tended to be complex. As expected, In GENCODE
and NONCODE, the mean mappability improved with
increasing read length (between 50 and 150 bases, approx-

imately 0.043) (see Additional File 1: Figure S2, Fig. 2
and Additional File 1: Figure S3). However, in RefSeq,
the mappability improvement with increasing read length
was smaller (0.011) than GENCODE and NONCODE
because most RefSeq transcripts consisted of shared
exons.
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These results show that complexity is significantly dif-
ferent among human gene annotations owing to differ-
ences in data sources and collected RNA types. Accord-
ingly, the choice of gene annotation results in differences
in DE analysis outcomes.

Increasing mappability improves the performance of DE
analysis

To clarify the impact of mappability on DE analysis,
we divided the transcripts defined in GENCODE gene
annotation into three equal-sized groups according
to transcript mappability and evaluated these groups.
Because the abundance of transcripts affected the quan-
tification accuracy [47], we compared metrics within a
group of transcripts with similar expression levels. To
avoid bias resulting from specific tools and algorithms,
we chose five RNA-seq pipelines, including STAR-RSEM-
EBSeq, HISAT-StringTie-Ballgown,  Kallisto-Sleuth,
Tophat2-Cufflinks, and Salmon-DESeq2 (see “Materials
and methods” and Table 1).

First, we evaluated the impact of mappability on DE
analysis with the simulated dataset. AUC scores improved
monotonically with increasing transcript mappability,
excluding HISAT-StringTie-Ballgown (see Fig. 3A). The
improvement was particularly significant (with a range
of 0.15-0.22) in the low transcript abundance group.
For the HISAT-StringTie-Ballgown pipeline, mappability
did not significantly affect the AUC score in the low
true transcript abundance group. However, in the high
true transcript abundance group, a significant improve-
ment was observed (0.21). The default filtering crite-
ria of Ballgown excluded values with small variances.
This filtering resulted in only a small set including 754—
1541 transcripts that were evaluated as the group with
low transcript abundance. Thus, the AUC score for this
group was not reliable. Increasing mappability and true
transcript abundance improved the performance of DE
analysis.

Next, to identify how mappability affects the DE anal-
ysis pipeline, we evaluated each step of the DE analy-
sis, including alignment and quantification, in the simu-
lated dataset. In the alignment step evaluation, F1 scores
improved slightly with increasing transcript mappability
(see Fig.3B). Each tool showed high performance (> 0.97)
and equivalent sensitivity to mappability. In the quantifi-
cation step evaluation, the Spearman’s rho of log2 CPM
improved monotonically with increasing transcript map-
pability (see Fig. 3C). The improvement was particularly
significant (ranging from 0.29-0.35) in the low tran-
script abundance group. Algorithms that correct uncer-
tainty in mapping reads, such as the expectation maxi-
mization (EM) algorithm [48], did not work as expected
in transcripts with low expression levels. Furthermore,
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misassigned reads to low-abundance transcripts from
high-abundance transcripts sharing partial sequences may
cause large errors in the estimates of low-abundance
transcripts. This tendency of the quantification step is
consistent with that of the DE step.

One idea to improve performance is excluding non-
expressed transcripts from gene annotations to reduce
complexity. To explain this idea, we created a tailored
GENCODE gene annotation and evaluated the perfor-
mance of DE analysis with that annotation (Additional
File 1: Figure S4 and Additional File 4). As expected, the
performance of the DE analysis improved. AUC scores
slightly increased by an average of 0.013 in all pipelines
tested.

Finally, we validated these results with the experimental
dataset because the simulation may lack some RNA-seq
dataset characteristics. The following restrictions were
noted when using the experimental dataset: (1) qRT—
PCR data as ground-truth were limited in size (only 1044
probes) and were measured at the gene level; (2) it is
biased toward those with high mappability; (3) true DE
cannot be defined. Based on mappability, we divided
genes and transcripts defined in the GENCODE gene
annotation into three equal-sized groups. We used two
metrics, including Spearman’s rho of fold-change against
qPCR measurements and the number of DEs. Spearman’s
rho of fold-change tended to be lower in the low gene
mappability group than in the middle and high mappa-
bility groups (see Fig. 4A). Note that few observations
(20-40) passed the DE step filtering in the low qPCR
abundance and high gene mappability group, which had
more missing values than other groups. We compared the
number of DEs between regular comparisons (MAQC-
A vs. MAQC-B) and mock comparisons (MAQC-A vs.
MAQC-A) (see Fig. 4B and C). Regular comparisons
showed a consistent number of DEs for all tools (a range
of 4175-22535) independent of mappability. However,
mock comparisons showed that only zero or one DE
was detected, except for the STAR-RSEM-EBSeq pipeline.
For the STAR-RSEM-EBSeq, particularly in the low map-
pability group, many DEs were detected (796-1118). In
particular, EBSeq seemed more sensitive to mappability
than other tools because it considers the uncertainty of
mapping reads [44]. We conclude that increasing mappa-
bility tends to improve DE analysis performance with the
experimental dataset, which is consistent with that of the
simulated dataset.

These results show that increasing mappability
improves the performance of DE analysis. Furthermore,
the impact of mappability occurs mainly in the quantifi-
cation step and systematically propagates downstream of
the DE analysis.
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Fig. 3 Impact of transcript mappability on the performance of DE analysis with a simulated dataset. We divided transcripts into three equal-sized
groups of low, middle, and high values of transcript mappability and true transcript abundance. Intervals of transcript mappability were as follows:
low, [0.0107, 0.257); middle, [0.257, 0.472); and high,[0.472, 1]. Intervals of mean true transcript abundance (CPM) for DE step evaluation were as
follows: low, [0.539, 2.65); middle, [2.65, 9.68); and high, [9.68, 5.54 x 1 0%]. Intervals of true transcript abundance (CPM) for quantification step
evaluation were as follows: low, [0.250, 1.10); middle, [1.1,5.01); and high, [5.01, 6.91 x 10]. (A) Relationship between the AUC score and transcript
mappability faceted by mean true transcript abundance. (B) Relationship between F1 score and transcript mappability during the alignment step.
(Q) Relationship between Spearman’s rho of CPM value and transcript mappability faceted by true transcript abundance. Metrics were calculated for
all RNA types. Hs, HISAT; St, StringTie; Ba, Ballgown, Ka; Kallisto, SI; Sleuth, Sa; Salmon, De; DESeq?, Sr; STAR, Rs; RSEM, EB; EBSeq, Th; TopHat2, Cu;
Cufflinks (also see Table 1)

Discussion

We assessed here how the complexity of gene annota-
tion affects DE analysis using mappability. We show that
complexity was significantly different among human gene

annotations. We also show that increasing mappability
improved the performance of the DE analysis.

Our results show that the increasing complexity of gene
annotation adversely affected DE analysis. Wu et al. [23]
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evaluated the impact of human gene annotation choice
on RNA-seq expression estimates. They defined the com-
plexities of gene annotations in terms of the relative rank
of the number of genes, isoforms, and exons and demon-

strated that more complex annotation results in a smaller
correlation between RNA-seq fold-change and qRT-PCR
fold-change. Our results are consistent with these find-
ings. For studies that emphasize accuracy and clarity, less
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complex gene annotations such as GENCODE-Basic or
RefSeq-Curated may be preferred. Note that our results
are based on an evaluation that ignores unannotated tran-
scripts. Zheng et al. [49] reported that using partial (RNA
type-specific) gene annotation such as NONCODE results
in overestimated expression compared to a more com-
prehensive annotation. Varabyou et al. [50] suggest that
an assembly-based method such as StringTie is more
robust against transcriptional noise than annotation-
based methods such as Salmon and Kallisto. Assignment
of noise-derived RNA-seq reads to noise-derived gene
models reduces overestimation. Note that gene models
constructed from small datasets are unreliable and diffi-
cult to interpret. In summary, both the comprehensive-
ness and complexity of gene annotation are important for
experimental DE analysis.

We propose excluding unnecessary gene models from
gene annotation to improve the performance of DE anal-
ysis. Chen et al. [3] suggest that the integration of mul-
tiple gene annotations improves the comprehensiveness
and sensitivity of DE analysis. Our results suggest that
careless gene annotation integration is not recommended
because of increasing complexity. However, the combina-
tion of integration and filtering of gene models consid-
ering redundancy may improve the performance of DE
analysis. Our results, using a tailored gene annotation,
support this idea. It is not easy to know non-expressed
transcripts using experimental datasets. One approach to
this problem is to filter out low abundance and low map-
pability transcripts to obtain clear results. Our results
show that the estimation of transcripts with low abun-
dance and mappability was unreliable. Filtering based on
abundance has been used to reduce the number of tests
in the DE step, introducing a mappability representing
uncertainty for mapping reads and leading to a better
exclusion of noisy estimates. Another idea is to consider
the sequencing conditions. A typical RNA-seq library
does not contain non-poly-A or small RNAs. Because
gene models corresponding to these RNAs that cannot
be captured become analytical noise, excluding them may
improve performance. However, it is difficult to obtain
information on the presence of poly-A in each transcript.

In future work, we will evaluate non-annotation-based
methods such as [51, 52]. We will also examine the
extent to which annotations fit the experimental RNA-
seq datasets. Developing a method for integrating and
tailoring gene annotations would also be useful.

Conclusions

In this study, we assessed how the complexity of gene
annotation affects DE analysis using mappability. We
observed that the complexity was significantly differ-
ent among the three human gene annotations, including
GENCODE, RefSeq, and NONCODE, and show that the
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choice of gene annotation is important in DE analysis. We
also observed that increasing mappability improved the
performance of DE analysis. Our findings indicate that
the growth and complexity of gene annotation negatively
affects the performance of DE analysis. We propose an
approach that excludes unnecessary gene models from
gene annotation using mappability and abundance to
improve the performance of DE analysis.
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