Yang et al. BMC Genomics (2021) 22:755

https://doi.org/10.1186/512864-021-08041-y B M C G enom iCS

RESEARCH Open Access

The mitochondrial genomes of Tortricidae: ®
nucleotide composition, gene variation and
phylogenetic performance

Mingsheng Yang"", Junhao Li", Silin Su', Hongfei Zhang', Zhengbing Wang', Weili Ding"* and Lili Li""

Check for
updates

Abstract

Background: Mitochondrial genomes (mitogenomes) have greatly improved our understanding of the backbone
phylogeny of Lepidoptera, but few studies on comparative mitogenomics below the family level have been
conducted. Here, we generated 13 mitogenomes of eight tortricid species, reannotated 27 previously reported
mitogenomes, and systematically performed a comparative analysis of nucleotide composition, gene variation and
phylogenetic performance.

Results: The lengths of completely sequenced mitogenomes ranged from 15,440 bp to 15,778 bp, and the gene
content and organization were conserved in Tortricidae and typical for Lepidoptera. Analyses of AT-skew and GC-
skew, the effective number of codons and the codon bias index all show a base bias in Tortricidae, with little
heterogeneity among the major tortricid groups. Variations in the divergence rates among 13 protein-coding genes
of the same tortricid subgroup and of the same PCG among tortricid subgroups were detected. The secondary
structures of 22 transfer RNA genes and two ribosomal RNA genes were predicted and comparatively illustrated,
showing evolutionary heterogeneity among different RNAs or different regions of the same RNA. The phylogenetic
uncertainty of Enarmoniini in Tortricidae was confirmed. The synonymy of Bactrini and Olethreutini was confirmed
for the first time, with the representative Bactrini consistently nesting in the Olethreutini clade. Nadé exhibits the
highest phylogenetic informativeness from the root to the tip of the resulting tree, and the combination of the
third coding positions of 13 protein-coding genes shows extremely high phylogenetic informativeness.

Conclusions: This study presents 13 mitogenomes of eight tortricid species and represents the first detailed
comparative mitogenomics study of Tortricidae. The results further our understanding of the evolutionary
architectures of tortricid mitogenomes and provide a basis for future studies of population genetics and
phylogenetic investigations in this group.
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Background 2]. In addition, several noncoding elements, including
The mitochondrial genome (mitogenome) of insects is a  the control region regulating the replication and tran-
circular double-stranded molecule and generally consists  scription of the mitogenome, are present [3]. In recent
of 13 protein-coding genes (PCGs), two ribosomal RNA  years, the number of insect mitogenomes sequenced has
genes (rRNAs) and 22 transfer RNA genes (tRNAs) [1, dramatically increased, greatly improving our under-
standing of phylogenetics, species delimitation and iden-
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In insects, Lepidoptera is the second largest order after
Coleoptera, with more than 157,000 described extant
species in 43 superfamilies [9-11]. To date, the mitogen-
omes of approximately 550 lepidopteran species or sub-
species have been sequenced and submitted to GenBank
(https://www.ncbi.nlm.nih.gov/; last visited in September
2021). Utilizing thisdata, recent efforts of comparative
mitogenomics have greatly advanced our understanding
of evolution particularly the backbone phylogeny of
Lepidoptera [4, 12-16]. However, studies on compara-
tive mitogenomics below the family level are limited in
Lepidoptera [2, 17].

The family Tortricidae, the sole member of the super-
family Tortricoidea, consists of approximately 11,365 de-
scribed extant species, representing one of the most
species-rich families in Lepidoptera [9, 18]. Despite the
wide acceptance of the three-subfamily classification [19,
20], phylogenetic instabilities exist among prior investi-
gations at the tribe level or below. In contrast to morph-
ology [19-21], for instance, a multilocus study [22]
suggests that Bactrini and Endothenini should be synon-
ymized with Olethreutini of Olethreutinae. Using more
taxon samplings than Regier et al. [22], Fagua et al. [23]
found that the nonmonophyly of Olethreutini still exists.
In addition, Tortricidae is notable for containing numer-
ous important pest species that cause large losses in crop
and forest production [24, 25], and many pest species
(e.g., Grapholita spp.) are difficult to distinguish due to
their morphological similarity [26]. Thus, in studies ad-
dressing species delimitation and the population genetics
of these species, molecular markers have been tradition-
ally employed [26—30]. Among these markers, however,
only mitochondrial coxl and cox2 are predominately
used [26-30], indicating the necessity of screening po-
tential marker candidates through sequencing more tor-
tricid mitogenomes, especially in the context of
increasing challenges with the standard cox1 barcoding
marker [31-33].

In Tortricidae, the mitogenomes of only 23 species
from five tribes (Archipini, Eucosmini, Grapholitini, Ole-
threutini and Tortricini) have been sequenced (Gen-
Bank, August 2020). Moreover, most studies on tortricid
mitogenomes focus on the description of a single mito-
genome [34, 35]. Fagua et al. [17] sequenced and anno-
tated six Choristoneura species of Archipini and
emphasized the mitogenomic divergences of Choristo-
neura spp. associated with habit cooling cycles of the
Northern Hemisphere in the Pliocene. Furthermore, the
mitogenomic phylogeny based on 19 species from four
tortricid tribes shows Eucosmini as paraphyletic.

In this study, we performed a thorough comparative
mitogenomic analysis using 13 newly generated mitogen-
omes of eight tortricid species together with 28 previously
reported mitogenomes, of which 27 were reannotated
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herein where necessary to 1) evaluate the nucleotide com-
position across major groups of Tortricidae; 2) compare
the mitochondrial genetic variation at various taxonomic
levels; and 3) assess the phylogenetic performances of vari-
ous data partitions by constructing the preliminary phyl-
ogeny of Tortricidae. The evolutionary architectures of
tortricid mitogenomes analysed herein will effectively fa-
cilitate further studies on the phylogeny and population
genetics of Tortricidae and related groups.

Results and discussion

Generation of mitogenome data

Nine complete and four nearly complete mitogenomes
were generated and annotated for eight species of Tor-
tricidae. In the nearly complete genomes, we failed to as-
semble the control regions characterized by highly
biased base composition, which was probably due to the
disruption of sequencing reactions. All newly generated
mitogenomes have been submitted to GenBank with the
accession numbers shown in Additional file 1: Table S1.

The 13 mitogenomes each contained 37 typical mito-
chondrial genes in insects and showed identical gene
organization to other reported tortricid mitogenomes
which is also typical of Lepidoptera [36]. The lengths of
the completely sequenced mitogenomes ranged from
15,440 bp (L. koenigiana) to 15,778 bp (Olethreutes sp.),
compared to other reported tortricid mitogenomes,
which have ranged from 15224bp (Lobesia sp.) to
15,933 bp (A. fimbriana). The annotation information of
mitogenomes sequenced herein is summarized in Add-
itional file 2: Table S2.

When alignments were conducted among tortricid
mitogenomes, some gene boundaries were ambiguous,
as previously reported for other mitogenomes. To elim-
inate their potential impact on subsequent analyses, we
carefully checked and revised the annotations of these
genes in GenBank mainly according to the methods of
Cameron [2]. The reannotation information of 27 previ-
ously reported tortricid mitogenomes is summarized in
Additional file 3: Table S3.

Nucleotide composition

The overall nucleotide composition was A (40.5%), G
(7.8%), C (11.5%) and T (40.2%), with a highly biased
A + T content (80.7%), which is commonly present in in-
sect mitogenomes [3]. Among the six tribes of Tortrici-
dae (Fig. la), the A+ T contents ranged from 80.2%
(Olethreutini) to 80.8% (Archipini and Grapholitini),
showing little heterogeneity in nucleotide composition
among the tortricid groups analysed in the present
study. This is in contrast to some insects from the family
to order taxonomic levels [5, 37-40]. Among the three
codon positions within the 13 PCGs, the lowest A+ T
content was found for the first codon position, followed
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by the second and third codon positions, in accordance
with most groups of insects, such as Zygaenoidea of
Lepidoptera [14, 15] and Cimicomorpha of Hemiptera
[38]. Overall, the rRNAs showed a higher A + T content
than the PCGs and tRNAs. The AT-skew and GC-skew
are commonly used for evaluating the nucleotide com-
position of insect mitogenomes [41, 42]. In Tortricidae,
negligible AT-skews and negative GC-skews were recog-
nized (Fig. 1b, Additional file 4: Table S4), and six tortri-
cid tribes consistently showed that the second codon
positions of 13 PCGs and rRNAs had the lowest values
of AT-skew and GC-skew, respectively, a feature com-
monly present in Lepidoptera [43].

Synonymous codons are generally used with different
frequencies [44]. For each amino acid, at least one syn-
onymous codon showed a relative synonymous codon
usage (RSCU) value greater than one in tortricid mito-
genomes (Additional file 5: Table S5). The RSCU value
of UUA encoding Leu, for instance, was higher than the
sum of five other synonymous codons, whereas CUC
was not used in Enarmoniini. The effective number of
codons (ENC) and the codon bias index (CBI) were
30.52-35.22 and 0.65-0.75, respectively, and both exhib-
ited codon usage bias among tortricid mitogenomes to
some extent (Fig. 1c, d). Moreover, the positive correl-
ation between the ENC and GC3s and the negative
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correlation between the CBI and GC3s (Fig. 1le, f) indi-
cate that the genomic G + C content is a significant fac-
tor in determining codon bias among organisms [44—
46]. In addition, UUA (Leu), AUU (Ile), UUU (Phe),
AUA (Met) and AAU (Asn) represented the five most
frequently used codons for all tribes, of which a high
A + T content obviously contributed to the overall A + T
bias of the whole mitogenome.

Mitochondrial gene variation of Tortricidae

To evaluate the variation patterns of 13 PCGs, genetic
distance and nucleotide diversity were calculated. Within
species, among species within genera and among genera
within tribes, the averaged genetic distances for all PCGs
were obviously separated and increased as the taxonomic
ranks increased (Fig. 2a). However, the distance gaps
were narrower between ranks above the genus level, and
nadl, nad2 and atp8 even showed lower values between
subfamilies than between tribes within subfamilies. For
instance, the intraspecific distances of 13 PCGs in G.
delineana ranged from 0 to 0.002. The distances among
the three Archips species analysed were also variable
across 13 PCGs, with the highest value being 0.1 for
nad6. In contrast, the highest distance of 0.108was for
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cox3 between the two Adoxophyes species. Our results
reflect the variation in rates of divergence among both
PCGs and tortricid subgroups, as indicated by Fagua
et al. [17] and in other insect groups such as the Miridae
of Hemiptera [33].

Regarding the nucleotide diversity of 13 PCGs, sliding
window analysis revealed a variable nucleotide diversity
both within and among PCGs (Fig. 2b). The average
values of nucleotide diversity for individual genes varied
from 0.087 (nad5) to 0.165 (nad6). Similar to nads,
cox2, nad4, coxl, nad4l and nadl showed relatively low
nucleotide diversity, whereas the remaining PCGs, as
well as nad6, exhibited relatively high nucleotide diver-
sity. Nucleotide diversity is commonly used for identify-
ing regions with high nucleotide divergence and could
provide guidelines for selecting species-specific markers,
especially in taxa with high morphological similarity [47,
48]. The genes with higher levels of divergence identified
herein would provide potential marker candidates for
population genetics and species delimitation in
Tortricidae.

To characterize the variation distribution of the 24
RNAs, their secondary structures were predicted and
comparatively illustrated using three Archips species as

within species
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an example. Comparative tRNA analyses (Add-
itional file 6: Fig. S1) showed that the tRNA structures,
including the loss of the DHU arm in trnS1 (AGN), were
highly conserved across the three congeneric mitogen-
omes, a feature commonly present in lepidopteran in-
sects as well as other metazoans [49, 50]. The nucleotide
substitution rates of the 22 tRNAs were different, with
trnW showing no variation and trnD and trnM having
higher nucleotide substitutions. In addition, for each
tRNA, more variable sites were generally present in the
TyC arm, TYC loop and DHU loop, a variation distribu-
tion similar to the Macroheterocera of Lepidoptera [14,
15]. The secondary structures of the two rRNAswere
generally identical to those proposed for some lepidop-
terans, especially tortricid species [36, 43, 51, 52]. In rruS
(Fig. 3), three domains (I-III) were recognized in three
Archips species (Fig. 4), and the variable sites showed a
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scatter distribution across three domains. H1047 and
H1074 in rrnS are highly variable among insect orders
[43, 53]. In our analyses, H1074 was highly conserved
among the three Archips species, indicating that its vari-
ation level may increase with higher taxonomic ranks.
Regarding the secondary structure of rruL (Fig. 4), five
domains (I-II, IV-VI) were detected, with domain III
absent, as in other insects [43, 54]. In rrul, a typical fea-
ture is the existence of a microsatellite sequence of (TA)
n in the stem region of H2347, and the difference in the
repeat number among three Archips species makes it a
highly variable region. This feature has also been found
in some Grapholita species of Tortricidae [55].

Phylogenetic informativeness
By adding 13 newly sequenced mitogenomes to 28 exist-
ing mitogenomes from GenBank, we performed various
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phylogenetic analyses to test their phylogenetic implica-
tions and to evaluate the phylogenetic performance of
different data partitions.

Using four datasets, maximum likelihood (ML) and
Bayesian inference (BI) analyses consistently recovered
the six tribes and two subfamilies as monophyletic, ex-
cept for Eucosmini in the ML analysis of the P12 dataset
(Fig. 5, Additional file 7-12: Figs. S2—-S7). In the subfam-
ily Olethreutinae, four tribes were included in this study,
and Enarmoniini was sampled for the first time. (Enar-
moniini + (Olethreutini + (Eucosmini + Grapholitini)))
was recovered, of which the sister group between Eucos-
mini and Grapholitini was also supported by Regier
et al. [22] and Fagua et al. [23] based on multilocus data.
The present study consistently showed Grapholita as
nonmonophyletic, confirming our recent study [22] and
previous multilocus studies [22, 23]. Our results consist-
ently placed B. venosana, historically belonging to Bac-
trini, into Olethreutini, reinforcing the synonymy of the
two tribes [22], based on mitogenome evidence for the
first time. Six G. delineana individuals from different lo-
cations were sampled to compare mitochondrial gene
variation at the species level, and the phylogenetic re-
sults confirmed their position in Grapholitini. Regarding
Tortricinae, two tribes were sampled in the present

study. In our recent study [55], the position of Epiphyas
in Archipini was not unstable, being sister to either
Choristoneura or to Adoxophyes. The inclusion of three
Archips spp. revealed the Epiphyas was consistently sis-
ter to the (Choristoneura + Archips) across all datasets,
although this relationship remains to be clarified with
increased sampling for Archipini. In brief, although the
Enarmoniini and Olethreutini were represented for the
first time, the present mitogenomic phylogeny only in-
cluded six of the 19 tribes in Tortricidae [18]. Thus, the
relationships among the six tortricid tribes recovered
herein definitely need further confirmation with in-
creased sampling.

Despite the high efficiency of using mitogenomes in
insect phylogenetic inference, systematic evaluation of
the relative contribution of each mitochondrial gene or
data partition to the resulting trees has seldom been
conducted, especially below the family level. In this
study, phylogenetic informativeness (PI) was calculated
to assess the contribution of each data partition to the
phylogenetic tree from the P123RT dataset (Fig. 6). The
PI curves for each data partition were similar in shape,
with a steady increase from the root to a peak in the tree
showing genus-level relationships and a rapid decrease
closer to the tips. Among the 13 PCGs, nad6 exhibited
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A. fimbriana

the highest PI from the root to the tip of the resulting
tree, whereas nad4, nad5, and cox3 showed lower PI.
The high PI of nadé6 was also revealed by Nie et al. [56],
who performed a phylogenetic analysis of Galerucinae in
Coleoptera. Mitochondrial rruL has been demonstrated
to be highly informative in inferring tribe- and subtribe-
level relationships in Satyrinae by Yang and Zhang [57,
58]. A similar result was revealed in the present study,
and 16S rDNA had a relatively high PI along with nad6.
Overall, the 22 tRNAs showed the lowest PI. Further-
more, the three coding positions of 13 PCGs were com-
pared, and the combination of the third coding positions
of 13 PCGs showed extremely high PI, as expected. This
result was also demonstrated by our phylogenetic ana-
lyses which showed higher support values on most
nodes of the P123 dataset than on the P12 dataset.

Methods

Samples, DNA extraction and mitogenome sequencing
Adults were collected at various locations in China from
2018 to 2019. Specimens were preserved in 100% etha-
nol in a-80°C environment until they were used for
DNA extraction. Species identification was conducted
through morphology [59, 60] or/and standard mitochon-
drial coxI barcoding [61]. A total of 13 samples repre-
senting eight species were selected for sequencing.
Among them, L. koenigiana is the first sequenced spe-
cies for Enarmoniini. Three congeneric species, A.
podana, A. betulanus and Archips sp. were sampled as
an example to evaluate mitochondrial gene variation at
the genus level. Six and one samples of G. delineana and
A. fimbriana were included respectively to test the intra-
specific variation of mitochondrial genes among



Yang et al. BMC Genomics (2021) 22:755

Page 8 of 12

032 028 024 02 016 0.12 0.08 0.04 0

1103
992.7
882.4

772.1
661.8
551.5
441.2

330.9
V1220.6

W ATP6 W COX3 " ND4 CYTB
ATPS @IND1 H ND4L W 12SrDNA M COX2 M ND3

B COX1 mND2 M ND5 M 16SrDNA
ND6 M tRNAs

10~-3 Phylogenetic Informativeness per site

1103

032 028 024 02 016 012 0.08 0.04 0

Fig. 6 Phylogenetic informative profiles for mitochondrial data partitions. The ultrametric tree was constructed using the P123RT dataset

032 028 024 0.2 016 0.12 0.08 0.04

el

1654 3

PCG1 mrRNAs 5
EPCG2 mtRNAs 1488.6 &
@

mree 13232 £
>

1157.8 §

9924 £

-

827 =

g

|661.6 £

I &0

(4962 2

=<

N | =

T (\J|[3308 =

_ 1654 S
-

032 028 024 02 016 0.12 0.08 0.04 0

population individuals. In addition, two Olethreutini
species were selected. Olethreutes sp. represented the
first sequenced species of Olethreutes, the nominal
genus of Olethreutini, and B. venosana, historically be-
longing to Bactrini, was included to test the synonym of
Bactrini and Olethreutini proposed by Regier et al. [22].

Total genomic DNA was extracted from head and
thorax tissues of a single sample using a DNeasy tissue
kit (Qiagen, Germany), following the manufacturer’s in-
structions. The libraries of 13 samples were individually
constructed and sequencing was conducted using an
[lumina HiSeq 2500 platform with a 150-bp paired-end
strategies. Voucher specimens were deposited in the
Biology Laboratory of Zhoukou Normal University,
China (Additional file 13: Table S6).

Mitogenome assembly, annotation and analysis

FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc) was used for quality control of the
raw sequences. Clean paired reads were obtained
using AdapterRemoval version 2 [62] and SOAPde-
novo version. 2.01 [63]. Geneious R11 [64] was used
for mitogenome assembly with default settings.
Briefly, the “map to reference” strategy was selected

to map all cleaned reads to an “anchor” that repre-
sents the standard mitochondrial cox! barcoding se-
quence amplified earlier using the general insect
primer pair Lcol1490 (F) and Hco2198 (R) [65]. After
iteration up to 100 times with custom sensitivity, a
target sequence with high coverage contigs was gener-
ated. Then, MEGA X [66] was used to check the be-
ginning and end of the contig sequence to circularize
a complete mitochondrial genome after deleting the
overlapping sequence.

The mitogenome sequence was annotated using the
MITOS webserver with invertebrate genetic code [67].
MEGA X was used to reconfirm gene boundaries by
aligning the new mitogenome with previously reported
tortricid mitogenomes available in GenBank. The 22
tRNAs and their secondary structures were reidentified
using tRNAScan-SE server version 1.21 [68]. The sec-
ondary structures of the two rRNAs were inferred fol-
lowing the models of three other lepidopterans with
minor modifications [36, 43, 51].

Nucleotide composition and averaged genetic dis-
tances under the Kimura-2-parameter model of 13 PCGs
were calculated using MEGA X. Strand asymmetry was
calculated according to the formulas: AT-skew=[A —
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T]/[A + T] and GC-skew =[G — C]/[G + C] [41]. Sliding
window analysis (a sliding window of 300 bp and a step
size of 25 bp) exhibiting nucleotide diversity for each of
13 PCGs from all samples was performed using DNASP
version 6.0 [69]. Additionally, DNASP version 6.0 was
used to calculate the ratios of nonsynonymous substitu-
tion (Ka) and synonymous substitution (Ks) for PCGs.
In addition, the effective number of codons (ENC) and
the codon bias index (CBI) were measured using
CodonW version 1.4.2 [70].

Phylogenetic analyses
A total of 41 mitogenomes from 30 tortricid species
were used in phylogenetic analyses, including 13 newly
sequenced mitogenomes and 28 mitogenomes down-
loaded from GenBank (Table S1). In addition, two spe-
cies from Cossoidea served as outgroup taxa. Thirteen
PCGs were individually aligned with codon-based mode
in the TranslatorX online platform [71]. Two rRNAs
and 22 tRNAs were independently aligned with the Q-
INS-i algorithm as implemented in the MAFFT online
platform [72]. MEGA X was used to check all align-
ments, and PhyloSuite version 1.2.1 [73] was employed
to generate four datasets: 1) P12: the first and second
codon positions of PCGs; 2) P123: all codon positions of
PCGs; 3) P123R: all codon positions of PCGs plus two
RNAs; and 4) P123RT: all codon positions of PCGs plus
two RNAs and 22 tRNAs. In addition, independent runs
for 13 PCGs and two rRNAs were performed to com-
paratively evaluate their phylogenetic performance.
Maximum likelihood (ML) analyses were conducted
using IQ-TREE 2.04 [74] under the partitioning
schemes and corresponding substitution models (Add-
itional file 14: Table S7) determined by ModelFinder
[75]. Branch supports were calculated using 1000 ultra-
fast bootstrap replicates [76]. Bayesian inference (BI)
analyses were performed with MrBayes version 3.2.6
[77] with the partitioned models (Additional file 15:
Table S8) determined by PartitionFinder version 2.1.1
[78]. Twelve processors were used to perform three in-
dependent runs each with four chains (three heated and
one cold) simultaneously for more than 10,000,000 gen-
erations sampled every 100 generations. Convergences
were considered to be reached when the estimated sam-
ple size (ESS) value was above 200 established by Tracer
version 1.7 [79] and the potential scale reduction factor
(PSRF) approached 1.0 [77]. The first 25% of samples
were discarded as burn-in and the remaining trees were
used to calculate posterior probabilities in a 50%
majority-rule consensus tree.

Phylogenetic informativeness
Phylogenetic informativeness (PI) profiles were used to
quantify the relative contributions of 13 PCGs and two
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rRNAs to the resulting tree. The peak of the PI distribu-
tion is suggested to predict maximum phylogenetic in-
formativeness for corresponding gene partitioning [80].
To obtain PI profiles, PhyDesign [81, 82] was used with
the aligned sequences and an ultrametric tree as input
files. The ultrametric tree was constructed using BEAST
version 1.7.5 [83].
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