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Abstract

Background: Feed efficiency is one of the key determinants of beef industry profitability and sustainability.
However, the cellular and molecular background behind feed efficiency is largely unknown. This study
combines imputed whole genome DNA variants and 31 plasma metabolites to dissect genes and biological
functions/processes that are associated with residual feed intake (RFI) and its component traits including
daily dry matter intake (DMI), average daily gain (ADG), and metabolic body weight (MWT) in beef cattle.

Results: Regression analyses between feed efficiency traits and plasma metabolites in a population of 493 crossbred
beef cattle identified 5 (L-valine, lysine, L-tyrosine, L-isoleucine, and L-leucine), 4 (lysine, L-lactic acid, L-tyrosine, and
choline), 1 (citric acid), and 4 (L-glutamine, glycine, citric acid, and dimethyl sulfone) plasma metabolites associated
with RFI, DMI, ADG, and MWT (P-value < 0.1), respectively. Combining the results of metabolome-genome wide
association studies using 10,488,742 imputed SNPs, 40, 66, 15, and 40 unique candidate genes were identified as
associated with RFI, DMI, ADG, and MWT (P-value < 1 × 10−5), respectively. These candidate genes were found to be
involved in some key metabolic processes including metabolism of lipids, molecular transportation, cellular function
and maintenance, cell morphology and biochemistry of small molecules.

Conclusions: This study identified metabolites, candidate genes and enriched biological functions/processes
associated with RFI and its component traits through the integrative analyses of metabolites with phenotypic traits and
DNA variants. Our findings could enhance the understanding of biochemical mechanisms of feed efficiency traits and
could lead to improvement of genomic prediction accuracy via incorporating metabolite data.

Keywords: Feed efficiency, Metabolites, Metabolome-genome wide association studies, Candidate genes, Biological
function enrichment analyses
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Background
Feeding-related costs are the major expense in beef cat-
tle enterprises, representing 55 % - 75 % of total produc-
tion costs [1–3]. Reducing feed inputs per unit of
production could significantly improve profitability by 9
to 33 % in beef production [4]. Additionally, with the
projected increase of the global population to 9.6 billion
by the year 2050, the growing demand for beef is likely
to put more pressure on already limited production re-
sources such as water, land, fertilizers and labor [5].
Moreover, studies have shown that more feed efficient
beef cattle consume less feed for the same amount of
beef produced, and meanwhile, have a reduced methane
emission [6]. Therefore, improvements in feed efficiency
of beef cattle can increase producer profitability and
simultaneously lower the environmental footprint of beef
production.
Residual feed intake (RFI) is an important indicator of

feed efficiency, which is usually defined as the difference
between an animal’s actual daily dry matter intake
(DMI) and the expected daily DMI given the animal’s
average daily gain (ADG) and metabolic body weight
(MWT) [7]. Currently, measuring individual animal feed
intake to calculate RFI is a complex and expensive
process. Numerous studies in beef cattle have revealed
moderate to high heritability estimates (0.16-0.68) for
RFI [8–11], and thus make RFI suitable for genetic/gen-
omic selection of efficient beef cattle. Over the decades,
genome-wide association studies (GWAS) have detected
thousands of single nucleotide polymorphisms (SNPs)
and hundreds of candidate genes associated with RFI in
beef cattle [12–15]. However, cellular and molecular
functions associated with transcriptomic, metabolomic
and proteomic levels of omic data, and detailed know-
ledge regarding the biological processes involved in feed
efficiency still remain largely unknown. Metabolites are
substrates or products of metabolic processes and are
the results of combined endogenous and exogenous pro-
duction [16], thus metabolites are considered as inter-
mediate phenotypes between the genomic (base) and
phenotypic (top) levels [16]. Integration of metabolomic
data into feed efficiency studies could help reveal the re-
lationship between animal genetics and physiological
phenotypes (i.e. RFI and its component traits), thereby
increasing the fundamental understanding of biological
functions related to feed efficiency and improving gen-
etic/genomic selection efficacy in beef cattle. Therefore,
the objective of this study was to use metabolites as
intermediate phenotypes to study genes and biological
functions/processes related to feed efficiency in beef cat-
tle. In this study, feed efficiency data were collected from
a beef cattle population consisting of 493 crossbred
bulls, heifers, and steers. Thirty-one metabolites and
their concentration levels (µM) were quantified from

plasma of these animals on the first day of feedlot tests.
Linear regression models were applied to identify metab-
olites associated with RFI and its component traits
(DMI, ADG, and MWT). Whole genome sequence vari-
ants were imputed and used in metabolome-genome
wide association studies (mGWAS) to identify significant
SNPs for trait associated metabolites. Candidate genes
were mapped based on significant SNPs and gene func-
tional enrichment analyses were subsequently performed
on candidate genes of each trait to predict biological
functions/processes associated with feed efficiency in
beef cattle.

Results
Associations between feed efficiency traits and
metabolites
Of the 31 metabolites analyzed, 11 were found to be sig-
nificantly associated with the feed efficiency traits (P-
value < 0.1) and the results of regression analyses are
shown in Table 1. Among the significantly associated
metabolites with each trait, ten metabolites showed P-
values less than 0.05, and four metabolites (choline for
DMI, glycine, citric acid, and dimethyl sulfone for
MWT) showed P-values ranging from 0.05 to 0.1 (0.09,
0.05, 0.06, and 0.09, respectively). At P-values less than
0.1, five metabolites, including L-valine, lysine, L-
tyrosine, L-isoleucine, and L-leucine, were significantly
associated with RFI, accounting for 5.90 % of the

Table 1 A summary of metabolites associated with RFI and its
component traits in a multibreed population of beef cattle

Trait1 Metabolite2 P-value3 b4 Vm/VP (%)5

RFI L-valine 6.94E-03 2.72E-03 5.90

lysine 9.61E-03 3.96E-03

L-tyrosine 2.40E-02 6.65E-03

L-isoleucine 2.64E-02 5.80E-03

L-leucine 3.40E-02 3.13E-03

DMI lysine 1.15E-02 5.06E-03 4.04

L-lactic acid 2.25E-02 -6.98E-05

L-tyrosine 2.45E-02 8.69E-03

choline 9.27E-02 6.69E-04

ADG citric acid 3.56E-02 4.31E-04 0.93

MWT L-glutamine 1.49E-02 3.57E-02 3.39

glycine 5.29E-02 -4.79E-03

citric acid 6.11E-02 -9.56E-03

dimethyl sulfone 9.67E-02 -2.63E-02
1RFI residual feed intake in kg of DMI per day, DMI daily dry matter intake in
kg per day, ADG average daily gain in kg, MWT metabolic body weight in kg
2The unit of metabolite concentration is µM
3The significance level of regression analysis is P-value < 0.1
4b regression coefficient
5Vm/VP the proportion of phenotypic variance of feed efficiency traits
explained by associated metabolites (%)
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phenotypic variance in RFI. Lysine, L-lactic acid, L-
tyrosine, and choline were significantly associated with
DMI, and these four metabolites accounted for 4.04 % of
phenotypic variance in DMI. Of note, lysine and L-
tyrosine were significantly associated with both RFI and
DMI. Citric acid was the only metabolite that was sig-
nificantly associated with ADG and accounted for 0.93 %
of phenotypic variance in ADG. Four metabolites, L-
glutamine, glycine, citric acid, and dimethyl sulfone,
were significantly associated with MWT and accounted
for 3.39 % of phenotypic variance of MWT.

Significant SNPs and candidate genes associated with
metabolites
Heritability estimates of 11 metabolites associated with
feed efficiency traits were calculated (Additional file 1:
Table S1). However, these estimates had large standard
errors that may result from the limited number of ani-
mals utilized in this study (n = 493). Thus, these esti-
mates could be used as reference information and
further study may be warranted.
Metabolome-genome wide association studies were

performed for the 11 metabolites associated with the
feed efficiency traits. The range of P-value and allele
substitution effect of significant SNPs, the range and
average of proportion of metabolite phenotypic variance
explained by each significant SNP, and the number of
quantitative trait loci (QTLs) and candidate genes identi-
fied for each metabolite are summarized in Table 2. The
details of the significant SNPs, including SNP position,

allele substitution effect of each SNP, P-value and per-
centage of metabolite phenotypic variance explained by
each SNP, for the 11 metabolites associated with feed ef-
ficiency traits are provided in Additional file 2. The can-
didate genes identified within a 140-kbp window of each
significant SNP are shown in Additional file 3. In sum-
mary, 40, 66, 15 and 40 unique candidate genes were
identified as related to RFI, DMI, ADG, and MWT, re-
spectively (Table 3). Besides, 24 candidate genes were
overlapped for RFI and DMI, 15 candidate genes were
overlapped for ADG and MWT and 1 gene was com-
mon between DMI and MWT (Additional file 1: Table
S2 and Additional file 4: Fig. S1).

Significantly enriched biological functions and gene
networks for feed efficiency traits
Of the 40, 66, 15, and 40 unique candidate genes, 39, 65,
15, and 39 genes for RFI, DMI, ADG, and MWT were
mapped to the IPA database for functional enrichment
analyses, respectively. In summary, 24, 25, 18, and 28
significant cellular and molecular functions were identi-
fied for RFI, DMI, ADG, and MWT (P-value < 0.05), re-
spectively as presented in Additional file 1: Table S3-S6.
The top five enriched cellular and molecular functions
with corresponding candidate genes for each feed effi-
ciency trait are shown in Table 4. Of the top five
enriched cellular and molecular functions, lipid metabol-
ism was the biological function with the lowest P-value
for DMI and also significantly associated with RFI and
MWT (Additional file 1: Table S4 and Table S7). Mo-
lecular transport was one of the top five biological

Table 2 A summary of significant SNPs, the number of QTLs, and the number of candidate genes for metabolites associated with
feed efficiency traits in a multibreed population of beef cattle

Metabolite1 P-value range2 β range3 VSNP/VP

range (%)4
VSNP/VP mean (%)5 No. of QTLs6 No. of genes7

citric acid 1.47E-06 – 9.75E-06 -29.80 – 37.62 3.57 – 4.95 4.05 15 15

choline 4.94E-07 – 9.90E-06 -89.13 – 84.25 3.85 – 5.43 4.61 13 23

glycine 3.17E-06 – 9.54E-06 68.80 – 75.32 3.97 – 4.65 4.31 9 10

L-tyrosine 2.75E-06 – 9.40E-06 -4.20 – 7.73 3.96 – 4.49 4.11 5 2

L-isoleucine 4.21E-06 – 8.94E-06 -8.88 – 9.75 4.04 – 4.35 4.14 3 3

lysine 9.11E-09 – 9.80E-06 -17.77 – 20.56 3.88 – 7.13 4.82 15 20

L-lactic acid 2.24E-07 – 9.43E-06 -1076.62 – 1261.24 3.74 – 5.95 4.58 16 21

L-glutamine 7.37E-07 – 9.90E-06 -11.76 – 11.53 4.06 – 5.30 4.66 13 13

L-leucine 1.03E-06 – 9.30E-06 -18.12 – 17.33 3.99 – 5.04 4.40 9 12

L-valine 3.64E-06 – 9.78E-06 -25.43 – 24.38 3.73 – 4.46 4.03 8 4

dimethyl sulfone 9.44E-07 – 9.53E-06 -8.46 – 7.52 3.90 – 5.04 4.45 4 2
1The unit of metabolite concentration is µM
2The P-value range (minimum to maximum) of significant SNPs, the significance level is P-value < 1 × 10−5
3β range the range of allele substitution effect of each significant SNP
4VSNP/VP range the range of metabolite phenotypic variance explained by each significant SNP (%)
5VSNP/VP mean the average of metabolite phenotypic variance explained by each significant SNP (%)
6No. of QTLs the number of QTLs identified for each metabolite
7No. of genes the number of candidate genes identified for each metabolite

Li et al. BMC Genomics          (2021) 22:823 Page 3 of 12



functions associated with DMI, ADG, and MWT. Small
molecule biochemistry and nucleic acid metabolism were
two top biological functions associated with both DMI
and MWT. Among all significant biological functions, 15
biological functions were common for all four feed effi-
ciency traits, and other biological functions shared among
different feed efficiency traits are shown in Additional file
1: Table S7 and Additional file 4: Fig. S2.
Additionally, in order to gain insight into potentially

important biological functions, gene networks of lipid
metabolism and carbohydrate metabolism were investi-
gated and constructed through IPA. Within the lipid
metabolism function for DMI, 16 candidate genes
(ACACB, ADGRF5, ALDH3B1, AQP9, CCDC80, CHKA,
CPT1A, DAB1, DDX5, HNF1A, IGHMBP2, LRP5, NOS1,

PLSCR1, PVALB, and SSPN) were involved (Fig. 1). The
lipid metabolism included nine subfunctions which were
concentration of fatty acid, concentration of lipid, con-
centration of phosphatidylcholine, concentration of
triacylglycerol, fatty acid metabolism, cholesterol metab-
olism, synthesis of fatty acid, synthesis of lipid, and
transport of lipid (Fig. 1). Interestingly, seven genes
(ACACB, AQP9, CCDC80, CHKA, CPT1A, HNF1A, and
LRP5) involved in the lipid metabolism were also in-
volved in the carbohydrate metabolism for DMI, which
engaged three subfunctions including oxidation of D-
glucose, concentration of D-glucose, and quantity of
carbohydrate (Fig. 2).

Discussion
The role of metabolites in variation of feed efficiency
traits
Variation in RFI and its component traits could repre-
sent differences among animals in terms of metabolic
process activity. For example, a study has shown that
low RFI steers tend to have more efficient metabolic
process activity and are able to meet their maintenance
requirement with less energy intake than high RFI steers
[17]. Blood is the major highway for absorption and
transportation of nutrients to the different organs and
tissues, and metabolites carried by blood are directly in-
volved in metabolic processes as substrates or products,
making blood metabolites prime candidates for further
studies of feed efficiency in beef cattle. Additionally,
some blood metabolites have the potential to serve as
biomarkers for selection of efficient beef cattle [18, 19].
In this study, 5 (L-valine, lysine, L-tyrosine, L-

isoleucine, and L-leucine), 4 (lysine, L-lactic acid, L-
tyrosine, and choline), 1 (citric acid) and 4 (L-glutamine,
glycine, citric acid, and dimethyl sulfone) plasma metab-
olites were identified to be associated with RFI, DMI,
ADG, and MWT, respectively (Table 1). Individual me-
tabolites accounted for 0.59–1.50 % of the total pheno-
typic variance of RFI and its component traits. The
results suggest that the feed efficiency traits could be as-
sociated with many metabolites with small effects. How-
ever, the identified metabolites associated with the feed
efficiency traits in this study may require validation in
independent beef cattle populations especially as a more
relaxed threshold (P-value < 0.1) was used. Furthermore,
we would like to highlight that only 31 metabolites were
detected by the targeted method of NMR used in the
current study. We therefore recommend that metabolo-
mic profiles with more metabolites should be investi-
gated in future with larger samples in order to identify
more metabolites that are associated with RFI or its
component traits.
To date, several metabolomic studies have attempted

to identify relationships between serum or plasma

Table 3 Metabolites and their candidate genes associated with
RFI and its component traits in a multibreed population of beef
cattle

Trait1 Metabolite2 Candidate gene

RFI L-valine NEDD4, PRTG, SHROOM3, XKR6

lysine BTLA, ATG3, SLC35A5, CCDC80, CD200R1L, GTPBP8,
NEPRO, BOC, SPICE1, SIDT1, FGF12, HS6ST3, FRMD5,
MFHAS1, STYXL2, GPA33, DAB1, OR6C75, ITPR2,
SSPN

L-tyrosine ADGRF5, ADGRF1

L-isoleucine C15H11orf49, PPYR1, ANXA8L1

L-leucine SLC9A9, SYNE2, ESR2, DYNC1LI1, CD2AP, ADGRF2,
ADGRF4, SHROOM3, KATNA1, LATS1, NUP43, PCMT1

DMI lysine BTLA, ATG3, SLC35A5, CCDC80, CD200R1L, GTPBP8,
NEPRO, BOC, SPICE1, SIDT1, FGF12, HS6ST3, FRMD5,
MFHAS1, STYXL2, GPA33, DAB1, OR6C75, ITPR2,
SSPN

L-lactic acid PLSCR1, AQP9, NEDD4, PRTG, PYGO1, CUX2, NOS1,
FBXO21, SPPL3, HNF1A, C17H12orf43, OASL, FOXN4,
ACACB, TMEM171, FCHO2, CD247, POU2F1, MACF1,
NPFFR2, SGCD

L-tyrosine ADGRF5, ADGRF1

choline HHAT, CDH8, PECAM1, MILR1, POLG2, DDX5, CEP95,
ALDH3B1, NDUFS8, TCIRG1, CHKA, KMT5B, LRP5,
PPP6R3, CPT1A, MRPL21, IGHMBP2, MRGPRF, CACN
G2, IFT27, PVALB, BICD1, PERP

ADG citric acid SERPINE3, INTS6, ZNF667, ZNF583, USP32, CA4,
ZNHIT3, MYO19, TRAF3, AMN, CDC42BPB, EDEM1,
ARL8B, KLHL31, SLC28A3

MWT L-glutamine MYO16, UBE2E2, DDX56, NPC1L1, NUDCD3,
CAMK2B, TRIM24, SVOPL, ATP6V0A4, PPP3CC,
SORBS3, PDLIM2, CCAR2

glycine AQP9, PHLDB1, TREH, DDX6, EIF5, MARK3, SEM1,
PINX1, SOX7, C8H8orf74

citric acid SERPINE3, INTS6, ZNF667, ZNF583, USP32, CA4,
ZNHIT3, MYO19, TRAF3, AMN, CDC42BPB, EDEM1,
ARL8B, KLHL31, SLC28A3

dimethyl
sulfone

ULK4, TRAK1

1RFI residual feed intake in kg of DMI per day, DMI daily dry matter intake in
kg per day, ADG average daily gain in kg, MWT metabolic body weight in kg
2The unit of metabolite concentration is µM
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metabolite levels and RFI in beef cattle [18, 20, 21]. We
found good agreement between the results from those
studies and the current study. In the current study, val-
ine, lysine, tyrosine, and leucine showed higher concen-
trations in beef cattle with high RFI than those with low
RFI. In line with our results, Karisa et al. [18] and Forou-
tan et al. [20] observed higher concentrations of valine,
lysine, and tyrosine in beef cattle with high RFI as com-
pared to those with low RFI. Similarly, Jorge-Smeding
et al. reported that concentrations of valine and lysine
were decreased in heifers with low RFI [21]. Addition-
ally, Foroutan et al. reported the concentration of leu-
cine was higher in high-RFI beef cattle [20], which is
consistent with our results. The consistency of results
from different studies suggests that these metabolites
have the potential to be used as biomarkers for feed
efficiency.
It is worth noting that, the three metabolites (isoleucine,

leucine, and valine) associated with RFI are three essential
branched-chain amino acids. These three metabolites

share the first enzymatic steps in their oxidative pathways,
including a reversible transamination followed by an irre-
versible oxidative decarboxylation to coenzyme-A deriva-
tives [22]. The respective oxidative pathways subsequently
diverge and at the final steps yield acetyl- and/or
propionyl-CoA that enter the tricarboxylic acid cycle
(TCA cycle) [22]. For animals, the TCA cycle is the main
energy producing (mainly from carbohydrates and fatty
acids) metabolic pathway [23], and some of the processes
of the TCA cycle pathway have been previously reported
to be associated with feed efficiency in beef cattle [18] and
pigs [24]. Additionally, in this study, citric acid was the
only metabolite that was significantly associated with
ADG and was overlapping for ADG and MWT. Citric acid
is an important intermediate in the TCA cycle [23] indi-
cating a potential relationship between the TCA cycle re-
lated metabolic processes and feed efficiency traits.
Interestingly, two other metabolites (lysine and L-
tyrosine) were identified as associated with both RFI and
DMI in this study. In the current study, we observed that

Table 4 Five topmost significantly enriched biological functions for RFI and its component traits, and genes involved in functions

Trait1 Biological function P-value range2 Genes involved in the biological function

RFI Cellular Assembly and Organization 7.92E-05 – 4.19E-02 ADGRF1, ADGRF5, ANXA8L1, ATG3, BOC, CD2AP, DAB1, DYNC1LI1, ESR2,
FGF12, ITPR2, KATNA1, LATS1, NEDD4, SHROOM3, SPICE1, SYNE2

Cell Morphology 1.02E-03 – 4.02E-02 ADGRF5, ATG3, BOC, CD2AP, ESR2, KATNA1, LATS1, NEDD4, SLC9A9, SYNE2

Cellular Function and Maintenance 1.02E-03 – 4.19E-02 ADGRF1, ADGRF5, ANXA8L1, ATG3, BOC, CD2AP, DAB1,
DYNC1LI1, ESR2, FGF12, ITPR2, KATNA1, NEDD4, SHROOM3, SYNE2

Cellular Movement 1.12E-03 – 2.87E-02 DAB1, ESR2, KATNA1

Molecular Transport 1.28E-03 – 3.36E-02 ADGRF5, DAB1, ESR2, ITPR2, LATS1, SHROOM3

DMI Lipid Metabolism 2.46E-04 – 2.81E-02 ACACB, ADGRF5, ALDH3B1, AQP9, CCDC80, CHKA, CPT1A, DAB1,
DDX5, HNF1A, IGHMBP2, LRP5, NOS1, PLSCR1, PVALB, SSPN

Molecular Transport 2.46E-04 – 2.54E-02 ACACB, ADGRF5, AQP9, CCDC80, CD247, CHKA, CPT1A, DAB1, DDX5,
FGF12, HNF1A, IFT27, IGHMBP2, ITPR2, LRP5, NEDD4, NOS1, NPFFR2,
PECAM1, PLSCR1, PVALB, TCIRG1

Small Molecule Biochemistry 2.46E-04 – 2.81E-02 ACACB, ADGRF5, ALDH3B1, AQP9, CCDC80, CHKA, CPT1A, DAB1,
DDX5, HNF1A, HS6ST3, IGHMBP2, LRP5, NOS1, NPFFR2, PECAM1,
PLSCR1, PVALB, SGCD, SSPN, TCIRG1

Nucleic Acid Metabolism 2.84E-04 – 2.81E-02 ACACB, CPT1A, NOS1

Protein Synthesis 5.66E-04 – 1.13E-02 ACACB, CCDC80, HNF1A, LRP5, NOS1, NPFFR2, PECAM1, SGCD

ADG Cell-To-Cell Signaling and Interaction 6.57E-04 – 6.57E-04 TRAF3

Cellular Development 6.57E-04 – 2.34E-02 TRAF3

Cellular Function and Maintenance 6.57E-04 – 2.21E-02 AMN, ARL8B, MYO19, TRAF3

Cellular Growth and Proliferation 6.57E-04 – 2.34E-02 TRAF3

Molecular Transport 6.57E-04 – 2.34E-02 AMN, ARL8B, CA4, SLC28A3, TRAF3

MWT Molecular Transport 7.04E-04 – 4.79E-02 AMN, AQP9, ARL8B, ATP6V0A4, CA4, CAMK2B, DDX56, DDX6,
NPC1L1, PPP3CC, SLC28A3, SORBS3, TRAF3, TRAK1

Nucleic Acid Metabolism 7.04E-04 – 2.7E-02 AQP9, SLC28A3

Small Molecule Biochemistry 7.04E-04 – 4.79E-02 AMN, AQP9, NPC1L1, PPP3CC, SLC28A3, SORBS3, TREH

Cell Cycle 1.45E-03 – 2.78E-02 ARL8B, CAMK2B, MYO19, NUDCD3, TRIM24

Cell Morphology 1.45E-03 – 3.36E-02 AQP9, ARL8B, CAMK2B, NUDCD3, PDLIM2, PINX1, TRIM24
1RFI residual feed intake in kg of DMI per day, DMI daily dry matter intake in kg per day, ADG average daily gain in kg, MWT metabolic body weight in kg
2The P-value range (minimum to maximum) of significant biological functions, the significance level is P-value < 0.05
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the concentrations of lysine and L-tyrosine were signifi-
cantly positively correlated (r = 0.29, P-value < 0.001). A
previous study reported a higher positive correlation (r >
0.75, P-value < 0.001) between lysine and tyrosine [24].
The association of lysine and L-tyrosine with both RFI
and DMI could be due to the significant positive correl-
ation between lysine and tyrosine and the fact that RFI
has a high and positive genetic correlation with DMI (rg =
0.66±0.11 to 0.75±0.10) [11, 25]. Furthermore, lysine and
tyrosine were reported as important amino acids involved

in some important metabolic processes in beef cattle, such
as amino acid metabolism and urea cycle [21], further
supporting them as potential biomarkers for feed effi-
ciency traits.

Candidate genes, enriched molecular functions and gene
networks for feed efficiency traits
In this study, we identified 40, 66, 15, and 40 unique
candidate genes as related to RFI, DMI, ADG, and
MWT respectively via integrative analyses of regression
analyses and mGWAS (Table 3). In a previous study,
Zhang et al. performed GWAS based on imputed whole
genome sequence variants for RFI, DMI, ADG, and
MWT using 7,500 beef cattle and reported 596, 268,
179, and 532 candidate genes for RFI, DMI, ADG, and
MWT, respectively [12]. Comparing their results with
those in this study, we found 10, 23, 6, and 7 candidate
genes in common between the two studies for RFI, DMI,
ADG, and MWT, respectively (Additional file 1: Table
S8). These overlapping genes indicated that metabolites
are potentially important intermediate phenotypes be-
tween candidate genes and feed efficiency traits. Add-
itionally, results from our study provide more knowledge
and better understanding of how the previously identi-
fied candidate genes exert their influence on the variabil-
ity of RFI and its component traits via intermediate
phenotype metabolites. For instance, Zhang et al. re-
ported that some genes were associated with more than
one trait such as, ADGRF1 and ADGRF5 which were

Fig. 1 Gene network of lipid metabolism for dry matter intake (DMI)

Fig. 2 Gene network of carbohydrate metabolism for dry matter
intake (DMI)
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associated with both RFI and DMI [12]. However, the
potential mechanism of how these genes could influence
the two traits remained unclear. According to the results
of the current study, these two genes were both associ-
ated with L-tyrosine as a common metabolite which was
associated with RFI and DMI (Table 3). Similarly, ac-
cording to Zhang et al., SLC28A3 was associated with
ADG and MWT [12], and our results showed this gene
was associated with citric acid as a common metabolite
which was associated with ADG and MWT (Table 3).
Interestingly, Zhang et al. identified ADGRF1, ADGRF5,
GTPBP8, and NEPRO as associated with both RFI and
DMI [12] and the same genes for RFI and DMI were
identified in the current study. However, the results of
this study indicated that the molecular background of
these associations might be different. L-tyrosine might
explain the associations of ADGRF1, ADGRF5 with RFI
and DMI, because we identified that ADGRF1 and
ADGRF5 were associated with L-tyrosine which was a
metabolite associated with both RFI and DMI. As for
GTPBP8 and NEPRO, both genes were associated with
another common metabolite called lysine that was iden-
tified to be associated with both RFI and DMI in the
current study. Additionally, we observed that certain
genes might be associated with the same feed efficiency
trait through different metabolites. For example,
SHROOM3 was associated with L-valine and L-leucine
and these two metabolites were associated with RFI
(Table 3). Our study also showed that certain genes
could be associated with different feed efficiency traits
through different metabolites. For example, AQP9 was
associated with DMI and MWT through L-lactic acid
and glycine, respectively (Table 3). Therefore, our inte-
grative analyses of feed efficiency traits, metabolites, and
whole genome sequence variants will enhance our un-
derstanding on genetic influence of feed efficiency traits
in beef cattle.
Some candidate genes identified for feed efficiency

traits in the current study have been reported in our
previous transcriptomic studies involving animals re-
lated to those used in the current study [26, 27]. For
instance, CCDC80 was reported as a differentially
expressed gene between beef steers with divergent
RFI [26]. Additionally, CCDC80, CUX2, and
ALDH3B1 were differentially expressed in the liver of
beef steers for DMI, and SERPINE3 was a differen-
tially expressed gene for ADG [27]. Our current study
identified the same genes associated with these traits
through integrating metabolites (Table 3). Indeed,
CCDC80, CUX2, ALDH3B1, and SERPINE3 were as-
sociated with lysine, L-lactic acid, choline, and citric
acid, respectively. Therefore, our results potentially
provide further insight into how these differentially
expressed genes affect the feed efficiency traits in beef

cattle. It is worth noting that CUX2 has also been re-
ported to be associated with DMI in the American
[13] and Canadian beef population [12]. Therefore,
these genes identified as associated with the same
feed efficiency traits using genomic, transcriptomic
and metabolomic data suggest the importance of
these genes in influencing feed efficiency traits in beef
cattle. Furthermore, some differentially expressed
genes may affect RFI by influencing metabolites asso-
ciated with its component traits (DMI, ADG, and
MWT). For example, TCIRG1, AMN, and AQP9 were
reported as differentially expressed genes in high- and
low-RFI beef cattle [28, 29] and these three genes
were identified to be respectively associated with
DMI, ADG, and MWT through different metabolites
in this study.
Identification of enriched molecular processes, path-

ways and gene networks associated with feed effi-
ciency traits using candidate genes from these
different omics studies shed some light on underlying
biological mechanism and gene interactions for com-
plex traits. For the five topmost biological functions
associated with RFI in the current study, cellular as-
sembly and organization, cell morphology, cellular
function and maintenance, and molecular transport
were four biological functions that overlapped with
the five topmost biological functions reported by
Zhang et al. for RFI [12]. Lipid metabolism, small
molecule biochemistry, and nucleic acid metabolism
were three common top biological functions for DMI
in the two studies. Lipid metabolism and small mol-
ecule biochemistry were also identified as two of the
five topmost biological functions in our previous tran-
scriptomic study for DMI in beef cattle [27]. Molecu-
lar transport, small molecule biochemistry, and cell
morphology were three overlapping top biological
functions for MWT in Zhang et al. [12] and in this
study. These three biological functions were also top
biological functions for MWT in our previous tran-
scriptomic study [27]. For ADG, cell-to-cell signaling
and interaction was a common top biological func-
tions in Zhang et al. [12], Mukiibi et al. [27] and
in the current study. Our results and those reported
by previous studies indicated the overlapping top five
biological functions have a potentially important rela-
tionship with feed efficiency traits in beef cattle. These
important functions could further help to prioritize
candidate genes and related functional SNPs associ-
ated with phenotypes.
Additionally, we would like to note that attention

should be paid to nutrient or energy metabolic pro-
cesses, such as lipid metabolism, since several studies
have reported its potential role in feed efficiency related
to DMI and RFI [11, 12, 26, 27, 29–34]. Nkrumah et al.
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[34] and Mao et al. [11] reported that more efficient beef
cattle tended to have less backfat and slightly less marb-
ling. Transcriptomic studies reported that more efficient
beef cattle were associated with differentially expressed
genes related to reducing lipid metabolism in liver [26,
27], implying an important relationship between lipid
metabolism and feed efficiency. Weber et al. identified
differentially expressed genes in multiple tissues (pituit-
ary, skeletal muscle, liver, visceral adipose, and duode-
num) of beef cattle with divergent RFI, and their
pathway analyses showed that many of the differentially
expressed genes were involved in the immune system
and fat metabolism [29]. In this study, lipid metabolism
was the most significant biological functions for DMI
and also significantly associated with RFI and MWT.
Lipid metabolism was identified as one of the top bio-
logical functions for ADG in previous studies [12, 27]
but it was not shown in the current study, which is likely
due to limitations of relatively small number of metabo-
lites analyzed. In addition, of the candidate genes identi-
fied for the metabolites, there is limited knowledge on
how candidate genes influence the respective plasma
metabolite levels. For instance, enzyme choline kinase
alpha is encoded by CHKA [35]. In the biosynthesis
pathway of phosphatidylcholine, the enzyme can catalyze
the phosphorylation of choline to phosphocholine [36,
37]. However, little is known on how concentrations of
choline vary among animals due to their gene variants.
Nevertheless, our integrative study of feed efficiency,
blood metabolites, and DNA variants has provided
additional insight into relationships between gene
functionalities, metabolites, and feed efficiency traits,
which may help develop strategies to enhance gen-
omic prediction of feed efficiency traits with incorpor-
ation of metabolite data.

Conclusions
This study combined genomic, metabolomic and
phenotypic data to investigate molecules and bio-
logical functions/processes related to feed efficiency in
beef cattle. Several plasma metabolites associated with
RFI and its component traits were identified, and
some of metabolites showed the potential to serve as
biomarkers for feed efficiency in beef cattle. Multiple
candidate genes were identified as associated with RFI
and its component traits based on the results of re-
gression analyses between feed efficiency traits and
metabolites, and mGWAS. Gene functional enrich-
ment analyses indicated that lipid metabolism may
have an important role in feed efficiency. Our find-
ings showed good consistency with previous metabo-
lomic studies and GWAS studies for feed efficiency
and also added more information regarding biological
mechanisms of feed efficiency. Therefore, this

integrative method could enhance the understanding
of genetic influence, metabolites and biological func-
tions/processes involved in feed efficiency traits,
which could lead to improvement of genomic predic-
tion accuracy via incorporating metabolite data.

Methods
Animal population, data collection of feed efficiency traits
and metabolites
All animals in this study were cared for according to the
guidelines of the Canadian Council on Animal Care
(1993). The population of animals was obtained from
the Phenomic Gap Project that aimed to generate phe-
notypes of feed efficiency, carcass and meat quality as
well as genomic data for Canadian crossbred beef ani-
mals [38]. Details of animal management, the herd, and
animal breeds were previously described [12, 39–41]. In
summary, the population used in this study consisted of
493 crossbred bulls (n = 93), heifers (n = 125) and steers
(n = 275) that were born between 2002 and 2011. These
animals were from five different commercial herds and
they were tested in feedlots from 2003 to 2012 [38]. The
major breed components were primarily Charolais (n =
73), Hereford-Angus crosses (n = 191) and a Beefbooster
composite breed (predominantly Charolais-based, n =
229). The GrowSafe system (GrowSafe Systems Ltd.,
Airdrie, Alberta, Canada) was used to measure the feed
intake of finishing calves at the feeding test station for a
period of 76 to 112 days. Serial body weights (BW) in kg
were measured for each animal at the beginning and end
of the test and at approximately 14-day intervals during
the test. The daily DMI in kg was calculated as an aver-
age of dry matter intake over the test period and further
standardized according to the energy content of the diet.
The initial BW in kg at the start of the feeding test and
the ADG in kg were derived from a linear regression of
the serial BW measurements against time (day) [11, 12,
34, 42]. The MWT in kg was calculated as midpoint
BW0.75 while the midpoint BW was computed as the
sum of the initial BW in kg and the product of ADG
multiplied by half of the days on test [11, 12, 34, 42].
The RFI in kg of DMI per day was computed as the dif-
ference between the standardized daily DMI and the ex-
pected DMI that was predicted based on animal ADG
and MWT [7]. Blood samples were collected from all
animals by jugular venipuncture in the early morning on
the first day of feedlot tests and immediately frozen at
-80 °C for storage. These blood samples were used to
quantify metabolites using nuclear magnetic resonance
(NMR) spectroscopy. The procedure of metabolite quan-
tification using NMR was previously described by Li
et al. [39]. Thirty-one metabolites and their concentra-
tion levels (µM) were quantified from plasma. Blood
samples were also used to extract DNA for genotyping
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using the Illumina BovineSNP50 v2 BeadChip (Illumina
Inc., CA, USA).

SNP genotype imputation, quality control and population
admixture analyses
Theoretically, a higher marker density could improve
the power of GWAS to identify significant SNPs, there-
fore, the 50 K genotypes were imputed to whole genome
sequence variants using Beagle 5.1 software [43]. The
SNP imputation for animals used in this study was com-
pleted using a step-wise approach as described by Zhang
et al. [12] and Wang et al. [44] based on the latest gen-
ome assembly ARS-UCD 1.2. After the imputation,
53,258,178 SNPs and indels (they are all termed SNPs
for simplicity) on 29 autosomes were obtained. Quality
control for imputed whole genome sequence variants
was performed to exclude DNA variants based on the
following criteria: SNPs on 29 autosomes that had an
imputation accuracy < 0.95, minor allele frequency <
0.05, and failed to pass the Hardy-Weinberg equilibrium
test (P-value < 0.0001). Finally, a total of 10,488,742
SNPs remained after quality control and were used in
further analyses.
Breed composition of each animal was predicted based

on the 50 K genotypes using ADMIXTURE software to
account for population stratification [45, 46]. In order to
find the best possible number of ancestors or breeds (K
value), a 5-fold cross-validation procedure was per-
formed as described in Zhang et al. [12]. The breed
composition prediction had the smallest cross-validation
error when the value of K = 6. The most accurate breed
composition was then obtained for each individual and
presented in Additional file 1: Table S9.

Data consolidation, quality control for feed efficiency
traits and metabolites
The variation in feed efficiency traits and metabolites
could be affected by multiple systematic effects. A linear
regression model implemented in R statistical software
was used to assess the significant systematic effects that
were associated with feed efficiency traits or metabolites.
Animal type (bull, heifer, steer), birth year, herd, feedlot
pen, age at the feedlot test, and breeding composition
were found to be the significantly associated factors for
both the feed efficiency traits and metabolites (P-value <
0.05). Therefore, phenotypic values of the feed efficiency
traits and metabolites were pre-adjusted for the above
factors using liner regression models. Residuals with
more or less than 3 standard deviations from the mean
of residuals were considered as outliers and were ex-
cluded. Additional file 1: Table S10 provides descriptive
statistics of phenotypic data on the feed efficiency traits
and metabolites.

Regression analyses between feed efficiency traits and
metabolites and metabolome-genome wide association
studies
After quality control and pre-adjustment of phenotypic
data, regression analyses were conducted to identify as-
sociations between four feed efficiency traits and thirty-
one metabolites using R statistical software. A feed effi-
ciency trait and a metabolite were considered to be sig-
nificantly associated when a P-value < 0.1 of the
regression analyses was observed. This step was intended
to determine the relationship between feed efficiency
traits and metabolites. The mGWAS (metabolome-gen-
ome wide association studies) were performed for me-
tabolites that were significantly associated with the feed
efficiency traits using the mlma (mixed linear model as-
sociation) option as implemented in the GCTA package
[47] based on the following linear mixed model:

yij ¼ μþ bjxij þ aij þ eij

where yij is the adjusted metabolite value of the ith ani-

mal with the jth SNP (i.e. the ijth animal), bj is the allele
substitution effect of the jth SNP, xij is the jth SNP
genotype of animal i coded as 0, 1, 2 for genotypes
A1A1, A1A2, and A2A2, respectively, aij is the additive

polygenic effect of the ijth animal ~N 0;Gσ2a
� �

, and eij is

the random residual effect ~N 0; Iσ2e
� �

. The genomic rela-
tionship matrix G was derived based on total filtered
SNP markers (i.e. 10,488,742 SNPs) as described by Yang
et al. [48], which is essentially the same as the second
VanRaden formulation [49]. The same G matrix was
used to estimate variance components and heritability of
metabolites via restricted maximum likelihood (REML)
as implemented in the GCTA package.
The SNPs with P-value < 1 × 10−5 were classified to be

significantly associated with the metabolite according to
the recommendation of The Wellcome Trust Case Con-
trol Consortium [50]. The phenotypic variance of the
metabolite explained by each significant SNP was calcu-

lated by 2pqβ2

S2
�100%, where p and q denote the SNP al-

lele frequency of A1 and A2, respectively; β is the SNP
allele substitution effect that was estimated by general-
ized least square and the significance of SNP allele sub-
stitution effect was conducted via a generalized least
square F-test as implemented in the GCTA package;
2pqβ2 is the additive variance of the SNP, and S2 is the
phenotypic variance of the metabolite.

Identification of candidate genes and functional
enrichment analyses for feed efficiency traits
To identify candidate genes for concentration of each
metabolite, a 140-kbp window (70-kbp upstream and
70-kbp downstream) of each significant SNP was
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surveyed based on SNP annotation information from
ARS-UCD 1.2 bovine genome assembly from the
Ensembl BioMart database (accessed on 02 February,
2021). The 70-kbp was the chromosomal length within
which a high linkage disequilibrium phase correlation
(r2> 0.77) was maintained across a sample of Canadian
beef cattle breeds [51]. Small nucleolar RNA and micro-
RNA were excluded because we are interested in protein
coding genes. Then candidate genes (Entrez gene IDs) of
all metabolites that were associated with the feed effi-
ciency traits (RFI, DMI, ADG, or MWT) as identified in
the regression analyses were combined and imported
into the Ingenuity Pathway Analysis software (accessed
on 02 February, 2021) (IPA; www.Ingenuity.com) to pre-
dict the enriched biological functions and gene networks
for feed efficiency traits. Biological functions were con-
sidered significantly enriched if the P-value for the over-
lap comparison test between the input gene list and the
knowledge base of IPA for a given biological function
was less than 0.05. In order to provide insight into cellu-
lar and molecular functions associated with feed effi-
ciency traits, gene networks for some significant
biological functions were constructed in IPA.
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