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Abstract

Background: Despite proven therapeutic effects in inflammatory conditions, the specific mechanisms of
phytochemical therapies are not well understood. The transcriptome effects of Traumeel (Tr14), a multicomponent
natural product, and diclofenac, a non-selective cyclooxygenase (COX) inhibitor, were compared in a mouse
cutaneous wound healing model to identify both known and novel pathways for the anti-inflammatory effect of
plant-derived natural products.

Methods: Skin samples from abraded mice were analyzed by single-molecule, amplification-free RNAseq transcript
profiling at 7 points between 12 and 192 h after injury. Immediately after injury, the wounds were treated with
either diclofenac, Tr14, or placebo control (n =7 per group/time). RNAseq levels were compared between
treatment and control at each time point using a systems biology approach.

Results: At early time points (12-36 h), both control and Tr14-treated wounds showed marked increase in the
inducible COX2 enzyme mRNA, while diclofenac-treated wounds did not. Tr14, in contrast, modulated lipoxygenase
transcripts, especially ALOX12/15, and phospholipases involved in arachidonate metabolism. Notably, Tr14
modulated a group of cell-type specific markers, including the T cell receptor, that could be explained by an
overarching effect on the type of cells that were recruited into the wound tissue.

Conclusions: Tr14 and diclofenac had very different effects on the COX/LOX synthetic pathway after cutaneous
wounding. Tr14 allowed normal autoinduction of COX2 mRNA, but suppressed mRNA levels for key enzymes in the
leukotriene synthetic pathway. Tr14 appeared to have a broad ‘phytocellular’ effect on the wound transcriptome by
altering the balance of cell types present in the wound.
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Background

The complex physiological events that comprise the acute
wound healing process may be central to understanding
the biological mechanisms of chronic disease. Tissue injury
and healing mechanisms share remarkable similarities in
different organs [1]. Even in cancer, the importance of tis-
sue remodeling has led authors to describe tumors as hav-
ing a component of “wounds that do not heal” [2].
Transcriptome-based studies have revealed inflammatory
molecular signatures in many diseases, and precisely de-
fined many of the inflammatory events that dominate the
early stages of tissue repair [3]. Detailed analysis of wound
dynamics over time is beginning to redefine chronic disease
states. For example, the discovery of the resolvins and their
actions within the inflammation system have suggested that
injury “resolution” is a defining event between “acute” and
“chronic” inflammation [4, 5].

The present study interrogates a high-resolution map
of the mouse transcriptome during wound healing to de-
fine changes resulting from therapeutic intervention with
Traumeel (Trl4), a well-known natural multicomponent
anti-inflammatory medicinal product for musculoskeletal
conditions. Natural products can have a broad spectrum
of important biological effects ranging from the antimi-
totic and anticancer effects of taxol, purified from the
Pacific yew tree bark (Taxus brevifolia), to the anti-
inflammatory effects of aspirin, a non-steroidal anti-
inflammatory drug (NSAID), derived from precursors in
willow tree bark (genus Salix). Natural products have
been used for millennia to inhibit inflammation in vari-
ous forms, and may target multiple points in the inflam-
mation pathways [6], including the prostaglandin/
leukotriene pathways [7, 8]. Prior studies have demon-
strated that Tr14 inhibits IL-1p and TNF-a production
by resting and activated immune cells in vitro [9], and
has antioxidative properties [10]. In clinical studies, Tr14
has shown effects on cytokine levels in exercise-induced
muscle injury [11, 12], and demonstrated pain relief in
acute ankle sprains [13]. NSAIDs, such as diclofenac,
have a fairly well-defined mechanism of action via cyclo-
oxygenase inhibition. However, NSAIDs have diverse
secondary effects that might be better understood by
characterizing their effects on the transcriptome [14, 15].
We have previously reported the transcriptome-wide
analysis of Tr14 therapeutic effects in the mouse wound
healing model [3]. The present studies were conducted
to compare and explore more specifically the anti-
inflammatory effects of Tr14 and diclofenac at the tran-
scriptome level.

Results

Global signature of diclofenac versus Tr14

The overall similarities and differences between the
two types of therapy were evaluated by statistically
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identifying differentially expressed genes (DEGs) and
then organizing the DEGs according to Gene Ontol-
ogies to identify any systematic patterns of change as
shown schematically in Fig. 1 (all DEGs listed in
Suppl. Table 1). In general, diclofenac induced a lar-
ger number of expression changes compared to
Tr1l4, when similar statistical filters were applied
(Fig. 2). This was mainly observed at the earlier time
points of 12-36h post-injury, where diclofenac al-
tered as much as 10 times as many transcripts as
Tr1l4 (36h, 1840 vs 162 DEG). By 72-96 h however,
Tr14 altered about 3 times more transcripts than
diclofenac, with the effects roughly balanced by 96—
120h (Fig. 2). When the specific DEGs between
groups were compared, there were 25-123 common
transcripts altered by both of the treatments, that
reflected roughly 10-50% overlap between the DEGs
at any given time point (Fig. 2). That degree of over-
lap is 5.6 to 30-fold greater than expected by chance,
with the odds of such an overlap occurring by
chance alone being extremely small, with a range of
p =22x10""" (24h) to 84x10"'* (96h) by
Fisher’s exact test. Thus, the two treatments affected
both shared and unique RNA transcripts over time.

Bioinformatic analysis of diclofenac and Tr14-modulated
transcripts

The types of transcripts affected by each treatment over
time were classified into pre-curated gene ontologies
(GO) according to their functions. Tr14 induced a clus-
ters of transcripts related to lipid/steroid biosynthesis
and translation initiation in the 12—72 h timeframe, that
were not observed to increase in diclofenac-treated
wounds. Both clusters are presented in Fig. 3 as Cluster
3 (green) and Cluster 4 (purple) respectively. When
sorted by their relevant gene ontologies, diclofenac had
early effects at 12-24'h on transcripts related extracellu-
lar matrix, cell migration, innate immunity, and the ribo-
some. However, by 36 h, this transitioned into effects on
the ribosome and translation with waning effects on
extracellular matrix transcripts. In contrast, Tr14 had
less striking effects on these pathways in the 12-36h
period, while in the later timeframe of 72 to 192 h, Tr14
altered transcripts related to extracellular matrix, innate
immunity, inflammation, and translation (Fig. 3). Thus,
while many of the same transcripts and the same sys-
tems are altered by diclofenac and Trl4, there was a
striking temporal dissociation, with Tr14 showing a de-
layed effect.

A more detailed examination of the types of tran-
scripts affected by Trl4 points to five ‘SuperClusters’ of
transcripts related to immune function and inflamma-
tion, extracelular matrix, ion transport, G protein signal-
ing, and lipid/steroid metabolism (Fig. 4). Each of these
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5 SuperClusters would be highly relevant to the control
of inflammation. Lipid/steroid metabolism, ion trans-
port, and G protein signaling are major pathways that
modulate inflammatory signaling and extracelular matrix
production. For instance, many of the pro-inflammatory
and anti-inflammatory pathways utilize small lipid inter-
mediates that are known to regulate inflammatory and
extracelular matrix genes.

Effects on the eicosanoid pathway transcripts

The eicosanoid pathway is a well characterized system in-
volving enzymatic production of a variety of small lipid inter-
mediates with pro- and anti-inflammatory effects. The
eicosanoid pathway is a known target of NSAIDs, such as
diclofenac, and thus, it was interesting to evaluate the effect
of these two treatment types on the RNA transcripts in those
pathways. Two major pathways of eicosanoid generation in-
volve several catalytic conversions of arachidonic acid into
bioactive agents via cyclooxygenases (COX1/2, PGH syn-
thase 1/2, PTGS1/2) and lipoxygenases (LOX) (Fig. 5). In
each pathway, several downstream enzymatic steps can sig-
nificantly alter the biological activity of the eicosanoids in a
tissue-specific manner. To examine how these pathways
were affected at the mRNA level, the DGE of the enzymes
was analyzed in the time series data and compared between
treatment groups. At the 24-h time point, for example,

diclofenac and Tr14 had very different patterns of changes in
COX/LOX-related enzyme mRNAs, showing essentially op-
posite effects on the modulation of key enzymes such as 5-
lipoxygenase (ALOX5), and the phospholipases (Pla2) that
are essential for the liberation of arachidonate from the cell
membranes. The later time points demonstrate persistent
differences in the effects on the COX/LOX pathways
(Supplementary Figs. 1-6).

Furthermore, in control wounds, RNAseq detected a
strong and well known increase in the inducible PGH
synthase 2 mRNA (COX-2, Ptgs1/2) 12-24 h after injury
(not shown). As expected from inhibition of the down-
stream feedback signal, especially PGE2, diclofenac
caused an almost 4-fold reduction in COX-2 mRNA ex-
pression at early time points, while Tr14, however, did
not block COX-2 mRNA induction, which was 1.5 X
greater than control levels at 24 h (Fig. 5).

Pathway analysis of Tr14 versus diclofenac on the pro-
inflammatory and pro-resolution eicosanoids

Assembling the above RNA changes in relation to
their predicted production of eisosanoids, it is pos-
sible to visualize the broad differences between the
two agent’s effects on the key pathways in tissue
homeostasis and repair. As shown in Fig. 6, NSAIDs
such as diclofenac, have relatively specific effects that
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Fig. 2 Venn diagrams of overlapping transcripts between diclofenac and Tr14 treatment. RNAseq quantitation (RPK10M) of transcript levels were

compared between diclofenac vs control and Tr14 versus control to identify differentially expressed genes (DEGs) for each treatment group (log2
fold-change >+ 0.5 with Benjamini-Hochberg adjusted p-value < 0.000001-0.001). The number of DEGs is shown for diclofenac (orange) and Tr14
(blue) at each of time points measured. The number of shared transcripts is shown in the overlapping area
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inhibit the constitutive and inducible COX enzymes,
leading to marked reduction in the downstream prod-
ucts PGI2, TBXA2, PGD2, and PGE2. This direct in-
hibitory effect has the effect of shunting AA into the
lipoxygenase pathway, which includes many pro-
inflammatory eicosanoids in the leukotriene pathway,
but also into the lipoxin pathway which could have
beneficial, pro-resolution effects. In contrast, Tr14 has
no direct inhibitory effect on COX enzymes, and be-
cause downstream mediators such as PGE2 are not
impaired, there is a normal and expected increase in
COX2/PTGS2 enzyme that is evident at the mRNA
level measured here. It is possible that the absence of
direct anti-COX activity by Trl4 allows the pro-
resolution eicosanoids in that pathway, such as PGI2,
PGD2, and PGE2 to exert normal repair functions in
proportion to the normal leukotriene and lipoxin
pathways.

Analyzing Tr14 DEGs as markers of migratory cell types in
the wound

While manually curating the Trl4 DEGs that were
strongly affected early after injury, there was an apparent
effect on transcripts that have been previously recog-
nized as markers of particular immune cell types. For ex-
ample, even at the 12-h time point, Trl4 produced
notable effects of up to 17-fold on transcripts associated
with T cells such as Dusp14, Fbpl, Ly6a, Ly86, and Sla2
(Table 1). Additionally, several of the Trl4-modulated

transcripts were known cell-type markers for the T regu-
latory subset (Treg), especially FoxP3 and Gata3. Other
markers, such as Defb4 (neutrophil) and caldesmon 1
(macrophage) suggest enhanced migration of other im-
mune cell types. While is possible that these transcripts
could also be a markers of other resident cell types, col-
lectively they seem to suggest differential migration of
immune cells into the wound.

These early, strongly modulated transcripts have a
common thread of potentially reporting the type of
cells that are entering the wound. Related DEGs were
also observed that effect cell-cell signaling, adhesion,
migration, and intercellular junctions in the wound.
As summarized in Fig. 7, these cell type markers may
be reporting the types of cells entering the wound,
and then other markers are reporting changes in the
way that they interact with the wound, especially by
altered cell-cell communication. For example, Duspl4
is T cell-associated transcript that negatively regulates
T cell receptor (TCR) activation [17]. Other tran-
scripts such as Fbpl are important in the Nrf2 stress
pathway, Stra6 is involved in vitamin A transport in a
murine psoriasis model [18], and 2 transmembrane
proteases (Tmprsslle/f) are involved in skin barrier
function. Other transcripts likely relate to altered
intercellular adhesion and migration of immune repair
cells, such as cathepsin E, which, as noted, is a neu-
trophil/T cell factor involved in antigen processing,
but is also involved in cell migration. Claudin 8
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Fig. 3 Treatment-dependent gene expression during the wound healing time course. Across all the time points and treatment conditions, 5615
transcripts were differentially expressed (p < 0.001). According to the time and treatment conditions, the differential expression levels were scaled
by row, and clustered

(Cldn8) is a known epidermal protein involved in
tight junctions, and was identified by RNAseq as be-
ing relevant to the immune response in atopic derma-
titis and psoriasis [19]. Other transcripts are likely
related to follicular (Pla2g2e, Prss53) and keratinocyte
(Exph5) adhesion and migration, and Pla2g2e has
been specifically related to skin disorders such as epi-
dermolysis bullosa and skin fragility [20].

Comparison of the present dataset to prior studies

The transcriptomic effects of diclofenac have been ex-
amined by others, and the present results were com-
pared with the transcriptome analysis of diclofenac
treatment of mice by Chung et al. [15]. These authors
examined the effect of a single, oral dose of diclofenac
(9.5 or 0.95 mg/kg body weight) on the liver transcrip-
tome at 6, 24, and 72 h post-treatment. RNA levels were
quantified by microarray, and then 2-way ANOVA was
used to identify DEGs. They identified 2 primary path-
ways that were affected, eicosanoid metabolism and
apoptosis, and the present results can confirm some of
the changes that they observed. Notably, in the

eicosanoid pathway, both studies observed induction of
the group 12* secretory phospholipase A2 isoform 1
(Pla2gl2a, similar to Fig. 5 Pla2g), which in the present
studies showed an overall 25% induction (p <0.005)
across the time course. In the apoptosis pathway, the
current studies confirm mild induction of the NFkB in-
hibitor (Nfkbib, 17% increase, p <0.05), caspase 1
(Caspl, 21% increase, p = 0.005) and the p53 tumor sup-
pressor (Trp53, 17% increase, p <0.05). Likewise, there
was modest reduction in lamin B2 RNA levels (Lmnb2,
33% decrease, p<0.05). Thus, while quite different
models, and transcriptome methods, there is some
agreement on the types of changes observed after diclo-
fenac treatment.

Likewise, Sass et al. [21], conducted an extensive
meta-analysis of the transcriptomic changes associated
with different injuries to several organ systems (heart,
liver, skin, bone, and spinal cord) in 3 different species
(rat, mouse, and human). Their aggregated results in the
form of gene ontologies affected over time during nor-
mal wound repair was compared to a similar analysis of
the present data using Trl4-treated wound, and the
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results are shown in Fig. 8. In general, there is excellent
correspondence between the data sets, suggesting that
prior microarray studies of normal wound repair identi-
fies the same gene ontologies as are regulated by Tr14 in
the current RNAseq studies.

Discussion

Transcriptome analysis of murine wound healing

The physiological process of wound healing provides an
informative and comprehensive model for approaching
the complexity of the tissue pathologies frequently in-
volved in chronic diseases. In many ways, tissues affected
by chronic diseases display physiological processes simi-
lar to those involved in wound healing, including the po-
tential for inflammation, fibrosis, and scarring. The
present studies examine the changes in genome-wide
RNA expression patterns resulting from both phyto-
chemical and NSAID therapeutics in the context of a
complex physiological wound repair process. This study
includes a dataset of over 4 billion sequence reads cover-
ing 250 animals, 4 conditions, and 8 time-points, making
it a valuable ongoing resource for defining the wound
repair process.

Pathways involved in wound repair

The initial GO enrichment analysis of this data set indi-
cated that Trl4 treatment results in extensive gene ex-
pression changes during wound healing, including well
known pathways such as TGEF-p, cytokine signaling, in-
flammation, collagen, and enzymes of the extracellular
matrix [3]. Interestingly, Trl4-treated mice revealed
broad and statistically significant changes in two Gene
Ontology groups of great importance to wound healing:
Cell Differentiation and Cell Mobility and Migration.
These signals may indicate effects upon resident fibro-
blasts and infiltrating immune cells, which could easily
have been overlooked in simpler experimental models,
or with methods that are not sensitive enough to detect
RNA changes in smaller subsets of cells.

A systems-level analysis of these pathways affected by
Trl4 and diclofenac suggested that there were relevant
differences in the COX/LOX pathway, which were fur-
ther explored in the present analysis. While it is com-
mon to divide eicosanoid metabolism into the COX and
LOX pathways, there is considerable interplay between
them, most notably in their shared use of the upstream
substrates such as arachidonate acid as shown in Fig. 5.
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Fold change Adjusted P-value Name Description Cell type Effect/Pathway
167 3.31E-08 Cald1 Caldesmon 1 Macrophage M2 mac infiltration
154.26 3.68E-04 Defb4 Defensin beta 4 Neutrophil innate immunity
1.28 3.37E-06 Dlg1 Discs Large MAGUK Scaffold 1 T/B/Dendritic antigen receptor
7.98 3.37E-02 Dusp14 Dual Spec. Phosphatase 14 T cell neg reg T cells
17.73 6.54E-04 Fbp1 Fructose-Bisphosphatase 1 T cell Nrf2 pathway

332 1.18E-14 Foxp3 Forkhead Box P3 T cell/Treg consensus marker
413 7.67E-01 Gata3 GATA Binding Protein 3 T cell/Treg FoxP3 system

1.83 2.31E-02 Ly6a Lymphocyte antigen 6A Lymphocyte consensus marker
220 349E-02 Ly86 Lymphocyte antigen 86 Lymphocyte consensus marker
1.72 3.13E-02 Mef2c Myocyte Enhancer Factor 2C Lym/Myocyte transcription factor
294 5.72E-18 Sla2 Src Like Adaptor 2 T cell TCR signaling

Clinically, it is widely held that the COX pathway pro-
duces ‘beneficial’ prostaglandins, such as prostacyclin,
which has potent vasodilatory and antiplatelet effects,
but also ‘inflammatory’ thromboxanes, such as TXA2,
which is vasoconstrictive, platelet aggregating, and pain
mediating (Fig. 6). The products of the LOX pathway
are principally thought to mediate inflammation,
bronchoconstriction, and pain, and thus selective inhibi-
tors of the LOX pathway have been tested in conditions
such as asthma and allergies [22].

The COX pathway

It is well established that injury-induced increases in
COX2 mRNA levels are due in large part to NFkB-
dependent transcriptional activity [23]. In diclofenac-
treated wounds, the COX2 induction is blunted, likely
because downstream products, especially PGE2, have
been inhibited, and cannot contribute positive feed-
back to COX2 transcription [24, 25]. Conversely,
Tr14 allowed normal induction of the COX2 enzyme,
which may have important implications for down-
stream products, such as the resolvins.

The LOX pathway

The leukotriene pathway has diverse effects on inflam-
mation and repair, and RNA levels of the enzymes have
established relationships to human disease. LTA4 hydro-
lase mRNA is elevated in conditions such as glomerular
inflammation, where immunocytochemistry confirms
elevation of the protein product during disease progres-
sion [26]. The LTA4 hydrolase promoter contains both
positive and negative regulatory elements, but the spe-
cific transcription factors have not been identified, al-
though both Nrf2 (NFE2) and Maf sites are present [27].
Likewise, GGT1 has a proximal Nfe2 site, and the
MGST1 promoter has a known response element for
oxidative stress and contains an antioxidant response
element/electrophile response element (ARE/EpRE) site

- 500 to the start site [28]. LTA4H is potentially a direct
target for natural product-derived inhibitors [29]. There
is suggestive evidence that plant quinones could directly
block 5-LOX (ALOXS5) enzyme activity, thereby blocking
LTA4 and LTB4 synthesis [30], but it is not apparent
how that direct inhibitory effect would affect the mul-
tiple ALOX transcripts modulated by Tr14.

The Nrf2 system as a candidate mediator of
phytochemical actions

Several members of the leukotriene pathway enzymes
that were altered by Trl4, such as MGST3 and Fbpl
(Table 1), contain antioxidant response elements (ARE)
that confer regulation by the transcription factor Nrf2
(NFE2L2) [28, 31, 32]. Leukotriene synthetic enzymes,
such as MGST3 [33] and GGT1 [34], have been identi-
fied as Nrf2 target genes, but GGT1 is also responsive to
TNEF-A-induced NFkB and Spl [35]. Nrf2 is known to
control multiple elements in the eicosanoid synthetic
pathway, typically via the ARE, as in the case of thromb-
oxane A2 synthase gene activation [36] and the prosta-
glandin reductase Ptgrl [37]. Interestingly, early
induction of Nrf2 by one of the rhomboid transcription
factors has been shown to mediate rapid cutaneous
wound healing [38].

Phytochemicals and the Nrf2 pathway

Plant phytoestrogens and dietary polyphenols are known
to regulate the Nrf2/Keapl interaction in a manner that
favors Nrf2 translocation to the nucleus, and Nrf2-
dependent transcription of target genes [39, 40]. Like-
wise, the inhibition of neuroinflammation by nut biofla-
vonoids has been attributed to the induction of the
Nrf2/ARE antioxidant system [41]. Interestingly, the
anti-inflammatory mechanism of the marine natural
product, honaucin A, has been attributed to activation of
the Nrf2/Keapl system via direct covalent modification
of the sulthydryl residues in Keapl [42]. Likewise, plant
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phenylpropanoid glycosides have been shown to modu-
late Nrf2-dependent heme oxygenase 1 (Hmox1, HO1)
transcription via regulating the balance of Nrf2 and
Bachl in human keratinocytes [43].

The NFkB pathway

In addition to the Nrf2 pathway, one must consider the
possibility that the NFkB pathway is altered by the
phytochemical treatments. Certain plant-derived isofla-
vanones, such as sappanone A, exert anti-inflammatory
effects through both the Nrf2 and NF-kB pathways [44].
Many of the pathway members, such as MGST3 are
modulated by both Nrf2 and NFkB [35], which compli-
cates the problem of dissecting the precise transcription
factors involved.

A “Phytocellular” theory: phytochemicals as modulators
of immune cell recruitment

In addition to the direct pharmacological effects of phy-
tochemicals on the transcriptional pathways of viable
cells that remain in a wound, it is potentially important
to consider whether phytochemicals could alter the types

of cells that respond to the injury. This was suggested by
relatively large changes in several transcripts that had
known relationships to particular immune cell types, es-
pecially T cells and the Treg subset. As summarized in
Fig. 7, phytochemicals include biologically active com-
pounds, such as polyphenols, retinoids, flavonoids, genis-
tein, and many others, that have documented effect on
the recruitment and activity of immune cells [45, 46]. In
addition to a direct effect on the activity of the infiltrat-
ing immune cells, it is essential to consider that these
same agents can alter the types of cytokines that are pro-
duced by the surviving resident cells in the wound, and
alter their production of chemotactic agents. As shown
schematically in Fig. 7, the healing wound must be con-
sidered in the context of an interplay between a range of
cell types that includes keratinocytes, fibroblasts, dermal
plasmacytoid dendritic cells, mast cells, neutrophils, B
cells, T cells, especially gamma/delta and Treg, and nat-
ural killer (NK) cells (see [47] for review).

There is extensive data to support the concept that
this cellular interplay is inseparable from the inflamma-
tory and resolving chemical signals. Broadly, pro-
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inflammatory components of wound repair must be
tempered by pro-resolution factors, or the result can be
a range of defects that ranges from chronic wounds,
autoimmunity, hypertrophic scarring and keloid forma-
tion [48]. If, as the current data suggests, phytochemicals
alter the type of cells that accumulate in the wound dur-
ing repair, then there is a plausible explanation for their
observed beneficial effects. In this ‘phytocellular’ frame-
work, it is interesting to speculate that if Tr14 were to
increase the timely infiltration of Treg cells, this could
limit the pro-inflammatory effects of tissue damage. Fu-
ture studies will require detailed RNA in situ
hybridization and immunochemistry studies at selected
time points to evaluate this hypothesis.

Conclusions

e The biological effects of Tr14, a multicomponent
drug, are largely different than diclofenac, and
impact different subsystems in the COX/LOX
pathways during wound repair.

e Diclofenac, but not Trl4, inhibits COX-2 mRNA in-
duction by blocking downstream PGE2 production.

e Trl4, but not diclofenac, reduces mRNA levels in
the leukotriene synthetic pathway, possibly by
activating the Nrf2/KEAP2 pathway.

e Trl4 causes a transcriptomic signature that is
consistent with alterations in the types of cells that
are present in the wound, and appears most

consistent with elevated Treg composition in Tr14-
treated wounds.

Methods

Wound healing model

The overall experimental workflow and data analysis is
shown in Fig. 1. Animal care and use was approved by
the Nantong University Animal Care Committee and
complied with all relevant guidelines for humane use.
The ICR strain of mice in the age range of 4—6 weeks,
approximately 20 g each, was used for the wound healing
studies. The skin abrasion model is based closely on
prior published work that documents the histological
changes over time and in response to laser stimulation
[49]. Under sedation (ketamine 100 mg/kg, xylazine 10
mg/kg IP), the mouse dorsal/scapular region was shaved
and then a 1. cm?® area was wounded by rotary abrasion.
The abrasion results in a partial-thickness wound with
removal of the epidermis and part of the dermis, with a
mild superficial bleeding response that quickly scabs,
does not require analgesia post-operatively. In prior pub-
lications, the temporal association between the histo-
logical/cellular stage of repair and gene expression is
reported in this same model [3].

To optimize its effect, Tr14 was introduced as sub-
cutaneous injections of 0.1 ml (9.5 ml/ml) in the region
around the wound, without sedation, with twice daily
topical treatment (34 mg/ml) to the wound (TTI group)
and compared to mice treated with saline injections (SI).
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Diclofenac was applied at clinically relevant doses of 2
mg/ml. The diclofenac group (DT) and its control group
(PT) did not receive sc injections. A standardized 1 cm?
piece of affected skin was recovered by sacrifice, via
ketamine/xylazine overdose and cervical dislocation, at
specific times: 0, 12, 24, 36, 72, 96, 120, and 192 h after
injury. Tissue was stored in RNAlater at —80°C until
RNA was isolated as described below. Each time point of
each treatment or control group included 7 mice.

Isolation of Total RNA from tissues

Total RNA from tissue samples and cell lines was ex-
tracted using TRIzol (Invitrogen) using the manufac-
turer’s protocol. The sample was homogenized with a
Tissue Tearer rotary blade device while suspended
within an appropriate volume (10x sample volume) of
TRIzol [50]. After 10 min at room temperature, the sam-
ples were centrifuged to remove insoluble material and
the supernatant transferred to a fresh tube. Chloroform
(0.2X TRIzol volume) was then added to the contents of
the new tube and vigorously vortexed. Samples were
then centrifuged for 15min at 12,000 x g at 4°C. The
upper aqueous phase, which contains RNA, was then
carefully transferred to a new tube. The addition of iso-
propyl alcohol (0.5X TRIzol volume) to the samples
followed by a 10-min room temperature incubation and
a subsequent 10-min centrifugation at 12,000 x g at 4 °C
precipitated the RNA into a gel-like pellet at the bottom
of the tube. After the removal of the supernatant, the
pellet was washed twice in 1 ml of ice-cold 75% ethanol.
The resulting pellet of RNA was then allowed to dry for
10 min and then resuspended in DEPC-treated water.
The quantity of the resulting RNA was measured by the
absorbance at 260 nm, and the relative contamination
with proteins was measured by the ratio of optical dens-
ity (OD) at 260/280 on a NanoDrop instrument
(Thermo Scientific). A ratio greater than 1.8 is desirable.

Depletion of genomic DNA (gDNA) and ribosomal RNA
(rRNA)

In addition to messenger RNA (mRNA) and non-coding
RNA (ncRNA), total RNA extracted from tissue samples
contain large quantities of ribosomal RNA (rRNA),
transfer RNA (tRNA) and residual amounts of genomic
DNA (gDNA). The sequencing reads are used most effi-
ciently if the rRNA and gDNA is depleted prior to
sequencing.

DNAse treatment

Total nucleic acid from the TriZol step is first DNase-
treated to remove any residual DNA. Approximately
40 pg of total RNA (with 20 pl 10x buffer, 4 ul DNase 1
(Ambion), 2 ul Rnase-out (Invitrogen) in a total volume
of 200 ul) is incubated for 30 min at 37 °C. Samples are
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then cleaned using the RNeasy MinElute cleanup kit
(Qiagen) following manufacturer’s protocol. In brief,
700 ul Buffer RLT and 500 pl 100% ethanol are added to
the sample which is then added to a MinElute spin col-
umn. The columns are washed with 500 ul Buffer RPE
followed by 500 pl 80% Ethanol. After an additional 2-
min centrifugation to remove any residual ethanol, the
sample is eluted in 14 pl DEPC treated water. The qual-
ity of RNA was then assessed using an Agilent 2100
Bioanalyzer and the RNA 6000 Nano Kit (Agilent) using
manufacturer’s protocol and the sample was quantified
using a Nanodrop, as described above.

rRNA depletion

Samples were depleted of ribosomal RNA through the
use of the RiboMinus Eukaryote Kit for RNA-Seq (Invi-
trogen) following the manufacturer’s protocol. In brief,
10 pg of sample RNA (in a total of 10 ul) were incubated
with 10 ul RiboMinus probe and 100 ul Hybridization
Buffer for 5 min at 75°C then allowed to slowly cool to
37°C over the course of 30 min. The RiboMinus probe
contains 5° biotinylated Locked Nucleic Acid probes
that are complementary to conserved eukaryotic 5S,
5.8S, 18S and 28S ribosomal sequences. Streptavidin-
coated RiboMinus Magnetic Beads were washed once in
water, resuspended in hybridization buffer, separated
into two aliquots and kept at 37 °C until use. Sample was
added to the prepared beads and incubated at 37 °C for
15 min with occasional agitation. The beads were placed
on a magnetic separator and the supernatant containing
the enriched RNA was removed and added to the second
aliquot of beads and the protocol repeated. The final
supernatant (~ 320 ul) was precipitated using 1 pl glyco-
gen (Invitrogen), 30 pl 3M sodium acetate and 75 pl
100% ethanol. The mixture was incubated at — 80 °C for
1h and then centrifuged for 15 min at 12000 x g at 4 °C.
The pellet was washed twice with cold 75% ethanol, air
dried for 5min and then resuspended in 30 ul DEPC-
treated water. Quality of RNA was then re-assessed
using an Agilent 2100 Bioanalyzer and their RNA 6000
Pico Kit (Agilent) using manufacturer’s protocol and the
sample was quantified using a Nanodrop as per above.

Transcriptome sequencing sample preparation

A published description of the single-molecule sequen-
cing methodology for transcriptome quantification is
described by Lipson et al. [51]. A brief summary follows.

Complementary DNA (cDNA) synthesis

Complementary DNA (cDNA) from rRNA-depleted
RNA was prepared using the Superscript III cDNA syn-
thesis kit (Invitrogen). In brief, 200 ng of RNA was re-
suspended in 17 pl nuclease-free water and heated at
95°C for 5min to fragment the RNA and thus improve
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the eventual evenness of coverage. Random hexamers
(10 pl of 50 ng/ul) and dNTPs (2 pl of 10 mM mix) were
added to the RNA and the mixture was heated to 65°C
for 5min, and then placed on ice for 2 min. A mixture
of 10X buffer (5ul), 0.0 M DTT (1ul) and 25mM
MgCl2 (10 ul) was added to the tube and the mixture
was incubated at 15°C for 20 min. A mixture of Rnase-
Out (2.5 ul) and SSIII reverse transcriptase (2.5 pul) was
then added to the tube and the sample incubated (25 °C
10 min, 40°C 40 min, 55°C 50 min, 85°C 5min, 4°C
hold). The RNA remaining in the sample was then de-
graded by the addition of 1l RNase H and 1 pl RNase
If (New England Biolabs, M0243L). The resulting cDNA
was then purified by the serial use of two Performa Gel
Filtration Columns (EdgeBio, 42,453). The concentration
of the resulting cDNA was then quantified using the
Nanodrop as previously described [51].

Poly a tailing

This step adds 3" poly-A tails to the cDNA, which facili-
tates hybridization to the flow cell for sequencing. Using
100 ng of the prepared cDNA in 28 pl water, 5 pl Helicos
PolyA Control Oligos are added and the mixture incu-
bated at 95 °C for 5 min followed by a 2-min ice incuba-
tion. A mixture of CoCl (5ul), 10X TdT buffer (5 pl)
Helicos PolyA tailing dATP (5 ul) and Terminal Trans-
ferase (2 ul) was then added to the sample with thorough
mixing. The samples were then incubated (42 °C, 60 min,
70 °C 10 min, 4 °C hold). The success of the polyA tailing
was determined through the use of a 3730 DNA
Analyzer (Applied Biosystems, 3730S) following manu-
facturer’s procedures. In brief, 1 pul of sample was added
to 8.9 ul formamide and 0.1 pl GeneScan-120 LIZ Size
Standard (Applied Biosystems, 4,324,287), and the sam-
ples were denatured at 95 °C for 2.5 min then cooled on
ice and run on the machine [51].

3' blocking and tailing oligo removal

After addition of poly A tail, the 3" tail of the cDNA
sample is then blocked, and the tailing oligo is removed.
The sample is denatured at 95 °C for 5 min followed by a
2-min incubation on ice. 0.4yl biotinylated ddATP
(Perkin Elmer) and 2pl Terminal Transferase (New
England Biolabs) are added and the samples incubated
(37°C 60min, 70°C 10min). The sample is then
digested with 1 pl USER enzyme (New England Biolabs)
at 37 °C for 30 min [51].

Sample cleanup

The samples obtained from prior steps are then cleaned
up using AMPure Beads (Beckman Coulter). The beads
are allowed to equilibrate at room temperature for 30
min before use. Each probe sample is then brought up
to a total volume of 60 pl and mixed with 72 ul AMPure
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beads and incubated at room temperature for 30 min
with occasional mixing. Using a magnetic stand, the
beads are then collected, and the beads are washed twice
with 500 pl 70% ethanol. After the final wash the beads
are allowed to dry for 5-10 min to remove all traces of
ethanol. The beads are then suspended twice in 20 ul TE
buffer and the supernatant containing the probes re-
moved to a clean tube each time after 5 min on the mag-
netic stand. Samples are then precisely quantified using
the OptiHyb procedure. In brief, oligo-dT coated mRNA
Catcher Plus plates (Invitrogen) are used to collect repli-
cates of 2 ul of sample in 48 pl hybridization buffer (1x
SSC, 0.5% SDS). After a one-hour incubation at 37 °C
the plates are washed 3x in Wash Buffer B (150 mM
HEPES, 0.1% SDS, 1X SSC) then blocked for 15 min at
room temperature in Blocking Buffer (0.1 M Tris pH 7.6,
0.15M NaCl, 0.5% Casein). Streptavidin-HRP conjugate
(Thermo Fisher) is added to Block buffer and the plates
are incubated in that mix for 1h at room temperature.
After 3 washes in Wash Buffer 2 (0.1 M Tris pH 7.6,
0.15M NaCl, 0.05% Tw20) the plates are dried and then
incubated for 30 min in the dark with TMB Chromo-
genic Substrate (Sigma). Upon addition of 1N HCI the
samples are then measured at 450 nm on an EnVision
Multilabel Reader (PerkinElmer). Concentrations were
determined by comparison to a control dilution on the
same plate.

Sample loading

After the measurements, the samples are loaded onto
the flow cells. In brief, appropriate quantities of samples
are diluted into hybridization buffer. The flow cells are
then rehydrated for 3h and brought to 55°C. The flow
cells are then equilibrated with loading buffer and then
the samples are loaded and allowed to hybridize for 1 h
to the flow cells, which are coated with oligo dT that hy-
bridizes the polyA tails of the samples. The flow cells are
then repeatedly washed to remove excess sample. A sin-
gle fluorescent nucleotide is then added to each of the
annealed probes on the flow cell so that, upon loading
into the Heliscope, the location of each individual sam-
ple molecule can be determined. The flow cells are then
loaded into the Heliscope and subsequent sequencing is
automated [51].

Sequencing operation and monitoring

Once the flow cells are loaded onto the SeqLL SMS, se-
quencing chemistry begins. Fluorescently labeled nucleo-
tides are added one at a time to the flow cells. These
nucleotides bind to complementary bases on the cDNA
strand, whose 3" Poly A tail is hybridized to the oligo dT
probes in the flow cell. Unbound nucleotides are then
washed away. Bound fluorescent nucleotides emit light
under a laser beam, which is captured by a CCD camera.



St. Laurent et al. BMC Genomics (2021) 22:854

This determines which nucleotide is incorporated and
the position in the template. The fluorescently labeled
portion of the nucleotide is then cleaved off. The process
is repeated for all four nucleotide bases and continued
until a sequence read of desired read length is obtained.
On average 35 nt. reads are generated with a throughput
of 105 to 140 megabases per hour.

Bioinformatics data analysis

Filtering and alignment

Each channel produces an average of 45 million total
reads, which are then filtered as previously described,
using the Helisphere software (v 1.2.740) to remove low
complexity sequences and sequencing artifacts [52]. Low
complexity sequences, such as poly A, and short reads
under 25 nucleotides are removed by this process. Reads
were aligned to mouse genome mml0 combined with
SILVA ribosomal RNA reference sequences (LSUr123,
SSUr123). To avoid ambiguity, we selected uniquely
aligned reads only. The number of reads spanned the
exon intervals of known transcripts were calculated
using a custom perl script. The sum of exonic reads
counts for each transcript is treated as raw Digital Gene
Expression (raw DGE). Out of 138,930 transcripts we se-
lected only one per gene using the following criteria: a)
one transcript with maximum exon lengths was selected
for each gene, b) the transcripts with names started from
“Gm” and “Rik” were removed. At the end of the pipe-
line 25,482 genes/transcripts remained. With mapping
data as input, transcript expression levels are calculated
and presented in units of RPK10M (reads per thousand
(K) nucleotides length of transcript, per 10 million reads
captured per sample.) Previous studies confirm that
quantitative expression levels generated by this process
meet or exceed quality levels of microarray data, as mea-
sured by RT-PCR validation [53].

Differentially expressed genes (DEG)

We calculate fold change and p-value (probability to get
that or better fold change by chance) for each of 138,930
transcripts when comparing between two different con-
ditions (i.e. diclofenac vs topical placebo). Fold change is
log2 scaled. To normalize raw DGE counts and calculate
p-values, the DEseq2 Bioconductor software package
(version 1.22.2) was employed [54]. An over-dispersed
Poisson model was used to account for both biological
and technical variability. To calculate p-values the Likeli-
hood ratio test (LRT) option was used. It allows to iden-
tify any genes that show change in expression across the
different time points. Benjamini-Hochberg method was
used to correct the p-values for multiple testing. DEGs
in the comparison of Diclofenac versus it’s control were
defined through transcripts with adjusted p-value less
than 107°. To define DEGs of Trl4 versus control the
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adjusted p-value cutoff 10”2 was applied. The transcripts
with names started from “Gm” and “Rik” were removed
from DEGs list. In total 5615 transcripts (corresponding
to 2218 genes) remained in the joint list of Diclofenac
and Tr14 DEGs (Suppl. Table 1).

Transcriptome data analysis

Using data analysis generated above, several systems-
level analyses were performed. To understand the corre-
lations and patterns among different elements of the
transcriptome, DEGs are mapped to their respective bio-
logical pathways and Gene Ontology (GO) categories
[55]. Changes enriched in individual pathways or ontol-
ogies are tested for their statistical significance. GO cat-
egories that have a number of hits greater than expected
by chance with adjusted p-value less than 0.05 are listed
in the results. P-value is calculated using Hypergeo-
metric model and adjusted for multiple testing using the
Benjamini-Hochberg method.
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