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Abstract

Background: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and
frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and
specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is
computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity.
Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet
each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach
currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to
increase the accuracy of identifying fusions.

Results: Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap,
FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker
and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as
input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three
algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely
artifactual fusions occurring at high frequencies in our internal cohort, while a “known fusion list” prevents failure to
report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with
pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central
nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an
ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions
among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following
clinical confirmation and reporting in the patient’s medical record, both known and novel fusions provided medically
meaningful information.
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Conclusions: The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of
sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in
pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating
targeted therapies.
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Background
Globally, there are approximately 300,000 pediatric
and adolescent cases of cancer diagnosed each year
[1, 2]. While advances in medicine have led to a dras-
tic improvement in 5-year overall survival rates (up to
84% in children under 15), pediatric cancer remains
the most common cause of death by disease in devel-
oped countries [3, 4]. Pediatric cancers are defined by
a distinct genomic landscape when compared to adult
cancers, which includes an overall low number of
somatic single nucleotide variants, common driver
fusions and epigenetic changes that drive a specific
transcriptional program. Pediatric cancers are often
considered embryonic in origin and demonstrate a
significant germline predisposition component ap-
proaching 10% [5–7].
Many pediatric tumors contain gene fusions resulting

from the juxtaposition of two genes (Additional File 1: Fig.
S1) [6]. Fusions typically occur through chromosomal rear-
rangements, and often lead to dysregulated gene expression
of one or both gene partners [8–11]. Fusions can also gen-
erate chimeric oncoproteins, wherein functional domains
from both genes are retained, often leading to aberrant and
strong activation of nonspecific downstream targets [12].
The alterations in gene expression and activation of down-
stream targets induced by fusions are considered to be
oncogenic events in pediatric cancer and increasingly may
indicate response to specific targeted therapies.
The identification of an oncogenic fusion can provide

medically meaningful information in the context of diag-
nosis, prognosis, and treatment regimens in pediatric can-
cers. Fusions may provide diagnostic evidence for a
specific histological subgroup. For example, EWSR1-FLI1
fusions are highly associated with Ewing sarcoma, while
the presence of a ZFTA-RELA fusion aids in subgrouping
supratentorial ependymomas [12]. The detection of cer-
tain fusions, such as BCR-ABL in acute lymphocytic
leukemia, can be used as a surrogate for residual tumor
load and treatment response [13]. Fusions may also pro-
vide prognostic indication, such as KIAA1549-BRAF in
low grade astrocytomas, which have a more favorable out-
come compared to non-BRAF fused tumors [14, 15]. In
addition, fusions that involve kinases can present thera-
peutic targets, including FGFR1-TACC1, FGFR3-TACC3,
NPM1-ALK, and NTRK fusions [2, 12, 16–19].

However, regardless of the clear clinical benefits of
characterizing fusion events in a given patient’s tumor,
accurate identification of fusions from next generation
sequencing DNA data alone is not straightforward and
they often go undiscovered. In particular, many fusions
are not detectable by exome sequencing (ES) due to
breakpoint locations that frequently occur in non-coding
or intronic regions which may not have corresponding
capture probes. Even whole genome sequencing (WGS)
NGS data has proved difficult to evaluate complex rear-
rangements resulting in gene fusions due to a high false
positive rate and due to the limitations of short read
lengths [20, 21]. By contrast, next-generation RNA se-
quencing data, or RNA-Sequencing (RNA-Seq), offers an
unbiased data type suitable for fusion detection, while
also providing information about the expression of fu-
sion transcripts, including multiple isoforms, and fusions
that occur due to aberrant splicing events [22, 23].
While RNA-Seq is a powerful tool for fusion detection,

it is not without its limitations. Notably, there is currently
a major deficit in our ability to accurately identify fusions
in spite of having many computational approaches avail-
able. Here, consistently identifying gene fusion events with
high sensitivity and precision using one algorithm is un-
likely and this is of critical importance in a clinical diag-
nostic setting [12]. Computational approaches that have
been tuned for high sensitivity are limited by also calling
numerous false positives, requiring extensive manual re-
view of data, while those with a low false discovery rate
(FDR) often miss true positives due to over-filtering [12].
To overcome these complications of sensitivity and speci-
ficity, we have employed an ensemble pipeline, which
merges results from seven algorithmic approaches to iden-
tify, filter and output prioritized fusion predictions.
Another common issue encountered in fusion predic-

tion is the identification of likely non-pathogenic fusions,
due both to read-through events and fusions occurring
in non-disease involved (normal) genomes [12, 24, 25].
We addressed these sources of false positivity through
the implementation of a filtering strategy that removes
known normal fusions and RNA transcription read-
through events, based on internal frequency of detection
and location of chromosomal breakpoints. Lastly, to pre-
vent over-filtering and inadvertent removal of previously
described known pathogenic fusion events, we have
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developed and continually update a list containing
known pathogenic fusion partners, that will return any
data-supported fusions to the output list of prioritized
fusion results for further evaluation.
The ensemble fusion detection pipeline outperformed

all single algorithm methods we evaluated, achieving
high levels of sensitivity, while simultaneously minimiz-
ing false positive calls and non-clinically relevant fusion
predictions. Here, we describe our ensemble fusion de-
tection approach, which we have named Ensemble Fu-
sion (EnFusion), its performance on commercial control
reference standards with known fusions, and its imple-
mentation on a pediatric cohort consisting of rare, treat-
ment refractory, or relapsed cancers and hematologic
diseases, as well as a secondary clinical acute myeloid
leukemia (AML) cohort. Utilization of EnFusion resulted
in a diagnostic yield of approximately 30% in our cohort,
identified novel fusion partners, and has provided diag-
nostic information and/or targeted treatment options for
this patient population.

Results
Development and optimization of ensemble pipeline on a
control reference standard
Identification of gene fusions through the use of a single
algorithm is often associated with low specificity and
poor precision [12]. Given prior literature supporting
multi-algorithmic approaches to improve upon these
deficits, we studied the intricacies of several fusion de-
tection algorithms, and applied a defined set of algo-
rithms with desired properties, aimed at detecting true
positive fusions while minimizing false positive fusions
[25–28]. After evaluating each algorithm’s output, we
developed the EnFusion pipeline that combines output
consensus calls from seven different computational

approaches (Table 1, Fig. 1A), calculates the concordant
fusion partners and breakpoints, and filters this output
list based on internal frequency, reads of evidence, and
breakpoint location. A list of known pathogenic fusions
rescues any known pathogenic fusion gene partners with
suitable algorithmic and read support for further evalu-
ation (Additional File 1: Table S1).
To optimize the approach, we utilized a reference

standard from a commercial provider (Seraseq Fusion
RNA, SeraCare, Milford, MA), containing synthetic
RNAs representing 14 cancer-associated fusions in vary-
ing proportions (Additional File 1: Tables S2 and S3).
Data generated from these RNA-Seq libraries, performed
as replicates for a range of dilutions, were analyzed using
the ensemble pipeline. We compared the output derived
from a consensus of two or more callers to that from a
consensus of three or more callers by calculating sensi-
tivity (# of Seraseq fusions identified)/(14 possible Sera-
seq fusions), and precision (# of Seraseq fusions
identified)/(# of total fusions identified) prior to filtering
or known fusion list comparison. The undiluted refer-
ence standard with consensus of at least two callers, had
a sensitivity of 100% and precision of 35%. Inclusion of
the knowledgebase filtering step reduced the sensitivity
to 85.7% while increasing the precision to 77.4%, and the
known fusion list rescue step increased sensitivity to
100% and precision to 80% (Additional File 1: Table S4,
Fig. S2A). By increasing the consensus requirement to
three callers, rather than just two, the prefiltered sensi-
tivity was 100% and precision was 90.3%. Inclusion of
the filtering step reduced the sensitivity to 85.7% while
increasing the precision to 100%, and known fusion list
rescue increased sensitivity to 100% and precision to
100% (Table 2; Additional File 1: Fig. S2A). The inclu-
sion of the known fusion list prevented the removal of

Table 1 Performance comparison of individual fusion calling algorithms. Fusion calling algorithms utilized by EnFusion and their
contributions to fusion calling in the NCH pediatric cancer and hematologic disease cohort

Tool Version Aligner Reference Average fusions
called per case

Sensitivity (clinically relevant
fusions called out of 67)

Arriba v1.2.0 STAR aligner Uhrig et al., 2021 [29]
Genome Res

54 88.1% (59)

CICERO v0.3.0 candidate SV (structural variant)
breakpoints and splice junction

Tian et al., 2020 [30]
Genome Biol

1909 92.5% (62)

FusionMap v
mono-
2.10.9

GSNAP (Genomic Short-read Nucleotide
Alignment Program) - 12mer based

Ge et al., 2011
Bioinformatics [31]

34 86.6% (58)

FusionCatcher v0.99.7c 4 aligners to identify junctions (Bowtie,
BLAT, STAR, and Bowtie2)

Nicorici et al., 2014
[32] bioRxiv

1554 89.6% (60)

JAFFA direct
v1.09

BLAT, uses kmers to selects reads that do
not map to known transcripts

Davidson et al., 2015
[33] Genome Med

1134 97.0% (65)

MapSplice v2.2.1 approximate sequence alignment
combined with a local search

Wang et al., 2010 [34]
Nucleic Acids Res

37 85.1% (57)

STAR-Fusion v1.6.0 STAR aligner Haas et al., 2019 [25]
Genome Biol

71 94.0% (63)

LaHaye et al. BMC Genomics          (2021) 22:872 Page 3 of 16



known Seraseq fusions, due to too few reads of evidence
or number of callers providing support, as well as a sin-
gle Seraseq fusion, EML4-ALK, which was present at an
artificially high frequency in our database (31.8%) due to
false positive calls by FusionCatcher. Implementation of
the known fusion list led to sensitivity scores of 100%
for both levels of caller consensus. The individual fusion
detection algorithms ranged in sensitivity and precision,
and while certain algorithms maintain high levels of sen-
sitivity in addition to moderate levels of precision, such

as STAR-Fusion (sensitivity = 100%, precision = 43.8%),
others such as FusionCatcher (sensitivity = 92.9%, preci-
sion = 4.3%) and CICERO (sensitivity = 100%, precision
1.1%) had high levels of sensitivity with very low preci-
sion levels (Table 2; Additional File 2: Table S4). When
considering the overall results from undiluted and serial
dilutions of the reference standard, the required overlap
of at least three callers, with filtering and utilization of
the known fusion list, led to significantly fewer total fu-
sions identified compared to two consensus callers (p =

Fig. 1 The EnFusion pipeline identifies true positive fusions. A The EnFusion approach identifies fusions in RNA-Seq data by overlapping results
from Arriba, CICERO, FusionCatcher, FusionMap, JAFFA, MapSplice, and STAR-Fusion. It hierarchically prioritizes and filters the fusions utilizing an
in-house PostgreSQL database and knowledge-base, prior to producing an output list of predicted fusions. In many cases, detected fusions were
orthogonally tested by clinical confirmation in order to return a medically meaningful result. B The EnFusion pipeline was tested on a dilution
series of a reference control reagent (SeraCare) to determine sensitivity and limit of detection. We optimized the pipeline using the undiluted
reference control reagent, identifying that by requiring ≥3 callers to have overlap for a detected fusion, and by utilizing filtering of known false
positive fusion calls and cross-referencing a list of known fusions, all 14 fusions were identified. Colors representing different fusions present in
the Seraseq v2 reagent are ordered by their absolute proportions. We then applied the optimized pipeline to the dilution series, showing that the
numbers of identified fusions were reduced in serial dilutions, and no fusions were identified in the negative control. All images depicted in the
associated figure are the authors’ own and not taken from another source

Table 2 Improved precision in fusion detection, utilizing Seraseq controls, achieved by EnFusion. Data shown is from undiluted
Seraseq v3 RNA-Seq, experiments performed in duplicate, averages are shown. Individual algorithms are listed by precision, in
descending order. Seraseq fusions identified (true positive) are out of a possible 14 fusions

Algorithm Total fusions identified Seraseq fusions identified Sensitivity Precision

Arriba 23.5 13 92.9% 55.3%

MapSplice 22 12 85.7% 54.6%

STAR-Fusion 32 14 100.0% 43.6%

FusionMap 30 12.5 89.3% 41.7%

FusionCatcher 299.5 13 92.9% 4.3%

JAFFA 470.5 12.5 89.3% 2.7%

CICERO 1323 14 100.0% 1.1%

EnFusion 2 callers 40 14 100.0% 35.0%

EnFusion 2 callers
+ filter

15.5 12 85.7% 77.4%

EnFusion 2 callers
+ filter + known fusion list

17.5 14 100.0% 80.0%

EnFusion 3 callers 15.5 14 100.0% 90.3%

EnFusion 3 callers
+ filter

12 12 85.7% 100.0%

EnFusion 3 callers
+ filter + known fusion list

14 14 100.0% 100.0%
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2.34E-07) (Table 2; Additional File 1: Fig. S2B, Table
S5). The EnFusion results obtained from various refer-
ence standard dilutions, with a minimum of three callers
in consensus, using filtering and known fusion list rescue
are shown (Fig. 1B; Additional File 2: Table S4). The op-
timized EnFusion pipeline, consisting of a consensus of
three callers, filtering, and the known fusion list, main-
tained high levels of sensitivity, (at least 90.5%), while
maintaining 100% precision as low as the 1:500 dilution
of the reference standard (Additional File 2: Table S4).
In addition to the high levels of sensitivity and precision,
the total number of fusions identified by this optimized
EnFusion pipeline in undiluted and diluted samples was
significantly fewer than the number identified by individ-
ual fusion detection algorithms, including STAR-Fusion
(p = 1.77E-12), CICERO (p = 3.39E-14) and Fusion-
Catcher (p = 1.00E-08) (Additional File 1: Table S5).
These results highlight the removal of false positive fu-
sions, which includes artifactual and benign fusion
events, and subsequent reduction in manual evaluation
requirements (Additional File 1: Fig. S2C, S2D). Notably,
we only considered the 14 Seraseq synthetic fusions as
true positives, therefore our precision statistics consider
all other fusions to be false positives. While additional
fusions may exist within the GM24385 cell line, these
events are filtered out in the optimized EnFusion ap-
proach due either to high frequency across our cohort
or supporting read evidence below our minimum thresh-
old, suggesting that these fusions are likely artifactual or
commonly occurring, and thus not clinically relevant.
To further benchmark our approach, we utilized an

external cohort of adult acute myeloid leukemia (AML)
samples (n = 11) containing known, clinically relevant
fusions as true positives. Nine of the AML samples each
contained a previously identified and clinically relevant
fusion, identified by karyotyping and expert review by a
clinical cytogeneticist. Utilizing the conditions optimized
by the control reference standards, EnFusion successfully
identified each of the nine clinically relevant fusions,
resulting in 100% sensitivity. Two of the AML samples
in this cohort did not have an identified fusion prior to
EnFusion analysis, which identified a clinically relevant
fusion. Upon reanalysis of the karyotyping results, a clin-
ical cytogeneticist confirmed both EnFusion findings.
(Additional File 1: Table S6). Additionally, we tested the
specificity of our approach by utilizing negative control
data generated by Benchmarker for Evaluating the Ef-
fectiveness of RNA-Seq Software (BEERS) [35]. We gen-
erated two control datasets and utilized a previously
published BEERS negative control dataset [28, 33].
EnFusion achieved high levels of specificity, identifying
only one false positive across the three datasets, whereas
the individual callers identified between 3 and 301 false
negatives (Additional File 1: Table S7).

Implementation of the ensemble approach on an in-
house pediatric cancer and hematologic disease cohort
Having demonstrated the efficacy of the optimized EnFusion
pipeline using synthetic fusion samples, we further evaluated
the utility of the pipeline on RNA-Seq data obtained from
229 patient samples, obtained from three prospective
pediatric cancer and hematologic disease studies at Nation-
wide Children’s Hospital (NCH) (Additional File 1: Fig. S3).
Our approach identified significantly fewer total predicted fu-
sions post-filtering, compared to all other single callers
(Fig. 2A; Additional File 1: Table S8). Applying the known
fusion list rescue altered the average number of fusions iden-
tified overall, as an average of 4.00 fusions per case were
identified by 3 or more callers, while an average of 4.05 fu-
sions were identified by 3 or more callers after applying the
known fusion list; a total of 10 fusions were rescued by this
approach, of which 1 (KIAA1549-BRAF; Additional File 3:
Table S9) was clinically relevant. The retained KIAA1549-
BRAF fusion was identified by three callers but was initially
filtered out due to too few reads of evidence, possibly due to
either low expression, low tumor cellularity or clonality.
While the inclusion of the known fusion list increases false
discovery, the benefit of increased sensitivity, through the
rescue of filtered out clinically relevant fusions, greatly out-
weighs this slight decrease in specificity. In total, 67 clinically
relevant fusions, identified in 67 different cases, (33 CNS, 7
heme, and 27 solid tumors; Additional File 1: Fig. S4A) were
discovered using the optimized EnFusion pipeline with auto-
mated filtering, including the known fusion list feature, and a
consensus of three callers (29.3% of tumors contained a clin-
ically relevant fusion). Regardless of source material, there
was roughly a 30% yield; with clinically relevant fusion identi-
fication in 44 of 148 frozen samples (30% yield), 19 of 68
FFPE samples (28% yield), and 4 of 13 other samples (31%
yield), which included blood, cerebral spinal fluid, or bone
marrow (Additional File 1: Fig. S4B). No single fusion detec-
tion algorithm was able to identify all 67 fusions. While
JAFFA was the most sensitive algorithm, identifying the most
clinically relevant fusions (65 out of 67), it also had one of
the highest average numbers of fusions identified per sample,
1134 fusions, indicating a large number of likely false posi-
tives (Fig. 2B; Additional File 1: Table S8). Identified fusions
were broken down into 4 types: Interchromosomal Chimeric
(n = 30), Intrachromosomal Chimeric (n = 29), Loss of Func-
tion (n = 3), and Promoter Swapping (n = 5) (Fig. 2C). Of the
67 clinically relevant fusions, seven were considered novel
events, defined as a gene fusion involving two partners not
previously described in the literature at the time of identifica-
tion (Fig. 2D). Of the 67 fusions detected, 43 (64.2%) were
identified by all seven callers, 56 (83.6%) were identified by
≥6 callers, 60 (90%) were identified by ≥5 callers, 64 (96%)
were identified by ≥4 callers, and 67 (100%) were identified
by ≥3 callers. (Fig. 2E). One sample experienced an unresolv-
able failure of FusionMap, likely due to high sequencing read
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number. Results from the remaining callers, which success-
fully completed for this sample, were still included in our
analysis. These results highlight the ability of the optimized
EnFusion approach to identify gene fusions with a high level
of confidence and a reduced number of false positive predic-
tions, while preventing over-filtering by comparison to a list
of known pathogenic fusions.

Clinical impact of fusion prediction
An RBPMS-MET fusion in an infantile fibrosarcoma-like
tumor
A female infant presented with a congenital tumor of
the right face. Histologically, the tumor consisted of vari-
ably cellular fascicles of spindle cells with a nonspecific
immunohistochemical staining profile, suspicious for in-
fantile fibrosarcoma. However, the tumor was negative

for an ETV6-NTRK3 fusion, one of the defining features
of infantile fibrosarcoma [36]. RNA-Seq of the primary
tumor and EnFusion analysis revealed an RBPMS-MET
fusion as the only consensus call. By contrast, the indi-
vidual callers identified numerous fusions as follows:
Arriba: 16, CICERO: 2142, FusionMap: 29, Fusion-
Catcher: 3907, JAFFA: 1130, MapSplice: 18, and STAR-
Fusion: 20 (Fig. 3A, Additional File 3: Table S9). RBPMS,
an RNA-binding protein, and MET, a proto-oncogene
receptor tyrosine kinase, have been identified as fusion
partners in a variety of cancers with other genes and as
gene fusion partners in a patient with cholangiocarci-
noma [37]. Although MET fusions are uncommon
drivers of sarcoma [38], a TFG-MET fusion has been re-
ported in a patient with an infantile spindle cell sarcoma
with neural features [37, 39, 40]. The interchromosomal

Fig. 2 Clinically relevant fusions identified by the EnFusion approach in a pediatric cancer and hematologic disease cohort. A The EnFusion approach, with
automated filtering, identifies significantly fewer fusions compared to individual callers. The number of fusions is plotted as log10(x + 1) to account for 0 fusions
identified in some cases. Callers are sorted by the lowest median number of fusions identified to the highest. B 67 Clinically relevant fusions were identified,
represented as a bar graph with decreasing fusions per individual algorithm, highlighting the sensitivity of the ensemble approach compared to individual
algorithms. No individual algorithm was able to identify all 67 fusions. C Of the 67 clinically relevant fusions identified, 30 were interchromosomal chimeric
(blue), 29 were intrachromosomal chimeric (orange), 3 were loss of function (green), and 5 were promoter swapping (yellow) fusions. D Of the 67 clinically
relevant fusions identified, 7 are novel events (red asterisk), while the remaining 60 fusion partners had been described previously in the literature. E A stacked
bar graph represents the individual fusion callers that contributed to each clinically relevant fusion. EnFusion 3 refers to the EnFusion approach with ≥3 callers
and EnFusion 2 refers to the EnFusion approach with ≥2 callers. All images depicted in the associated figure are the authors’ own and not taken from
another source
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in-frame fusion of RBPMS (ENST00000320203, exon 5)
to MET (ENST00000318493, exon 15) juxtaposes the
RNA recognition motif of RBPMS to the MET tyrosine
kinase catalytic domain (Fig. 3B, C). Given the thera-
peutic implications of this driver fusion, the fusion was
confirmed and reported in the patient’s medical record.
The identification of this fusion provided the molecular
driver for this tumor, which enabled definitive classifica-
tion as an infantile fibrosarcoma-like tumor with a MET
fusion. The patient was initially treated with VAC (vin-
cristine, actinomycin D, and cyclophosphamide) chemo-
therapy which reduced tumor burden. Surgical resection
of the mass was performed with positive margins. Given
the presence of a targetable gene fusion, the presence of
residual tumor, and the morbidity associated with add-
itional surgery or radiation, the patient was subsequently
treated with the MET inhibitor cabozantinib and dem-
onstrated a complete pathological response (Fig. 3D).

An NTRK1 fusion in an infiltrating glioma/astrocytoma
A 6-month-old female was diagnosed with an infiltrating
glioma/astrocytoma, with a mitotic index of 7 per single

high-power field (HPF) and a Ki-67 labeling index aver-
aging nearly 20%, indicative of aggressive disease. RNA-
Seq of the primary tumor revealed a BCAN-NTRK1 fu-
sion, identified by five callers as the only consensus fusion
output from EnFusion (Fig. 4A). This fusion was clinically
confirmed by RT-PCR as an in-frame event, resulting
from an intrachromosomal deletion of 225 kb at 1q23.1,
which juxtaposes BCAN (ENST00000329117, exon 6) to
NTRK1 (ENST00000368196, exon 8) (Fig. 4B, C). This fu-
sion results in the loss of the ligand binding domain of
NTRK1, while retaining the tyrosine kinase catalytic do-
main, leading to a predicted activation of downstream tar-
gets in a ligand-independent manner [41]. Comparison of
the normalized read counts from RNA-Seq data revealed
elevated NTRK1 expression, over 7 standard deviations
from the mean, relative to NTRK1 expression for CNS tu-
mors within the NCH cohort (N = 138) (Fig. 4D). This re-
sult indicates the use of first generation TRK inhibitor
therapies, with recent regulatory approvals, that have ex-
emplary response rates (75%) and are generally well toler-
ated by patients [41]. Although the patient has no
evidence of disease following gross total resection and

Fig. 3 An RBPMS-MET fusion identified in a patient with an infantile fibrosarcoma-like tumor. A RBPMS-MET fusion was identified by all seven fusion
callers in the filtered overlap results. The number of fusions identified by each caller is in the outer VENN diagram sections, while internal numbers
indicate overlapping fusions found post-filtering (0 overlaps between callers are not shown). B The RBPMS-MET fusion is an interchromosomal event,
occurring between 8p12 and 7q31.2 and joining exon 5 of RBPMS (blue) to exon 15 of MET (red). C The fusion protein product includes the RNA
recognition motif domain of RBPMS and the tyrosine kinase catalytic domain of MET. D The RBPMS-MET fusion is predicted to cause constitutive
phosphorylation and activation of MET, targetable using cabozantinib. All images depicted in the associated figure are the authors’ own and not taken
from another source
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treatment with conventional chemotherapy, TRK inhibi-
tors may be clinically indicated in the setting of progres-
sive disease given these findings (Fig. 4E).

Novel BRAF fusion in a mixed neuronal-glial tumor
A 14-year-old male with a lower brainstem tumor was
diagnosed with a low-grade mixed neuronal-glial tumor
of unusual morphologic appearance. Tumor histology
had features of both ganglioglioma and pilocytic astrocy-
toma. This tumor was negative for the somatic variant
BRAF p.V600E, one of the most common somatic alter-
ations associated with gangliogliomas and pilocytic as-
trocytomas [42]. Both the ganglioglioma and pilocytic
astrocytoma-like portions of the primary tumor were
studied separately by RNA-Seq. A novel TRIM22-BRAF
fusion was identified in both histologies of the tumor,
with EnFusion results from the ganglioglioma portion
represented in Fig. 5A. TRIM22-BRAF was the only con-
sensus fusion output by EnFusion and was clinically con-
firmed by RT-PCR. TRIM22 and BRAF are novel fusion
partners; however, TRIM22 has been reported with other
fusion partners in head/neck squamous cell carcinoma
[43]. BRAF is a known oncogene that activates the RAS-
MAPK signaling pathways, and has been described with
numerous fusion partners, including the common
KIAA1549-BRAF fusion in pediatric low-grade gliomas

[42]. This fusion is an interchromosomal translocation
occurring between TRIM22 (ENST00000379965, exon 2)
at 11p15.4 and BRAF (ENST00000288602, exon 9) at
7q34. The resulting protein includes the TRIM22 zinc
finger domains and the BRAF tyrosine kinase domain
(Fig. 5B, C). The TRIM22-BRAF fusion may lead to con-
stitutive dimerization and activation of BRAF kinase do-
main, which is indicated by single sample Gene Set
Enrichment Analysis (ssGSEA) and is theoretically tar-
getable through RAF, MEK, or mTOR inhibitors (Fig. 5D,
E).

Discussion
Fusions play a significant role as common oncogenic
drivers of pediatric cancers, and their identification may
refine diagnosis, inform prognosis, or indicate potential
response to molecularly targeted therapies. We have de-
veloped an optimized pipeline for fusion detection that
harmonizes results from several fusion calling algo-
rithms, filters the output to remove known false positive
results, and evaluates the detected fusions compared to a
list of known pathogenic fusions. Testing this pipeline
on a reference standard indicated that it outperforms
single fusion detection algorithms by reducing the num-
ber of false positive calls, producing a smaller number of
fusions prioritized by the strength of supporting

Fig. 4 Targetable NTRK1 fusion identified in an infiltrating glioma. A The BCAN-NTRK1 fusion was identified by 5 of 7 fusion callers, and was the
only fusion returned by the filtered overlap results. Total fusions identified by each caller are shown, FusionMap and MapSplice identified no
overlapping fusions that passed filtering (0 overlaps between callers are not shown). B The BCAN-NTRK1 fusion is an intrachromosomal event
occurring on 1q23.1, joining exon 6 of BCAN (blue) and exon 8 of NTRK1 (red). C This fusion results in the juxtaposition of the tyrosine kinase
catalytic domain of the NTRK1 gene to the 5′ end of the BCAN gene. D NTRK1 is highly expressed in this patient (red) compared to CNS tumors
(black) in the NCH cohort (CNS tumors: n = 138), with a normalized read count that is 7.70 standard deviations above the mean (131.2). E The
BCAN-NTRK1 fusion is predicted to increase expression and activation of the tyrosine kinase NTRK1, which may be inhibited by TRK inhibitor
therapy (green). All images depicted in the associated figure are the authors’ own and not taken from another source
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evidence, and suitable for manual inspection. As such,
our pipeline greatly simplifies the interpretation process,
enabling our multidisciplinary oncology teams to focus
on medically relevant findings.
We tested the optimized EnFusion pipeline in a pro-

spective study of 229 pediatric cancer and hematologic
disease cases and identified 67 fusions. Of these, the fu-
sions from 50 patients were selected for clinical confirm-
ation by an orthogonal method, in our CAP-accredited,
CLIA-validated clinical laboratory. All 50 (100% true
positive rate) were confirmed to be true fusion events,
and were determined to be of clinical relevance by our
multidisciplinary care team, providing a diagnostic yield
of over 29% across the cohort. (Additional File 3: Table
S9). Given the high number of putative fusions observed
with any single caller, it can be difficult to manually
identify a pathogenic fusion amongst a list of tens, if not
hundreds, of output fusions. By taking into consideration
the frequency in which each fusion occurs in an internal
database, as well as the level of evidence based on the
number of callers and number of supporting reads by
each caller, one can more confidently remove false

positives and identify relevant fusions. While our ap-
proach does not remove the necessity of manual cur-
ation, which is required to determine true clinical
relevance of a fusion, it is able to drastically reduce the
number of fusions that must be manually assessed, down
to ~ 4 fusions per case, and provides annotations, in-
cluding a pathogenicity gene partner score, to ease man-
ual interpretation efforts. Our fully automated pipeline
aids in prioritization, filtering, and subsequent
knowledge-based analysis, providing a more streamlined
and less labor-intensive approach to identify fusions,
compared to current fusion identification methodologies,
drastically reducing the manual workload required to
sort through unfiltered or unprioritized results.
The most frequent fusion identified within our

pediatric cancer cohort was KIAA1549-BRAF (n = 12,
frequency = 5.2%; Fig. 2B) [17]. This fusion is character-
istically found in pilocytic astrocytomas, which comprise
8.7% of our pediatric cancer cohort (20 out of 229 cases)
[44]. We identified five different sets of KIAA1549-BRAF
breakpoints within our cohort (Additional File 1: Fig.
S5A). The most common fusion patterns represented in

Fig. 5 Identification of a novel BRAF fusion in a mixed neuronal-glial tumor. A The TRIM22-BRAF fusion was identified by all seven fusion callers and in the
filtered overlap results, total fusions identified by each caller and overlapping fusions are shown (0 overlaps between callers are not shown). B The TRIM22-BRAF
fusion is an interchromosomal event between 11p15.4 and 7q34, joining exon 2 of TRIM22 (blue) to exon 9 of BRAF (red). C The resulting fusion product
contains the 5′ TRIM22 zinc finger binding domains and BRAF tyrosine kinase catalytic domain. D Single sample gene set enrichment analysis (ssGSEA) indicates
a trend toward an enrichment of the MEK (above the 75th percentile, 0.68 standard deviations above the mean of 22,756.87), RAF (above the 75th percentile,
0.60 standard deviations above the mean of 22,635.74), and mTOR (above the 75th percentile, 0.72 standard deviations above the mean of 22,191.50)
upregulated gene sets in the TRIM22-BRAF sample (red) compared to the pan-cancer NCH cohort (black) (pan-cancer cohort: n =229). E The TRIM22-BRAF
fusion is predicted to cause constitutive dimerization and activation of the BRAF kinase domain, shown in D, which could be targeted by RAF, MEK, and mTOR
inhibitors (green). All images depicted in the associated figure are the authors’ own and not taken from another source
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the literature are KIAA1549 exon 16-BRAF exon 9 (16–
9) or KIAA1549 exon 15-BRAF exon 9 (15–9), and these
two breakpoints represent 9 of the 12 KIAA1519-BRAF
fusions we identified (Additional File 1: Fig. S5B) [45,
46]. Three additional previously described sets of break-
points were also identified, KIAA1549 exon 16-BRAF
exon 11 (16–11; n = 1), KIAA1549 exon 15-BRAF exon
11 (15–11; n = 1), and KIAA1549 exon 13-BRAF exon 9
(13–9; n = 1; Additional File 1: Fig. S5). While the 16–11
and 15–11 breakpoints occur less frequently than 16–9
or 15–9, they have been well described in the literature
[45]; whereas only a single case with 13–9 breakpoints
was reported as part of a pilocytic astrocytoma cohort
study [47]. KIAA1549-BRAF fusions often have low
levels of expression, a phenomenon that has been de-
scribed in the literature and is associated with difficulties
in its identification through RNA-Seq based methodolo-
gies, which lack fusion product amplification [30]. The
ability of EnFusion to identify KIAA1549-BRAF fusions,
and others that have very low levels of expression, high-
lights the sensitivity of our approach. Additionally, a
supplementary “singleton” file for fusions that are identi-
fied by individual algorithms and on the known fusion
list is also output by our approach, allowing users the
opportunity to manually interpret singleton results. In
one case, a KIAA1549-BRAF fusion was missed in the
overlap output but rescued using EnFusion’s singleton
output (it was identified by a single read of evidence
from JAFFA; data not shown). Inclusion of the Singleton
output allowed for the rescue of this finding and the
subsequent clinical confirmation of this fusion by Sanger
sequencing. This approach ensures that fusions on the
known fusion list are retained, even with minimal evi-
dence by a single caller, and prevents users from having
to sift through individual caller’s outputs for these types
of low evidence fusions.
Our approach has also identified other fusions com-

monly associated with pediatric cancer, including
EWSR1-FLI1 (n = 9), FGFR1-TACC1 (n = 3), PAX3-
FOXO1 (n = 3), ZFTA-RELA (n = 2), COL3A1-PLAG1
(n = 2), and NPM1-ALK (n = 2) (Fig. 2B). In addition to
common fusions, EnFusion also identified seven novel
fusions (Fig. 2B). Five of the seven novel fusions were
confirmed by an orthogonal assay in our clinical lab
(Additional File 3: Table S9). Chimeric fusions, which in-
clude both interchromosomal (n = 30) and intrachromo-
somal (n = 29) events, were the most common type of
fusion identified within the cohort, however, 5 promoter
swapping and 3 loss of function fusions were also identi-
fied, highlighting the range of fusions this approach can
detect (Fig. 2C).
Running seven different fusion callers is computation-

ally complex, as each has its own set of dependencies
and environmental requirements. To overcome this, we

utilize modern cloud computing technologies. Most not-
able, our entire pipeline has been built in an AWS ser-
verless environment, removing the requirement for high
performance computing (HPC) clusters, while producing
highly reproducible results and enabling pipeline sharing
(Additional File 1: Fig. S6). The use of a serverless envir-
onment provides flexibility to deploy and scale applica-
tions regardless of the application’s size, without needed
concern for the underlying infrastructure. We are also
leveraging containers to process the data within the ser-
verless environment, as they can be easily utilized by
outside institutions with little to no adjustment to their
own environments. Another benefit to the current struc-
ture of our approach is the ability to assess output from
the individual algorithms in real time, as the ensemble
pipeline is automatically run after each individual caller
completes, allowing for interpretation of at least 3 of the
7 callers within ~ 3.5 hours (h), which can be beneficial
in situations that necessitate fast turnaround times
(Additional File 1: Fig. S7). Overall, our novel use of ser-
verless technology provides a robust computational solu-
tion that is fully automatable and easy to distribute.
There are numerous benefits to the utilization of this

optimized pipeline, in that detected fusion events are ag-
nostic to gene partner, allowing identification of com-
mon, rare, and novel fusions. In addition, the RNA-Seq
data set can be utilized for other types of downstream
and correlative analyses, including evaluation of gene ex-
pression for loci disrupted by the fusion (Fig. 4D).
Utilization of cohort data to assess outlier gene expres-
sion can provide valuable insights into pathway disrup-
tions that may occur due to the gene fusion (Fig. 5D)
and may provide information about disease subtyping.
The EnFusion pipeline is customizable, allowing users

to select how many and which callers to deploy. This
may impact potential cost savings, time-to-result, or per-
mit customization that eliminates specific callers that re-
quire excessive compute requirements or run times, as
suitable in a clinical diagnostic or research setting. Users
can also determine the number of consensus calls re-
quired to support fusion prediction, which can reduce
the number of fusions to assess manually. Callers with a
higher percentage of false positives, FusionCatcher and
JAFFA, often overlap in their predictions, leading to an
increased average number of fusions output by the en-
semble pipeline with a consensus of only two callers; a
problem diminished by requiring predictions from at
least three callers to overlap. In our study, precision was
found to be highest in the three-caller consensus version
of the ensemble pipeline (Table 2; Additional File 2:
Table S4). Another benefit to utilizing different algo-
rithms is the ability to assess supplementary output data,
in addition to traditional fusion calling. We have made
use of this through the inclusion of the internal tandem
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duplication (ITD) detection which is performed by CIC-
ERO. CICERO has identified 7 clinically relevant ITDs
within our cohort, 4 of which we have confirmed using
orthogonal assays (Additional File 1: Table S10).
Future developments to the pipeline could include a

weighting system for each caller, based on the preci-
sion and sensitivity of the algorithm and on which
callers have overlapping predictions, leading to a
more sophisticated prioritization strategy. Additional
fusion calling algorithms may also be considered and
provided as options for users. As each algorithm has
its own strengths and weaknesses, future iterations of
this pipeline could include the ability to select algo-
rithms based on the specific needs of the user and
dataset at hand. For example, while we identified a
handful of loss of function fusions in our study, only
two of the included algorithms can identify intergenic
breaks (Arriba and CICERO). As such, our approach
may be under-representing loss of function rearrange-
ments due to having only two callers that report this
type of alteration. To ameliorate this, one might be
able to selectively utilize additional fusion detection
algorithms that specifically identify this type of break,
such as InFusion, deFuse, or Mintie [48–50]. The
known fusion list can also be modified and tailored
to include specific gene pairs, or even single genes of
interest, providing another layer of customization. Im-
portantly, through the utilization of a proper internal
database for frequency filtering purposes, considering
age and/or cancer diagnosis, and with the deployment
of the appropriate known fusion list, the ensemble
approach could be readily implemented in adult can-
cer fusion detection. On a similar note, while we have
employed the EnFusion approach to analyze data
from hematologic malignancies, our cohort size was
limited, and unable to identify complex enhancer
highjacking events, known to occur in this patient
population. This disparity is likely due to the specific
pediatric cohort not containing these events, as none
were identified by any of the single callers we used.
Lastly, not all predictors performed equally, and there
was a single unresolvable failure of FusionMap to
complete. This failure was likely due to the sequen-
cing depth of the sample, however further analysis is
required to determine whether parameter modification
would permit completion of FusionMap in this case
(Additional File 3: Table S9). Importantly, our ap-
proach was able to circumvent this failure due to the
multi-caller nature of the pipeline. Lastly, there are
many modalities of RNA-seq analysis that may be
harnessed in future developments of the ensemble fu-
sion detection pipeline, which may include an integra-
tive approach exploiting expression-based analysis and
ranking. In summary, the ensemble pipeline provides

a highly customizable approach to fusion detection
that can be applied to numerous settings, with oppor-
tunities for future improvements based on additional
features and applications.

Conclusions
The EnFusion pipeline provides a highly automated and ac-
curate approach to fusion detection, developed to identify
high confidence, clinically relevant gene fusions from RNA-
Seq data produced from pediatric cancer and hematologic
disease samples, that could be readily implemented in adult
cancer RNA-Seq data analysis. The clinical impact of accur-
ately identifying gene fusions in a given patient’s tumor sam-
ple is critical, not only in refining diagnosis and providing
prognostic information, but also indicating potential thera-
peutic vulnerabilities that may shape treatment decisions.
These important advantages have led us to incorporate
EnFusion as a necessary component of our translational
pediatric cancer analysis pipeline.

Methods
Description of an internal patient cohort
In total, 229 patients were consented and enrolled onto
one of three Institutional Review Board (IRB) approved
protocols (IRB17–00206, IRB16–00777, IRB18–00786)
and studied at the Institute for Genomic Medicine
(IGM) at Nationwide Children’s Hospital (NCH) in Col-
umbus, Ohio. Through the utilization of genomic and
transcriptomic profiling, these protocols aim to refine
diagnosis and prognosis, detect germline cancer predis-
position, identify targeted therapeutic options, and/or to
determine eligibility for clinical trials in patients with
rare, treatment-refractory, relapsed, pediatric cancers or
hematologic diseases, or with epilepsy arising in the set-
ting of a low grade central nervous system (CNS) cancer.
Our in-house NCH cohort as studied here, consisted of
samples from CNS tumors (n = 138), hematologic dis-
eases (n = 18), and non-CNS solid tumors (n = 73), as
represented in Additional File 1: Fig. S3.

RNA-Seq of patient tissues and positive controls used for
benchmarking
RNA was extracted from snap frozen tissue, formalin-
fixed paraffin-embedded (FFPE) tissue, peripheral blood,
bone marrow, and cerebral spinal fluid utilizing dual
RNA and DNA co-extraction methods originally devel-
oped by our group for The Cancer Genome Atlas pro-
ject [51]. White blood cells were isolated from
peripheral blood or bone marrow using the lymphocyte
separation medium Ficoll-histopaque. Frozen tissue,
white blood cells, or pelleted cells from cerebrospinal
fluid were homogenized in Buffer RLT, with beta-
Mercaptoethanol to denature RNases, plus Reagent DX
and separated on an AllPrep (Qiagen) DNA column to
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remove DNA for subsequent RNA steps. The eluate was
processed for RNA extraction using acid-phenol:chloro-
form (Sigma) and added to the mirVana miRNA (Ap-
plied Biosystems) column, washed, and RNA was eluted
using DEPC-treated water (Ambion). DNase treatment
(Zymo) was performed post RNA purification. FFPE tis-
sues were deparaffinized using heptane/methanol
(VWR) and lysed with Paraffin Tissue Lysis Buffer and
Proteinase K from the HighPure miRNA kit (Roche).
The sample was pelleted to remove the DNA, and the
supernatant was processed for RNA extraction with the
HighPure miRNA column, followed by DNase treatment
(Qiagen). RNA quantification was performed with Qubit
(Life Sciences).
RNA-Seq libraries were generated using 100 ng to 1 μg

of DNase-treated RNA input, either by ribodepletion
using the Ribo-Zero Globin kit (Illumina) followed by li-
brary construction using the TruSeq Stranded RNA-Seq
protocol (Illumina), or by ribodepletion with NEBNext
Human/Mouse/Rat rRNA Depletion kit followed by li-
brary construction using the NEBNext Ultra II Directional
RNA-Seq protocol (New England BioLabs). Illumina 2 ×
151 paired end reads were generated either on the HiSeq
4000 or NovaSeq 6000 sequencing platforms (Illumina).
An average of 104 million read pairs were obtained per
sample (range 37M to 380M read pairs).
Following data production and post-run processing,

FASTQ files were aligned to the GRCh38 human refer-
ence (hg38) using STAR aligner (version 2.6.0c) [52].
Feature counts were calculated using HTSeq and nor-
malized read counts were calculated for all samples
using DESeq2 [53, 54]. Single sample Gene Set Enrich-
ment Analysis (ssGSEA), v10.0.3, was performed on
DESeq2 normalized read counts using Molecular Signa-
tures Database (MSigDB) Oncogenic Signatures
(c6.all.v7.2.symbols.gmt), which included MEK-
upregulated genes (MEK_UP.V1_UP), RAF-upregulated
genes (RAF_UP.V1_UP), and mTOR-upregulated genes
(MTOR_UP.N4.V1_UP) [55].

RNA-Seq of SeraCare control reference standards
Seraseq Fusion RNA Mix (SeraCare Inc., Milford, MA)
was utilized as a control reference standard reagent to
test and optimize the ensemble fusion detection pipeline.
This product contains 14 synthetic gene fusions in vitro
transcribed, utilizing the GM24385 cell line RNA as a
background. RNA-Seq libraries were prepared utilizing
500 ng input of neat (undiluted) Seraseq Fusion RNA v2,
a non-commercially available concentrated product, as
input (SeraCare). RNA-Seq libraries were also prepared
using 500 ng input of diluted control reference standard
(Seraseq Fusion RNA v3 (SeraCare)), which, as a neat re-
agent is roughly equivalent to a 1:25 dilution of the v2
product, and of total human RNA (GM24385, Coriell)

for the fusion-negative controls. Concentrations of indi-
vidual fusions in the control reference standard were
determined by the manufacturer using a custom fluores-
cent probe set (based on TaqMan probe design) for each
fusion and evaluation by droplet digital PCR. Digital
PCR-based concentration data (copies/ul) are available
in Additional File 1: Table S2 for the undiluted sam-
ple and Additional File 1: Table S3 for the diluted
sample [56].
Dilutions of the Seraseq Fusion RNA v3 reference

standard were performed by mixing with control total
human RNA (GM24385, Coriell) for final dilutions of 1:
25, 1:50, 1:250, 1:500, 1:2500. We also evaluated un-
diluted Seraseq Fusion RNA v2. For neat and diluted
samples, 500 ng input RNA was treated using the NEB-
Next Human/Mouse/Rat rRNA Depletion kit and librar-
ies were prepared following the NEBNext Ultra II
Directional RNA-Seq protocol (New England BioLabs).
Paired end 2 × 151 bp reads were produced using the
HiSeq 4000 platform (Illumina). An average of 149 mil-
lion read pairs were obtained per Seraseq sample (range
of 86M to 227M read pairs).

Generation of negative control dataset
To assess the false discovery rate of the EnFusion pipe-
line, we utilized three synthetic control datasets gener-
ated by Benchmarker for Evaluating the Effectiveness of
RNA-Seq Software (BEERS) [35]. One dataset (BEERS1)
was previously described in the literature [28, 33], and
we generated two new datasets (BEERS2 and BEERS3)
utilizing the BEERS default parameters for 151 paired
end data with 50 million reads.

Optimized fusion detection pipeline
Fusions were detected from paired end RNA-Seq
FASTQ files utilizing an automated ensemble fusion de-
tection pipeline that employs seven fusion-calling algo-
rithms described in Table 1: Arriba (v1.2.0), CICERO
(v0.3.0), FusionMap (v mono-2.10.9), FusionCatcher
(v0.99.7c), JAFFA (direct v1.09), MapSplice (v2.2.1), and
STAR-Fusion (v1.6.0) [25, 29–34]. STAR-Fusion param-
eters were altered to reduce the stringency setting for
the fusion fragments per million reads (FFPM) to 0.02
(−min_FFPM 0.02), while default parameters were
retained for all other callers. After fusion calling with
each independent algorithm, a custom algorithm written
in the R programming language, was used to “overlap,”
or align and compare, the unordered gene partners iden-
tified by individual fusion callers. The utilization of un-
ordered gene partners allows for fusions to be
compared, even if different breakpoints were identified
by individual algorithms, and to include reciprocal fu-
sions. To ameliorate naming issues that may be encoun-
tered due to different references utilized across
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individual callers, we used an “alias matching algorithm”
to harmonize gene names by conversion to HUGO Gene
Nomenclature Committee (HGNC) gene symbols. To
mitigate ambiguously matching aliases (n = 1392), gene
symbol cytogenetic band locations are utilized in accord-
ance with breakpoints, to identify the correct gene
symbol. Fusion partners identified by at least three of
the seven callers are retained and prioritized based on
the number of contributing algorithms first and then by
the number of sequence reads providing evidence for
each fusion. The overlap output retains annotations
from the individual callers, including breakpoints, dis-
tance between breakpoints, donor and acceptor genes,
reads of evidence, nucleotide sequence at breakpoint (if
available), frequency information from the database, and
whether the identified fusion contains “known patho-
genic fusion partners”. If discordant breakpoints are
identified across callers for a set of fusion partners, the
breakpoints with the most evidence, determined by
number of supporting reads, are prioritized in the
output.
The fusions are filtered by the following steps (Fig. 1A).

Read-through events, which occur between neighboring
genes and are typically identified in both healthy and
disease states, are not expected to impact cellular func-
tions [12, 24]. This type of fusion prediction is a source
of false positive results, so we have implemented a filter
that removes fusions detected between genes fewer than
200,000 bases apart, that occur on the same strand and
chromosome. Recurrent fusions with uncertain bio-
logical significance have also been identified in normal
tissues. To prevent the inclusion of commonly occur-
ring, benign fusions in our output, a PostgreSQL data-
base was used to filter commonly occurring artifactual
fusions. This filter removes any expected fusion artifact
with greater than a 10% frequency of detection based on
our internal cohort. Lastly, to ensure a high level of con-
fidence in the identified fusions, we utilize a minimum
threshold for level of evidence, removing fusions that
contain fewer than four reads of support from at least
one contributing algorithm.
While filtering can remove false positive results and

reduces the time needed to review predicted fusions, it
also can remove true positive fusions in certain circum-
stances. To prevent the inadvertent filtering of known
fusions, a known fusion list was developed containing
325 pairs of common fusion partners associated with
cancer, as identified in COSMIC and TCGA (Add-
itional File 1: Table S1) [27, 57]. To increase sensitivity
in the identification of known pathogenic fusions, fusion
partners that are on the known fusion list are retained if
at least two callers have identified the fusion. The EnFu-
sion pipeline also outputs a supplementary singleton fu-
sion file, containing fusions identified by a single caller

that are on the known fusion list, allowing users to
examine low evidence fusions that may be of interest.
To prioritize fusions that contain gene partners com-

monly found in the known fusion list, we developed the
“Gene Partner Predicted Pathogenicity Score” based on
the frequency of the individual partners in the known fu-
sion list. Of the 325 fusions on the known fusion list, 38
genes are present as a fusion partner ≥3 times (Add-
itional File 1: Table S11, Fig. S8). The most common
partners are BRAF and KMT2A, which are present as fu-
sion partners 28 times each. To aide prediction of novel,
or not well described, pathogenic fusions, we developed
a score based on known pathogenic gene partners. This
score utilizes the frequency of partners present on the
known fusion list. The pathogenic frequency score
ranges from 10 (most frequent) to 1 (least frequent, but
present at least 3 times):

Pathogenic Frequency Score ¼ 10= f max− f
� �

Where f is the gene frequency and fmax is the max-
imum observed frequency. The following annotations
are included in the EnFusion results if an identified
fusion contains one of the 38 common pathogenic
gene partners: designation as a known pathogenic
gene partner, inclusion of the frequency score (1–10),
and gene type based on UniProt description [58].
A knowledge-based interpretation strategy was ap-

plied to the filtered list of fusion partners output by
the pipeline, including the use of FusionHub [59], to
inform clinical relevance, such as diagnostic and/or
prognostic information or a potential therapeutic tar-
get. Visual assessment of the fusion events was per-
formed by examining RNA-Seq BAM files with
Integrated Genome Viewer (IGV). Fusions were also
assessed at the DNA level by IGV-based evaluation of
gene-specific paired end read alignments from ES or
WGS BAM files, for potential evidence of mapping
discordance. Clinically relevant fusions were then
assayed ina College of American Pathologists (CAP)-
accredited clinical laboratory using one or more of
the following methods: RT-PCR followed by Sanger
sequencing of the resulting products, fluorescence in
situ hybridization (FISH), chromosomal analysis, and/
or by Archer FusionPlex Solid Tumor panel
(ArcherDx) for clinical confirmation.

AWS implementation of the ensemble approach
The EnFusion pipeline is implemented utilizing an
Amazon Web Services (AWS) serverless environment
(Additional File 1: Fig. S6). The workflow is initiated
via a call to Amazon API Gateway, which passes pa-
rameters, including the location of the input FASTQ
files, to an AWS Lambda function. The Lambda
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function initiates the AWS Batch job to load and exe-
cutes a custom fusion detection Docker image, which
launches Arriba, CICERO, FusionMap, FusionCatcher,
JAFFA, MapSplice, and STAR-Fusion. We utilize the
R5 family of instances for the fusion detection algo-
rithms. Due to the efficiency by which different algo-
rithms can multi-thread, each fusion detection tool is
allocated 32 virtual CPUs (vCPUs), except for CIC-
ERO which is allocated 16 vCPUs and JAFFA which
is allocated 8 vCPUs. Using the described allocations,
Arriba completes the fastest (~ 37 min; minutes) for
the runs completed year to date in 2020, followed by
FusionMap (~ 1 h 12 min), STAR-fusion (~ 3 h 25
min), FusionCatcher (~ 10 h 35 min), CICERO (~ 11 h
49 min), MapSplice (~ 15 h 2 min), and JAFFA (~ 27 h
16 min), data is summarized in Additional File 1: Fig.
S7. The results from the fusion callers are sent to an
AWS S3 output bucket, which invokes AWS Batch to
load and execute a Docker image with our overlap
script upon completion. This allows for real-time
examination of results as each caller finishes, as the
overlapping output is updated upon completion of
each individual caller, which is particularly advanta-
geous given the long execution times for some of the
fusion callers. It is possible to examine results upon
completion of the three fastest algorithms within ~
3.5 h, which is of great benefit for cases necessitating
fast turnaround times, and complete results are made
available by the next day. The overlap Docker image
queries and writes to an Aurora PostgreSQL database
and performs all necessary filtering. The final results,
including annotated filtered and unfiltered fusion lists,
are stored in an AWS S3 output bucket for subse-
quent interpretation. Dockerfile to build the Docker
image used to run the overlap algorithm is available
at our GitHub repository (https://github.com/nch-
igm/EnFusion), DOI: https://doi.org/10.5281/zenodo.
5172341.

Data analysis and statistics
Figures were plotted using R version 4.0.2. Statistical
analysis was performed by GraphPad Prism 9 software.
Graphical representation of fusion breakpoints and
products were generated using a modified version of
INTEGRATE-Vis [60].
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