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Abstract

Background: The incidence and mortality of pancreatic cancer (PC) has gradually increased. The aim of this study
was to identify survival-related DNA methylation (DNAm)-driven genes and establish a nomogram to predict
outcomes in patients with PC.

Methods: The gene expression, DNA methylation database, and PC clinical samples were downloaded from TCGA.
DNAm-driven genes were identified by integrating analyses of gene expression and DNA methylation data.
Survival-related DNAm-driven genes were screened via univariate, least absolute shrinkage and selection operator
(LASSO), and multivariate Cox regression analyses to develop a risk score model for prognosis. Based on analyses of
clinical parameters and risk score, a nomogram was built and validated. The independent cohort from GEO
database were used for external validation.

Results: A total of 16 differentially expressed methylation-driven genes were identified. Based on LASSO Cox
regression and multivariate Cox regression analysis, six genes (FERMT1, LIPH, LAMA3, PPP1R14D, NQO1, VSIG2) were
chosen to develop the risk score model. In the Kaplan–Meier analysis, age, T stage, N stage, AJCC stage, radiation
therapy history, tumor size, surgery type performed, pathological type, chemotherapy history, and risk score were
potential prognostic factors in PC (P < 0.1). In the multivariate analysis, stage, chemotherapy, and risk score were
significantly correlated to overall survival (P < 0.05). The nomogram was constructed with the three variables (stage,
chemotherapy, and risk score) for predicting the 1-year, 2-year, and 3-year survival rates of PC patients. Nomogram
performance was assessed by receiver operating characteristic (ROC) curves and calibration curves. 1-year, 2-year
and 3-year AUC of nomogram model was 0.899, 0.765 and 0.776, respectively.

Conclusions: In our study, we successfully identified the six DNAm-driven genes (FERMT1, LIPH, LAMA3, PPP1R14D,
NQO1, VSIG2) with a relationship to the outcomes of PC patients. The nomogram including stage, chemotherapy,
and risk score could be used to predict survival in PC patients.
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Introduction
Pancreatic cancer (PC), a malignant tumor with uniformly
poor outcomes, is the sixth leading cause of cancer-related
mortalities in China [1]. PC remains highly lethal, with a 5-
year survival less than 9 % [2]. Currently, surgical treatment
and systemic chemotherapy are the preferred therapeutic
approaches for PC. Monotherapy (such as gemcitabine, S-1,
capecitabine) is suitable for patients with poor performance
[3]. Combination regimens, such as gemcitabine-based
combinations or FOLFIRINOX (irinotecan, oxaliplatin, 5-
FU/leucovorin), are appropriate for patients with good per-
formance [4–7]. The median survival time of advanced PC
patients is less than 12 months despite clinical therapeutic
research development [8]. In addition, patients with PC are
usually diagnosed in the advanced stages due to limitations
in early diagnosis [9]. In PC, CA 19-9 is the most widely
used tumor marker for early diagnosis, predicting survival,
and monitoring therapeutic efficacy. However, the diagnos-
tic value of CA 19-9 is limited due to its 70–80 % sensitivity
and 80–90 % specificity [10]. Therefore, exploration of
effective biomarkers for improving early diagnosis and
prognosis is very important.
With the development of molecular biology technologies,

increasing attention has been paid to efficient gene predic-
tion. An increasing number of studies have attempted to
identify prognostic genes at the mRNA level and have
constructed different gene prognostic models to improve
prognosis [11, 12]. For example, Meng-wei et al. identified
a nine-gene prognostic model (MET, KLK10, COL17A1,
CEP55, ANKRD22, ITGB6, ARNTL2, MCOLN3, and
SLC25A45) with effective predictive ability [13].
Gene expression levels can be influenced by epigenetic

dysregulation [14]. DNA methylation is a pivotal element
for epigenetic modification and plays an important role in
regulating genes and maintaining genome stability [15].

Aberrant DNA methylation of CpG islands in the pro-
moter, which regulates the expression of tumor-related
genes, is involved in carcinogenesis [16]. Previous studies
have shown that hypermethylation of antioncogenes or hy-
pomethylation of oncogenes can lead to tumorigenesis
[17]. DNA methylation is also an important biomarker,
which may be used for clinical diagnosis and prognosis in
different tumor types [18, 19]. Jun-yu et al. demonstrated
that DNA methylation-driven gene (SPP1 and LCAT)
models exhibited good performance in the diagnosis and
estimation of prognosis in hepatocellular cancer [20].
Yi et al. validated a survival prognostic model based
on DNA methylation-driven genes (PODN, NPY,
MICU3, TUBB6, RHOJ, MYO1A) and showed that it
had good predictive ability in gastric cancer [21].
In this study, we screened effective PC-related DNA

methylation-driven genes by merging methylation and
mRNA expression profiles from TCGA (The Cancer
Genome Atlas) database. We constructed a model based
on DNA methylation-driven genes to predict outcomes
in PC.

Materials and methods
Data preparation
We downloaded clinical survival data and DNA methyla-
tion of PC from TCGA dataset (https://portal.gdc.cancer.
gov/). The mRNA expression of TCGA and GTEx (Geno-
type-Tissue Expression) was downloaded from the UCSC
Xena website (https://xenabrowser.net/datapages/). There
were 195 samples with DNA methylation data (10 normal
and 185 tumor), 182 samples with mRNA expression data
(4 normal and 178 tumor), and 185 cases with clinical data
from TCGA. Additionally, 167 data points for normal
mRNA expression were obtained from GTEx. The study
flowchart is shown in Fig. 1.

Fig. 1 Flow chart of the identification and exploration methylation-driven genes in pancreatic cancer

Deng et al. BMC Genomics          (2021) 22:791 Page 2 of 13

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/


Identification of differentially expressed genes (DEGs)
First, we merged the mRNA expression data from
TCGA (4 normal and 178 tumor mRNA expression) and
GTEx (167 normal mRNA expression) with the Limma
package in R. Then, we identified the DEGs (differen-
tially expressed genes between normal and tumor
tissues, including upregulated and downregulated genes)
from the merged data (171 normal and 178 tumor
mRNA expression) with the Limma package in R. Cutoff
criteria were | Log2FC | > 2, and false discovery rate
(FDR) < 0.05.

Screening for DNA methylation (DNAm)-driven genes
We performed a comprehensive analysis to acquire three
data matrices (gene expression data, normal DNA
methylation, and tumor DNA methylation data). Then,
we used the MethylMix package in R to screen the
DNAm-driven genes. First, MethylMix was used to com-
pare the methylation state of tumor tissues with that of
normal tissues. Correlation analyses were performed be-
tween the gene expression data of DEGs and DNAm
data to distinguish the DNA methylation events, which
may affect gene expression. Second, a mixture model of
gene methylation state was built. Third, the differential
DNA methylation state between tumor and normal tissues
was calculated via Wilcoxon rank sum test. P < 0.05, and
Cor < − 0.3 were set as the cutoff criteria.

Functional enrichment analysis and pathway analysis
Gene ontology (GO) analysis was performed using the
clusterProfiler package in R. GO analysis contained cel-
lular component, biological process, and molecular func-
tion. We applied the GOplot package in R to visualize
the data. Pathway analysis of the methylation-driven
genes was conducted with ConsensusPathDB (http://
cpdb.molgen.mpg.de/). P < 0.05 was the cutoff criterion.

Risk score model construction
First, we utilized univariate Cox regression to screen for
survival related DNAm-driven genes. Second, we applied
Cox LASSO regression to further narrow the range of
the candidate DNAm-driven genes using the glmnet
package in R. LASSO regression is a method that shrinks
regression coefficients toward zero by utilizing an L1
penalty[22]. This method can also decrease dimension
and avoid collinearity between the variables. Third, we
used multivariate Cox regression to further select the
genes associated with survival. The target gene risk score
is equal to the multivariate Cox regression coefficient (β)
multiplied by its mRNA level. Then, X-tile was applied
to stratify patients into low- and high-risk groups using
the optimal cutoff value. The performance of the
risk model was validated by ROC curve with the
survivalROC package in R.

Validation of the risk score model
The potential predictive value of the risk score model
was validated in the GSE21501, GSE57495, GSE78229
and GSE62452 cohort. They were downloaded from the
Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih. gov/geo/). We combined GSE21501 and
GSE57495 datasets into one data set for external
validation.

Screening of clinical data and clinical variables
There were 185 clinical cases in TCGA database. We
deleted the cases with a follow-up time ≤30 days and
incomplete clinical information. Ultimately, 91 cases
were selected to perform further survival analyses.
Different clinical variables were utilized including age,
gender, grade, T stage, N stage, M stage, AJCC stage,
alcohol history, pancreatitis history, diabetes history,
lymph node counts, tumor size, surgery type per-
formed, pathological type, primary tumor location,
radiation therapy history, and chemotherapy history.

Development and validation of the nomogram
To select potential risk factors, the associations of each
clinical variable with overall survival (OS) were esti-
mated using the Kaplan–Meier method. The variable
with a P value < 0.1 was selected for further analysis. In
the Cox proportional hazards regression model, we used
backward stepwise selection with AIC (Akaike informa-
tion criterion) to identify the final prognostic variable.
The variable with a statistical significance level of 0.05
was added to the nomogram model. The nomogram was
used to predict the 1-year, 2-year, and 3-year OS rates
with the rms package in R.
The performance of the model was estimated using

the C statistic and calibration. The C statistic was used
to evaluate the discriminating ability of the model and is
equal to the area under the receiver operating character-
istic (ROC) curve. Calibration estimated the accuracy of
the model and was visualized by calibration plot. The
nomogram was validated by the bootstrap method with
1,000 resamples. We also applied the ROC curve to
measure the accuracy of the nomogram.

Statistical analysis
All statistical analyses were performed using R (version
4.0.0, http://www.r-project.org/), and X-tile version 3.6.1
(Yale University, CT, USA) was used to find the optimal
cut-off value for stratifying patients[23]. P < 0.05 was
considered statistically significant. All methods in our
manuscript were performed in accordance with the
relevant guidelines and regulations.
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Identification of DNAm-driven genes. A Heatmap of 16 DNAm-driven genes in PC. B Mixture model of the six methylation-driven genes.
The horizontal axis indicates the degree of methylation and the vertical of axis indicates the distribution of methylation in tumor samples. The
black bar represents the methylation level in normal samples. C Correlation analysis between the mRNA expression level and DNA methylation
level of the six DNAm-driven genes. The x-axis and y-axis indicate the DNA methylation level and mRNA expression level, respectively. D Violin
plot. mRNA level of the six DNAm-driven genes

Fig. 3 A GO analysis of sixteen DNAm-driven genes. B Pathway analysis of 16 DNAm-driven genes
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Results
Identification of DEGs in PC
The mRNA expression between 178 PC tissues and 171
normal tissues was compared and 1,589 DEGs (|Log2FC|
> 2, FDR < 0.05) were used for further study. Among
these DEGs, 743 were upregulated and 846 were down-
regulated (Table S1, Figure S1).

Identification of DNAm-driven genes in PC
We applied the MethylMix analysis to screen the
DNAm-driven genes. A total of sixteen DNAm-driven
genes (eleven hypermethylated genes and five hypomethy-
lated genes) were screened. An adjusted P value less than
0.05 between hypermethylated and hypomethylated
groups and a correlation coefficient less than -0.3 between
gene expression and DNA methylation were set as criteria
for screening methylation-driven genes (Table S2). The
methylation expression levels of sixteen DNAm-driven
genes are shown in the heatmap (Fig. 2 A). Among these
DNAm-driven genes, the methylation expression levels of
six genes are shown in Fig. 2 B, C, D.

Functional enrichment and pathway analysis of DNAm-
driven genes
Analysis of the function of DNAm-driven genes in PC was
conducted by GO enrichment analysis with the clusterPro-
filer package in R. Functional enrichment analysis showed
that DNAm-driven genes were enriched in molecular func-
tion (MF) such as cell adhesion molecule binding, integrin
binding, and serine−type endopeptidase activity (Fig. 3 A).
Pathway enrichment analysis showed that DNAm-driven
genes were enriched in pancreatic secretion, protein diges-
tion, and absorption, Alpha6Beta4Integrin and a6b1 and in-
tegrin signaling (P < 0.001) (Fig. 3 B).

Development of the risk score model for PC
First, we used Kaplan–Meier (K-M) analysis to explore
the connection between the gene expression of sixteen
DNAm-driven genes and OS (Table S3). Eleven DNAm-
driven genes were selected as candidate genes signifi-
cantly related to OS (P < 0.05). Then, based on 1,000
repetitions of LASSO regression analyses, the 11 genes
with a non-zero coefficient were selected as seed genes
using 10-fold cross-validation (Fig. 4 A, B). Finally, six
genes (FERMT1, LIPH, LAMA3, PPP1R14D, NQO1,
VSIG2) were screened for risk score model by multivari-
ate Cox regression. The risk score = (0.4178686 *
FERMT1 mRNA level) + (0.7540802* LIPH mRNA level)
+ (0.2412988 * LAMA3 mRNA level) + (0.2435720 *
PPP1R14D mRNA level) + (-0.4021008 * NQO1 mRNA
level) + (-0.2646497 * VSIG2 mRNA level).
We calculated the risk score of each patient and then

stratified patients into low-risk and high-risk groups by
X-tile. The number of deceased patients in the high-risk

group was greater than in the low-risk group (Fig. 5 A,
B). In the K-M analysis, the prognosis of patients in the
high-risk group was statistically worse than the patients
in low-risk group (P = 2.429e−07) (Fig. 5 C). The six-
gene expression levels of patients and corresponding risk
score are shown in the heatmap (Fig. 5 D). 1-year, 2year
and 3-year AUC of the risk score model, which was
established by the six DNAm-driven genes, was
0.722,0.744 and 0.723, respectively. (Fig. 5 E).

External validation of the risk score model
The validation cohorts (GSE21501, GSE57495,
GSE78229 and GSE62452) were used to explore the

Fig. 4 LASSO regression analysis of methylation-driven genes. A LASSO
coefficients. B Plots of the ten-fold cross-validation error rates. The dotted
lines indicate the minimal standard error and the optimal λ value
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Fig. 5 (See legend on next page.)
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prognostic performance of the six-gene risk score model.
Risk scores of patients in the validation cohort were
computed with same method as previously described.
The patients were also classified into low-risk and high-
risk groups by X-tile. The survival status distribution of
patients in different risk groups was visualized via scatter
plot (Fig. 6 A, B). The high-risk group patients had sig-
nificantly worse outcomes than the low-risk group pa-
tients (P = 0.002, P = 0.022, and P =0.024, respectively)
in the K-M survival analysis (Fig. 6 C). The distribution
of the six-gene expression levels and risk scores are
shown in the heatmap (Fig. 6 D). The AUC of the risk
score model in the validation cohort. In the GSE78229,
1-year, 2-year and 3-year AUC of riskScore model was
0.549, 0.677 and 0.750, respectively. In the GSE62452, 1-
year, 2-year and 3-year AUC of riskScore model was
0.548, 0.651 and 0.747, respectively. In the GSE21501
and GSE57495 merging databases, 1-year, 2-year and 3-
year AUC of riskScore model was 0.639, 0.634 and
0.563,respectively. (Figure 6 E).

Development and validation of the nomogram for OS
prediction in PC
All clinical variables were analyzed by univariate Cox
regression analysis, the variables with a P value less
than 0.1 were selected for further analysis (Fig. 7 A).
Age (p = 0.015), T stage (p = 0.035; T3-4 vs. T1-2), N
stage (p = 0.018; N1 vs. N0), AJCC TNM stage (p =
0.006; III-IV stage vs. I-II stage), radiation therapy his-
tory (p = 0.036; No vs. Yes), tumor size (p = 0.005),
surgery type performed (p = 0.093; Whipple vs. Distal
Pancreatectomy or others), pathological type (p =
0.065; Infiltrating duct carcinoma vs. other types),
chemotherapy history (p = 0.098; No vs. Yes), and risk
score (p < 0.001) were regarded as potential predictive
variables. Finally, in the multivariate Cox regression,
we used backward stepwise elimination and AIC to
screen independent prognostic factors for the final
nomogram model: stage, chemotherapy, and risk score
(P < 0.05) (Fig. 7 A). We developed a nomogram
model to predict 1-year, 2-year, and 3-year survival
using three factors (Fig. 7B). The C-statistic of the
nomogram was 0.768. The calibration of model was
estimated by calibration plot using 1,000 bootstrap
samples to reduce overfitting (Fig. 7 C). The 1-year, 2-
year, and 3-year calibration curves presented

agreement between prediction and observation. The
prognostic performance of the model was also demon-
strated by ROC curves. 1-year, 2-year and 3-year AUC
of nomogram model was 0.899, 0.765 and 0.776,
respectively (Fig. 7D).

Discussion
In recent years, new PC cases and cancer-related
deaths have been gradually increasing [2, 24]. Radical
pancreatectomy for early-stage PC is a potentially
curative treatment. However, PC patients are often di-
agnosed in the advanced stage due to a lack of typical
symptoms [25]. Additionally, the efficacy of treatment
in advanced PC is limited, with a median overall sur-
vival of less than 12 months [8]. Therefore, identifica-
tion of effective biomarkers or the development of
valid prognostic models for early diagnosis and prog-
nosis is necessary and exigent. Most studies have
combined different tumor markers with various blood
parameters to improve the efficacy of diagnosis and
survival prediction [26, 27]. However, levels of differ-
ent blood biomarkers vary between patients and may
be influenced by many factors [28]. Prognostic models
established using different clinical characteristics
could improve accuracy in PC [29, 30]. Nevertheless,
the accuracy of these models is limited by tumor het-
erogeneity. Thus, it is necessary to build a new prog-
nostic model using molecular biomarkers to further
improve prognostic efficacy.
Prior studies had confirmed that tumorigenesis is

correlated with aberrant methylation status, which
can change expression levels of oncogenes and tumor
suppressor genes [14, 31]. Numerous studies have
demonstrated that DNA methylation is a specific
diagnostic and prognostic biomarker [19–21]. Hence,
we constructed and validated a risk score model using
six DNAm-driven genes, and a nomogram prognostic
model based on the risk score model and clinical pre-
dictive variables. The external validation demonstrated
that the risk score model was a potential prognostic
model for PC.
In our study, we identified abnormal gene methy-

lation by comparing normal and PC samples using
MethylMix. In this analysis, 16 DNAm-driven genes
were screened. To explore the function of DNAm-
driven genes, we performed GO analysis and

(See figure on previous page.)
Fig. 5 Risk score model in the TCGA database. A The distribution of risk score. Red dots and green dots represent the high-risk group and low-
risk group, respectively. B Survival distribution in the high- or low- risk score group. Red dots and green dots represent deceased and live
patients, respectively. C Kaplan–Meier survival curve of risk score. D Heatmap of six methylation-driven genes in the high- or low- risk score
group. E Time-dependent ROC curve of the risk score model
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Fig. 6 (See legend on next page.)
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pathway analysis. DNAm-driven gene function was
enriched in molecular function (MF) including cell
adhesion molecule binding, integrin binding, and
serine−type endopeptidase activity. Function analysis
and pathway analysis showed that the function of
these genes could regulate tumor cell migration and
metastasis.
Six genes (FERMT1, LIPH, LAMA3, PPP1R14D,

NQO1, VSIG2) correlated with survival were screened
by LASSO Cox regression and multivariate Cox re-
gression. A risk model was constructed using gene
expression levels and multivariate Cox regression co-
efficients. The survival analysis of the risk score
showed that the patients with a high-risk score had
worse survival status. The AUC of the risk model in
the ROC curves wasgreater than 0.720. The perform-
ance of the risk model was demonstrated by external
validation. To our knowledge, this is the first report
of the six-gene risk model, which may be a new PC
prognostic biomarker.
To further explore the prognostic value of the risk

model and potential clinical variables, we developed a
nomogram to calculate a score for each patient and
predict survival rate. The C-index of the nomogram
validated by 1,000 bootstrap resamples was 0.768. The
calibration curves and ROC curves showed that the
predictive ability of the nomogram was excellent.
The six genes (FERMT1, LIPH, LAMA3,

PPP1R14D, NQO1, VSIG2) had high expression and
hypomethylation in PC. FERMT1, named fermitin
family member 1, can reduce the phosphorylation
level of β-catenin and lead to the activation of the
Wnt/β-catenin pathway. These changes lead to EMT
(epithelial-mesenchymal transition) and have a rela-
tionship with tumor aggressiveness and invasiveness
[32]. Sandra et al. demonstrated that FERMT1 was
overexpressed in PC samples compared with normal
samples [33]. LIPH (lipase member H), which be-
longs to the triglyceride lipase family, is involved in
several diseases such as hypotrichosis/woolly hair, en-
ergy metabolism, and hypertensive disorder [34–36].
Although the mechanism of LIPH in tumorigenesis is
unclear, numerous studies have shown that LIPH
participates in tumor metastasis, and the expression
level of LIPH is a predictive factor in breast cancer

[37, 38]. LAMA3 (laminin subunit α3) encodes lam-
inin, which is involved in regulating cell migration
[39]. LAMA3 also regulates the expression of differ-
ent types of cell growth factors that mediate cell
proliferation, including KGF (keratinocyte growth fac-
tor), EGF (epidermal growth factor), and IGF (insu-
lin-like growth factor) [40]. The LAMA3expression
level in tumor tissues and its effect on survival varies
between cancer types. Lin et al. found that the ex-
pression level of LAMA3 in tumor tissues was lower
than in normal tissues, and the survival times of
ovarian cancer patients with LAMA3 overexpression
was better than those with low-expression [40]. In
PC, the expression level of LAMA3 in carcinoma tis-
sue is upregulated, and patients with high LAMA3
expression have poor outcomes [41, 42]. PPP1R14D
(protein phosphatase 1 regulatory subunit 14D) is a
metabolic signaling protein that is correlated with
diabetes [43], and diabetes is a risk factor for PC
[44]. However, the direct mechanism of PPP1R14D
in tumorigenesis is still unclear. NQO1, nicotinamide
adenine dinucleotide phosphate (NADPH): quinone
oxidoreductase1, is a cytosolic reductase that can re-
duce quinones to hydroquinones using NADH or
NADPH [45]. NQO1 plays an important role in pro-
tecting cells from oxidative injury via various func-
tions [46]. Prior studies reported a relationship
between abnormal expression of NQO1 and cancer
[47]. Mei-Ying et al. demonstrated that NQO1 ex-
pression was higher in PC, and patients with low
NQO1 expression had higher survival rates [46].
VSIG2, also called cortical thymocyte receptor, partici-
pates in antigen presentation [48]. Haimeng et al. reported
that VSIG2 is a survival predictive factor in acute myeloid
leukemia (AML) [49]. Nevertheless, the function of VSIG2
in PC has not yet been reported.
Our study had some limitations. First, this was a

retrospective study, and the development and valid-
ation of the nomogram model was based on the
TCGA dataset. Therefore, further external validation
using other independent databases is necessary. Sec-
ond, the sample size of PC in the TCGA database
was relatively small, and only half of the patients had
complete clinical information. Therefore, we also need
to utilize our own data for validation.

(See figure on previous page.)
Fig. 6 External validation of the risk score model using GEO databese. A The distribution of the risk score in the GSE21501 and GSE57495
merging database. Red dots and green dots represent the high-risk group and low-risk group, respectively. B Survival distribution in the high- or
low- risk score group in the GSE21501 and GSE57495 merging database. Red dots and green dots represent deceased and live patients,
respectively. C Kaplan–Meier survival curve of the risk score in four GEO databases. D Heatmap of six methylation-driven genes in the high- and
low- risk subgroups in the GSE21501 and GSE57495 merging database. E Time-dependent ROC curve of the risk score model in four
GEO databases
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Fig. 7 Development and validation of the nomogram in the TCGA cohort. A Univariate and multivariate Cox regression analysis of the risk score
and clinical characteristics. B Nomogram to predict survival in PC patients. C Calibration curves of 1-, 2-, and 3-year OS. D ROC curves estimating
the performance of the nomogram
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Conclusions
Based on the TCGA database, we screened six
methylation-driven genes (FERMT1, LIPH, LAMA3,
PPP1R14D, NQO1, VSIG2) associated with prognosis in
PC patients. A risk score model comprising the six
methylation-driven genes was established and validated
to predict overall survival. The risk score was combined
with different clinical factors to construct a good pre-
dictive nomogram for PC patients. Our results support
the viewpoint that DNAm controlled genes are associ-
ated with prognosis. In clinical practice, use of the six
DNAm-driven genes for prognosis would be a cost-
effective and accurate predictive method in PC.
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