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Abstract

Background: Engineered versions of adeno-associated virus (AAV) are commonly used in gene therapy but
evidence revealing a potential oncogenic role of natural AAV in hepatocellular carcinoma (HCC) has raised
concerns. The frequency of potentially oncogenic integrations has been reported in only a few populations. AAV
infection and host genome integration in another type of liver cancer, cholangiocarcinoma (CCA), has been studied
only in one cohort. All reported oncogenic AAV integrations in HCC come from strains resembling the fully
sequenced AAV2 and partly sequenced AAV13. When AAV integration occurs, only a fragment of the AAV genome
is detectable in later DNA or RNA sequencing. The integrated fragment is typically from the 3" end of the AAV
genome, and this positional bias has been only partly explained. Three research groups searched for evidence of
AAV integration in HCC RNAseq samples in the Cancer Genome Atlas (TCGA) but reported conflicting results.

Results: We collected and analyzed whole transcriptome and viral capture DNA sequencing in paired tumor and non-
tumor samples from two liver cancer Asian cohorts from Thailand (N = 147, 47 HCC and 100 intrahepatic
cholangiocarcinoma (iCCA)) and Mongolia (N = 70, all HCC). We found only one HCC patient with a potentially oncogenic
integration of AAV, in contrast to higher frequency reported in European patients. There were no oncogenic AAV
integrations in iCCA patients. AAV genomic segments are present preferentially in the non-tumor samples of Thai patients.
By analyzing the AAV genome positions of oncogenic and non-oncogenic integrated fragments, we found that almost all
the putative oncogenic integrations overlap the X gene, which is present and functional only in the strain AAV2 among all
fully sequenced strains. This gene content difference could explain why putative oncogenic integrations from other AAV
strains have not been reported.
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roles of AAV in liver cancer.

We resolved the discrepancies in previous analyses of AAV presence in TCGA HCC samples and extended it to CCA. There
are 12 TCGA samples with an AAV segment and none are in Asian patients. AAV segments are present in preferentially in
TCGA non-tumor samples, like what we observed in the Thai patients.

Conclusions: Our findings suggest a minimal AAV risk of hepatocarcinogenesis in Asian liver cancer patients. The partial
genome presence and positional bias of AAV integrations into the human genome has complicated analysis of possible

Keywords: Liver cancer, Hepatocellular carcinoma, Intrahepatic cholangiocarcinoma, Adeno-associated virus, Virus
integration, Viral oncogenesis, Viral capture sequencing, Gene therapy, Sequence analysis

Background

Certain viruses harbor the potential to affect human
health by altering host immunity and the genome, po-
tentially contributing to chronic disease and cancer. Pre-
viously thought to be non-pathogenic in humans, the
adeno-associated virus (AAV) is a DNA virus commonly
used as a vector in gene therapy [1, 2]. In European and
a few Japanese hepatocellular carcinoma (HCC) patients,
it has been shown that AAV strains similar to AAV2 or
AAV13 have the potential to integrate into genes includ-
ing CCNA2 and CCNEI, contributing to oncogenesis
[3-6]. Here, we use the notation AAV2/13 because the
observed AAV sequences in HCC come from strains be-
tween the fully-sequenced AAV2 and the partly-
sequenced AAV13[3, 5]. The latter study emphasized
that some integrated sequences best match AAV2, while
other integrated sequences lie between AAV2 and
AAV13 in an AAV phylogenetic tree [5]. Additionally,
the risk of insertional oncogenesis for liver cancer has
been suggested in animal models of AAV2-based gene
therapy [7]. In mouse experiments with gene therapy, at
least part of the risk appears to be due to the integration
of AAV vectors at a particular locus called Rian, for
which there is no orthologous locus in the human gen-
ome [8, 9]. Recent reports on long-term studies of AAV-
based therapy for hemophilia A in dogs [10] and
hemophilia B in humans [9] found no cases of liver can-
cer, but the sample sizes are small.

We examine the prevalence of AAV segment presence
and integration in two Asian cohorts including both
HCC and intrahepatic cholangiocarcinoma (iCCA) sam-
ples. One previous study included 46 cholangiocarci-
noma cases among 1461 cases, and among evaluable
samples, reported presence of AAV in 7/43 non-tumor
samples and 2/45 tumor samples with no evidence of
oncogenic integrations [5].

Past analyses of AAV integration in TCGA liver cancer
samples

At least three research groups have previously searched
the Cancer Genome Atlas (TCGA) for evidence of AAV
but reached quite different conclusions [4, 11, 12]; two

other groups also searched for viruses in TCGA, but for
reasons partly explained in the next paragraph their
methods could not have found AAV [13, 14]. The first
study reported oncogenic integrations in four HCC (the
TCGA code for HCC is LIHC) tumor samples but did not
consider non-tumor samples or CCA samples [4]. The
second study identified AAV fragments in six TCGA
HCC samples but deemed them to be contamination be-
cause the locations in the AAV genome are concentrated
at the 3’ end [11]. The third study included the larger Pan-
Cancer Analysis of Whole Genomes (PCAWG) sample set
and reported only one sample with AAV in the non-
TCGA subset of PCAWG without commenting on the
discrepancies with previous findings [12].

When AAV integrates into the human genome and se-
quencing is done later, only fragments of the AAV gen-
ome are detectable [5, 15]. Complex AAV integration
fragments were also found when hemophelic dogs were
treated with a recombinant AAV-derived gene therapy
vector [10]. This phenomenon is not unique to AAV and
has been seen in other cancer-related viruses; this
phenomenon is part of a larger set of virus-host phenom-
ena named “hit-and-run” [16]. In the case of AAV, there
may be a long latency between the initial integration and
the activation of AAV by a helper virus, such as an adeno-
virus or a herpesvirus [15, 17]. Because of the combined
latency for activation of AAV and latency for development
of liver cancer, it has been challenging to identify which
helper virus may have activated AAV. In the largest-scale
study of liver cancer and AAV to date, a candidate helper
virus could be found in fewer than 45 % of the cases [5].

Strains of AAV and their genes

AAYV belongs to the family Parvoviridae and the genus
Dependoparvorius. Our sequence analyses used the fol-
lowing complete genomes occurring in nature: AAV1
(NC_002077.1), AAV2 (NC_001401.2), AAV3 (NC_
001729.1), AAV4 (NC_001829.1), AAV5 (NC_006152.1),
AAV7 (NC_006260.1), AAV8 (NC_006261.1) and the
partial genome of AAV13 (EU285562.1); for additional
strains, some strain-specific PCR primers have been
tested [18]. We did not include laboratory-engineered
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AAYV sequences, such as HV550988.1 and DD233401.1,
because these AAV sequences should not appear in a
patient infected outside the laboratory or a gene therapy
trial.

Typically (e.g., https://viralzone.expasy.org/226
?outline=all_by_species), AAV2 is characterized as hav-
ing seven proteins, comprised of four overlapping non-
structural Rep proteins encoded from the N-terminal
portion and three overlapping structural proteins VPI,
VP2, VP3 encoded from the C-terminal portion. The VP
proteins make up the virus capsid and hence are some-
times called “cap” or “capsid” proteins instead of VP. In
Fig. 1, we show these open reading frames (ORFs) as
well as an additional regulatory region.

At least three other protein coding genes in AAV2
have been reported [19-21]. One of these, called the
X gene/protein has sufficient evidence that is expli-
citly annotated in the GenBank record for NC_
001401.2. The X gene spans positions 3,929-4,396 in
the reference AAV2 genome. The X gene sequence
has been patented based on some evidence for a role
in oncogenesis [22, 23]. One of those pieces of evi-
dence is that wild-type AAV2 can replicate autono-
mously in a keratinocyte tissue culture system [24],
but mutants that disrupt X cannot replicate autono-
mously in that system [22, 23]. This finding shows
that although the original name “adeno-associated
virus” was meant to imply that coinfection with
adenovirus was necessary for replication, coinfection
is not necessary in some conditions. In Chinese ham-
ster cells, it was demonstrated in the lab of Harald
zur Hausen that autonomous replication of wild type
AAV?2 is possible [25]. The later tissue culture experi-
ment was in human cells and hence one step closer
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to the human in vivo setting. Another piece of evi-
dence that the X gene is an oncogene is that its pres-
ence can lead to transformation of 3T3 cells [23].
The existence of the 155 amino acid X protein (YP_
009110690.1) has been validated using a non-targeted
set of mRNA and proteomics experiments [26].

All six completely sequenced AAV strains other than
AAV2 Jack an intact X gene; whether AAV13 contains an
intact X gene is unknown. In the first paper about the X
gene, Cao and colleagues (see their Table 1) summarized
that non-AAV2 strains have sequence segments with weak
similarity to the X gene [20], but we checked that none of
the alignments are full length. Cao and colleagues went on
to show that in the AAV6 strain, there are two separate
segments similar to different regions of the AAV2 X gene,
and that insertion of the AAV2 X gene into AAV6 signifi-
cantly improves replication of the modified AAV6 in
HEK293 cells compared to wild-type AAV6. From these
comparative observations, Cao and colleagues inferred
that the X gene is functional and the segments in wild
type AAV6 similar to AAV2 are not functional [22].

Our contributions

We searched for evidence of AAV in RNASeq and tar-
geted DNASeq samples of two large cohorts of liver can-
cer patients from Thailand and Mongolia. We did
positional analysis of all integrations we found. We also
repeated an analysis of AAV presence in TCGA, extend-
ing it to CCA (CHOL) and to non-tumor samples, and
we resolved the discrepancies mentioned above.

Results and Discussion
We analyzed two cohorts of liver cancer patients, a pre-
viously described cohort from Mongolia of 70 HCC
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Table 1 Clinical Characteristics of Mongolia and Thailand Cohorts IQR: Interquartile range; HBV: Hepatitis B virus; HCV: Hepatitis C
virus; HDV: Hepatitis D virus. AFP: alpha-fetoprotein level. AAV2/13 refers to any sequence that most closely resembles the full AAV2
genome or the partial AAV13 genome but could be phylogenetically in between. Missing data excluded. Entries with a — were not

measured

Mongolia Thailand (HCC) Thailand (iCCA)

N or mean % N or mean % N or mean %
Age (median, IQR) 60 55-66 56.3 51-61 59.5 54-65
BMI (median, IQR) 24.7 21.3-279 22.8 20.8-253 223 19.8-24.4
Smoker 19/62 30.6 % 30/45 66.7 % 55/100 55%
Drink Alcohol 8/62 129 % 37/47 78.7 % 64/100 64 %
HBV (HBsAQ) 48/70 68.6 % 22/42 524 % 2/84 24 %
HCV (HCADb) 40/70 571 % 5/40 125 % 3/83 36 %
HDV (HDADb) 27/70 386 % - - - -
Fam History Liver Cancer 11/61 18.0 % 18/59 305 % 41/94 43.6 %
Cirrhosis 27/56 482 % 23/36 63.8% - -
AFP (median, IQR) - - 386 5.8-320.7 - -
Multinodular 13/61 213 % 12/36 333 % 3/42 71 %
TNM staging
Stage | 1 1.9 % 13 36.1 % 16 40 %
Stage Il 19 358 % 15 417 % 5 125 %
Stage lll 31 58.5 % 5 139 % 7 175 %
Stage IV 2 38 % 3 83 % 12 30 %
AAV2/13 + Tumor RNA-Seq 0 0% 0 0% 0 0%
AAV2/13 + Non-tumor RNA-Seq 2 29 % 3 6.4 % 14 14 %
AAV2/13 + Tumor Viral Capture DNA-Seq 0 0% 1 333 % 4 4%
AAV2/13 + Non-tumor Viral Capture DNA-Seq 0 0% 3 6.4 % 13 13 %
AAV2/13 + Tumor Genome Insertion 0 0% 1 21 % 2 2%
AAV2/13 + Non-tumor Genome Insertion 0 0% 2 43 % 9 9 %
AAV2/13 + Shared Genome Insertion 0 0% 1 21 % 0 0%

patients [27], and a new cohort from Thailand com-
prised of iCCA (100/147, 68.0%) and HCC (47/147,
32.0%). Cohort characteristics are summarized in
Methods, Table 1, and Fig. 2. Whole genome RNASeq
data were collected from pair tumor and non-tumor
samples as described previously (Methods) [27].

AAV segments are preferentially detectable in non-tumor
RNASeq samples

As described in Methods and Fig. 3 A, we sought se-
quence evidence of non-hepatitis virus infections occur-
ring preferentially in tumor or in non-tumor samples.
The only non-hepatitis virus genus that was significantly
differentially present between non-tumor samples and
tumor samples was Dependoparvovirus, which was de-
tected by PathSeq [28] in 17/147 non-tumor samples
and 0/147 tumor samples (p < 9.4 x 107°, Fisher’s exact
test). The best matching strain was not necessarily
AAV?2; two samples with reads matching AAV2 also had
at least one read whose best PathSeq match was AAV3,

with the caveat that the PathSeq library did not include
the partial genome AAV13. All reads identified by Path-
Seq as matching to AAV were confirmed by blastn [29].
We found two samples with at least one chimeric read
indicating an integration into a gene (Supplementary
Table S1). We also found reads from AAV present in
two of the Mongolian non-tumor samples.

Further analysis of AAV segments and host genome
integration with viral capture DNASeq

To confirm and expand the evidence of AAV genomic
segments being present, we did viral capture DNASeq
(Methods) on the tumor and non-tumor samples from
the 19 patients who showed evidence of AAV presence
in the RNASeq analysis. Evidence of AAV integration
into the host genome is more likely to be detected via
viral capture DNASeq because it enriches for viral se-
quences and because AAV may integrate anywhere in
the host genome, not only in expressed genes.
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By sequence analysis (Methods) of the DNA data, we
confirmed AAV presence in all 17 Thai non-tumor sam-
ples, but not in the two Mongolian non-tumor samples
(Supplementary Table S1). AAV presence was also de-
tected in 5/17 Thai tumor samples. Thus, in the Thai
data, presence of AAV in the RNA of a non-tumor sam-
ple was a perfect predictor of presence of AAV in the
DNAseq data. However, absence of AAV in the RNAseq
data is not a perfect predictor of absence in the DNAseq
data because (i) the DNA sequence may not be tran-
scribed and (ii) because of the limitations of PathSeq dis-
cussed below in the case of 719T. Partitioning by tumor
type, the enrichment of AAV in tumor tissue compared
to non-tumor tissue in HCC (n=1,2.1% vs. n = 3,6.4 %,
p =0.304) was not statistically significant, but in iCCA,
the predominance of AAV-present samples among the
non-tumor samples (# = 13,13.0 %) vs. tumor tissue (n =
4, 4.0 %), was significant (p = 0.023) (Fig. 3B).

Next, we explored AAV2/13 integration among the
17 Thai patients with AAV present. We did not

detect any tumor-specific enrichment of AAV2/13 in-
tegrations; most integrations were in the non-tumor
samples (Supplementary Table S1). There was only
one AAV2/13 integration into an established target
gene for AAV-mediated oncogenesis, namely CCNA2,
in an HCC patient (719T). This integration was found
with identical breakpoints in both tumor and non-
tumor tissue (719T and 719NT). All other AAV inte-
grations were exclusively in one of the two paired
samples of each patient (Supplementary Table S1). In
patient 719, there was increased mRNA expression of
CCNA2 compared to patients lacking the integration
(Fig. 3 C-D). The proportion of patients with AAV
(13 %) is significantly lower (Fisher’s exact test, two-
sided P <0.005) compared to the 21 % reported in the
largest European study 5. Aside from the geographic
contribution to this disparity, difference in AAV posi-
tivity may also be due to differences in ascertainment,
such as the tumor types and the proportion of cases
with cirrhosis. Only two Thai iCCA patients have
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Fig. 3 A Workflow of RNAseq analysis (B) AAV2/13 detected in Thai patients with HCC and iCCA (C) Counts of host genome integrations of
AAV2/13 in tumor vs. non-tumor tissue in viral capture DNAseq samples (D) RNA expression of CCNA2 measured in transcripts per million (TPM)

by AAV2/13 integration status in tumor vs. non-tumor

AAV integrations in the tumor sample, each with two
distinct integrations (776T and 779T; Supplementary

Table S1).

Figure 4 visualizes the numbers of

chimeric reads in each sample that are shown in
tabular form in Table S1. None of the four integra-
tions were detected in the corresponding non-tumor
sample. Three of the four integrations are not in or
near a human gene and one occurs in the gene
PRKCB, which has not been previously implicated
and does not show increased expression. Hence, we
conclude that the iCCA AAV integrations are not
oncogenic in these two Asian cohorts.

One limitation of our integration site analysis is that

for the purposes of cost efficiency and focus, our study
design applied DNA sequencing only in samples from
those patients where we could find presence of AAV in
the RNAseq data. We could have missed many DNA in-
tegrations of AAV into intergenic regions of the host ge-
nomes of other patient samples. Indeed, we found
several intergenic integrations of AAV (Supplementary
Table S1) in the DNA samples we analyzed, but these
seem to be functionally irrelevant. The proposed mecha-
nism(s) of oncogenesis induced by AAV integration al-
ways include(s) altered transcription of a human gene
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Tumor

(near) where the AAV integration occurs. Therefore, we
believe that requiring AAV to be present in the RNA is
a reasonable precondition to search for functionally rele-
vant AAV integrations in the DNA host genome.

Most of the 147 patients were tested for hepatitis B virus
(HBV) infection status by the standard surface antigen
(HBsAG) (Table 1). By this criterion (see CDC_Hepati-
tisB_SerologicTest_FactSheet9.indd), the HBV-tested pa-
tients with AAV integrations are all HBV negative.

Reanalysis of data from one patient for whom the initial
RNASeq analysis and the DNASeq analysis seemed to give
conflicting results

There was an apparent discrepancy between the analysis
of the RNASeq data and the DNASeq data of patient
719 who has the oncogenic integration of AAV in the
gene CCNA2. In the RNASeq data and using PathSeq
[28], we found only AAV segments present, but no evi-
dence of integration, and only in the non-tumor sample.
To address the discrepancy, we did more targeted ana-
lysis of the RNASeq data (Methods). The AAV-targeted
analysis revealed five human/AAV chimeric reads in the
tumor sample having the same breakpoint in CCNA2 as
detected in the DNASeq data. These were missed by
PathSeq because the AAV pieces are too small to form a
seed for the alignment part of PathSeq.

Resolving published discrepancies and extending
analyses of AAV integration in TCGA samples

We revisited the question of AAV integrations in TCGA
liver cancer (LIHC and CHOL) samples because of the
discrepant results of previous studies summarized in

Background. We applied our PathSeq-centered [28]
pipeline (Fig. 3 A) to 462 RNASeq samples from 404
TCGA patients; for 397/404 patients self-reported race
and/or ethnicity information is available in TCGA. We
validated any possible matches with more targeted se-
quence analysis (Methods). The 462 TCGA samples
comprise 371 primary HCC (LIHC) samples, 50 matched
normal samples from HCC patients, 33 primary CCA
(CHOL, which are mostly intrahepatic CCA [30] like
our Thai CCA samples) samples, and 8 matched normal
samples from iCCA patients.

PathSeq found genus Dependoparvovirus in 6/58 non-
tumor samples and 6/404 tumor samples, which is a sig-
nificant difference in proportions (P < 0.00077, Fisher’s
exact test one-sided). All the matches found by PathSeq in
genus Dependoparvovirus were to AAV, but not always to
AAV2. The tumor sample BD-A2L6 had a match to
AAV7 in the PathSeq analysis without a match to AAV2.
All 12 of these matches were validated by searching for
AAV-matching reads with SRPRISM and ReadAligner
[31] and by aligning the read pairs found by SRPRISM to
all seven AAV sequences and the human genome with
blastn [29] using the most sensitive word size of 11.

The results of the prior studies on TCGA and ours are
compared in Supplementary Table S2. Except for one dis-
crepancy with the integration site on TCGA sample
TCGA-BC-A10T[4], we found all the previously reported
instances of AAV presence [4, 5] and AAV integration.
We also found six previously unreported samples with
AAYV segments present without integration and two non-
tumor samples with integrations that support our pos-
itional analysis of AAV integrations described below.
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None of the 12 samples with an AAV integration come
from an Asian patient (P < 0.0023, Fisher’s exact test, one
sided, based on 161 Asian, 236 non-Asian, 7 not classified)
supporting our conclusion that oncogenic integrations of
AAV are very rare in Asian liver cancer patients. The
TCGA samples classified as Asian are not classified more
precisely by country of origin.

There are at least four technical challenges in search-
ing for AAV in TCGA. First, the TCGA liver cancer read
lengths are only 48 nucleotides. Second, the matches
may be to AAV strains different from AAV2 or even dif-
ferent from any AAV strain with a complete genome [3].
Third, the TCGA samples were not subjected to viral
capture sequencing, so even one read mapping at high
identity to AAV is unexpected and interesting. Fourth,
as shown previously [3, 4, 11, 16], when AAV does inte-
grate, only a piece of the viral genome is detectable and
it may be present at high copy number, as we observed
in our sample 719T. The overarching reason for the false
negatives in two previous studies [11, 12] is that they
were taxonomically broad, intending to find all viruses
using homogeneous methods and assumptions that are
not necessarily correct for AAV. In contrast, we, and Ba-
yard et al. [4] focused our search on AAV and used
methods that are more suitable for this taxon.

Positional analysis of oncogenic and non-oncogenic AAV
integrations

Based on analysis of the AAV locations of integrated
segments in our samples, TCGA, and previously pub-
lished samples, we propose that the oncogenic potential
of the AAV integrated pieces depends on (i) the AAV
genome interval retained and (ii) the integration site in
the human genome [3-5]. The initial findings that AAV
integration can be oncogenic [3] were disputed [32-34]
because (i) other studies had suggested that AAV infec-
tion may protect against cancer [34, 35], (ii) the ob-
served rate of oncogenic AAV integrations was very
small compared to the prevalence of AAV infection [33]
and (iii) more patients had non-oncogenic AAV integra-
tions [3, 32]. We similarly observed non-oncogenic inte-
grations in the non-tumor samples of 10 Thai patients.
Another heretofore unexplained finding is that all pub-
lished oncogenic integrations are of strains resembling
AAV2/13[3, 5], but one of the non-oncogenic integra-
tions in TCGA is of AAV7.

We posit that the X gene of AAV2, encoded at posi-
tions 3,929-4,396 near the 3’ end of the virus genome,
strengthens its oncogenic potential [14, 15]. The early
experiments on the X gene suggest that its presence may
enhance AAV’s capability to replicate and that its pres-
ence can endow AAV genomes with the capability to
transform infected cells towards a cancerous state.
Twenty-four out of 26 of the previously published likely
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oncogenic integrations [5] (bad line breakSupplementary
Table S3, upper part) that had both boundaries overlap-
ping the X gene, while 2/4 likely non-oncogenic AAV
integrations (Supplementary Table S3, lower part) do
not overlap the X gene (Fig. 5). All the oncogenic inte-
grations in TCGA overlap the X gene (Supplementary
Table S3). Among the seven fully sequenced strains of
AAV, only the AAV2 strain contains an intact X gene,
which could explain the strain bias among the observed
oncogenic integrations.

The (full-length) X-protein is the following 155 amino
acid protein (YP_009110690.1).

MVLYLPTSREATDKQLPQMSTHKAFFQAWSGRTE
MCTFRGPSGQRFHTRTDIFTPLPSWVDSDLNTLLHR
FSSRTPRYLRILRPPSVRQSLLPSSHSTPRDRSAWRSS
GSCRRKTANAGIPKFSTLPTTTSLLMWTLLWTLMAC
IQSLAPLAPDT.

Cao et al. suggested that there may be shorter isoforms
that are suffixes of the above sequence starting from one
of the other two methionines among the first 50 amino
acids [22]. A search of the protein non-redundant (nr)
database with X protein as query found only one signifi-
cant match (E-value 0.0002 to sequence QDX47270.1,
which is the 760aa capsid protein of another AAV found
in the Chinese bat species Rhinolophus pusillus [36]. Inter-
estingly a BLASTP search [29] with QDX47270.1 as query
finds many capsid proteins from AAV sequences aligning
within the interval [1.435] of QDX47270. However, if one
restricts the search to the C-terminal portion [436.760] of
QDX47270.1, then only the match to the AAV2 X protein
has a significant E-value (0.0004); the slight differences in
the E-values are because interchanging query and subject
in BLAST preserves alignments, but not E-values.

Our hypothesis positionally complements the previ-
ous findings that the interval 4,402-4,534, adjacent to
the X gene, contains several sequences to which liver-
specific transcription factors such as HNFl-a and
HNF6 can bind [37]. This notion is positionally con-
sistent with a previous hypothesis that AAV integra-
tions are almost always from the 3’ half of the
genome to avoid overlap with the replication (Rep)
gene products, ending at position 2,252, because the
Rep proteins are anti-oncogenic [3, 37]. These find-
ings [37] explain the liver-tropism and why 24/26
previously published potentially oncogenic integrations
into recurrent genes (Supplementary Table S3, Fig. 5)
intersect the AAV interval 4,402-4,534. However, they
do not explain the AAV2 strain-specificity and why
most integration intervals extend several hundred nu-
cleotides in the 5 direction from position 4,402 into
the X gene interval. Our hypothesis, that if the AAV
integrated piece overlaps the X gene then its onco-
genic potential is increased, would explain the strain
specificity and the positional data.



Schéffer et al. BMC Genomics (2021) 22:814

Page 9 of 14

0 kb

1kb 2 kb 3 kb

0 kb 1kb 2 kb 3 kb

information of reference 5; see also our Supplementary Table S3

I . Non-Tumor

Integrations mapped onto AAV2 (4679 bp)

IR |

4 kb
Integrations mapped onto AAV2 (4679 bp)

Fig. 5 Comparison of AAV integrations into new Thai samples and published AAV integrations with respect to the AAV2 genome as the
reference. In both panels, the X axis represents the base pair positions in the AAV2 reference genome and overlapping integrated segments are
stacked on top of one another; there is no Y axis, but the number of rectangles stacked on top of one another indicate the number of
overlapping integrations from that region of AAV. A Thirteen out of 17 Thai patients with samples subjected to viral capture sequencing had at
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Conclusions

In summary, our analysis of 217 Thai and Mongolian
patients found that AAV2/13 integration into known on-
cogenes is rare. In contrast to European patients, it is
not only rare, but there is minimal evidence of its contri-
bution to oncogenesis in HCC and iCCA. We also found
that among TCGA liver cancer samples, all samples with
AAV present are non-Asian. These findings broaden
previous findings that rates of AAV integration in Japa-
nese and Korean HCC patients are low [6, 38]. A recent
study of 413 cancer patients in China, including 49 HCC
patients, found a high rate (~ 80 %) of presence of AAV,
but no evidence of oncogenic integration [18]. The con-
trast in evidence for the oncogenic potential between
European and Asian patients suggests epidemiological
differences allowing AAV2/13 to drive oncogenesis in
European patients. Future studies should focus on epi-
demiological and environmental exposure differences
between Asian, American, European and African

countries to elicit potential interactions of geography
and presence of AAV in HCC etiology.

Lastly, by sequence analysis of previously reported and
newly identified AAV integrations, we corrected the
AAYV integrations in TCGA (Supplementary Table S2)
and we suggested a new hypothesis that the role of
AAV2 X gene could explain why some AAV integrations
predispose to liver cancer and some do not.

Methods

Patients

The study included patients from two cohorts from
Thailand and Mongolia. The Thai cohort contained 147
liver cancer patients, 47 with HCC and 100 with iCCA.
These are a subset of 171 patients from the TIGER-LC
Consortium of which an earlier cohort was previously
described [39]. All patients gave informed consent. The
study was approved by the Institutional Review Boards
of the respective institutions (NCI protocol number
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13CNO089; CRI protocol number 18/2555; Chulabhorn
Hospital protocol number 11/2553; Thai NCI protocol
number EC163/2010; Chiang Mai University protocol
number TIGER-LC; Khon Kaen University protocol
number HE541099). The original 171 patients were re-
duced to 147 because of: (i) lack of suitable samples for
RNA sequencing (ii) poor tumor quality (iii) missing
clinical data (iv) inconclusive pathology data on the
tumor type.

The second cohort consisted of 70 patients with HCC
from Mongolia. These patients are a subset of the 76 pa-
tients described previously with available RNA sequen-
cing data available for analysis [9]. The study was
approved by the ethics committee at the National Can-
cer Center in Ulaanbaatar, Mongolia.

We used the Consort tool to prepare a flow chart,
Fig. 2, summarizing the patient selection and some key
analysis steps.

RNA sequencing

RNA sequencing of the Mongolian was described previ-
ously [27] and RNA sequencing of the Thai cohort was
done similarly. For each patient, RNASeq data were gen-
erated from a tumor sample and a nearby, matched non-
tumor sample. Almost all reads had lengths in the range
51-150 after trimming adapters.

Analysis of RNA sequencing data

To search for viruses in the RNASeq data we used
(GATK) PathSeq [28] in the version of February 2019.
We specified as the host genome the hg38 version of the
human genome that was current as of February 6, 2019.
For possible pathogens, we used a library of all 10,532
viral RefSeq genomes that was also current on the same
date; all other parameters to PathSeq used default set-
tings. This library includes the seven full AAV genomes
mentioned above but not AAV13.

To run PathSeq, a key precursor step is to align the
RNA reads to the hist genome, so that reads mapping to
the host genome can be filtered out as not being candi-
dates to align to a pathogen genome. For that purpose,
we used STAR [40] with the following settings:

e --peOverlapNbasesMin 10 --alignEndsProtrude 10
ConcordantPair --outSAMunmapped Within
--outFilterType Normal --outFilterMultimapNmax
10 --outFilterMismatchNmax 10

e --outFilterMismatchNoverLmax 0.3
--alignintronMin 21 --alignIntronMax 0

e --alignMatesGapMax 0 --limitSjdbInsertNsj
1,000,000 --sjdbGTFfile my.gtf

e --alignSJoverhangMin 5 --alignSJDBoverhangMin 3
--sjdbScore 2
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e --outFilterMatchNminOverLread 0.66 --quantMode
TranscriptomeSAM --outReadsUnmapped Fastx
--outSAMattributes All

The AAV matches found by PathSeq were validated
with Kraken [41] also using the same library of virus ge-
nomes and with blastn [21] using a reference database
comprised of just AAV genomes. As explained below,
we reanalyzed the data from one patient with more tar-
geted tools because PathSeq can miss microbial matches
when: (i) the read is chimeric human/microbe) and the
microbial part is too close to one end or (ii) the se-
quence has N characters or (iii) the sequence matches a
species or strain that is not in the database of RefSeq
genomes.

Viral capture DNA sequencing

For the 19 (17 Thai, 2 Mongolian) patients who had evi-
dence of AAV presence in the RNA sequencing data
analysis, we submitted both the cancer and non-cancer
samples (total of 38 samples) for viral capture DNA se-
quencing with an Agilent (Santa Clara, CA, USA) cus-
tom capture kit. The kit included a tiled array of
overlapping 120mer probes spaced 15nt apart and start-
ing at positions 1, 16, 31, 46, 61, 76,... of the AAV se-
quences listed above. For AAV2 our sequence probes
were of the same length and density as in the seminal
paper [3]. Some probes from regions of the human gen-
ome where Nault et al. found AAV integrations were
used as controls. They did not use any other strains in
their capture design, but they did compare against other
AAYV strains in their sequence analysis because some
mismatches are tolerated between probe and bait in viral
capture sequencing. We used other strains because we
wanted to understand to what extent the AAV segments
seen in liver cancers are exclusively from strains resem-
bling AAV2. A recent study of 413 cancer samples of
nine types including HCC, tested for 13 different strains
(ak.a., serotypes) and found presence of AAV1, AAV2, a
hybrid of AAV2 and 3, AAV8 and AAVrh.43[18].

The sequencing was done on an Illumina (San
Diego, CA) NovaSeq sequencer using S1 chips in the
NCI Frederick sequencing facility. The sequence reads
in our DNA sequencing assay are paired end reads
with each mate having length 151nt. The total num-
ber of reads per sample ranged between 85 million
and 106 million. In all 38 samples, more than 90 % of
bases had a quality score of at least 30. Samples were
pooled for sequencing, which has the consequence
that a small number of reads get assigned to the
wrong sample via a phenomenon called “barcode hop-
ping” or “index hopping”. We corrected for this prob-
lem as described below.
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Evidence for AAV presence and integration in viral
capture DNASeq

The steps of DNA sequencing and analysis are described
in a flowchart in Fig. 6.

Viral capture sequencing generates paired reads with
spacing of hundreds of (not sequenced) nucleotides in
between. Consequently, there are two kinds of evidence
of viral integration. The weaker evidence consists of
mate pairs R1 and R2, such that one read is entirely
from the human genome and the other read is entirely
from the virus genome; we call these “cross-species read
pairs”. The stronger evidence consists of one read that
has a substantial piece from the human genome and a
substantial piece from the virus genome. We call these
“chimeric reads”. A “substantial piece” is one long
enough to generate a statistically significant match in a
blastn search [29]; in practice the minimum size is
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between 11nt and 28nt depending on what database size
and other blastn parameters one uses. Chimeric reads
are stronger evidence than “cross-species pairs” because
chimeric reads make it possible to pinpoint the integra-
tion boundary, with the potential for only a few nucleo-
tides of ambiguity. When the only available evidence
consists of “paired reads” the virus boundaries are un-
known [5]. Sometimes all the chimeric reads have the
virus on the same end and hence one can determine one
out of two integration boundaries [5].

Sequence analysis of viral capture DNA data and for
reanalysis of RNASeq data

We used SRPRISM and a streamlined version called
Readfinder [31] and blastn [29] to identify reads that
mapped either to any of the AAV strains used to design
the Viral Capture sequencing kit and/or to the human

AAV reference
sequences and viral
capture kit and
primers

Select AAV positive
patients

Viral Capture DNA
sequencing

AAV Read Alignment
Blastn and SRPRISM
AAV aligned reads to
hg38 reference or Viral
Capture AAV strains

Identify sections of
AAV reads that map
to hg38 reference

Compare integration
sites to previous
publications and to
known human fragile
sites

Fig. 6 Flowchart describing viral capture DNA sequencing and its analysis

A 4

Identify AAV reads
that map to AAV2
reference genome
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genome. As explained in the previous subsection, we are
interested in mate pairs in which at least one read maps
to AAV and at least one read maps to the human gen-
ome and the two mapping tests require separate runs of
SRPRISM/Readfinder using either the AAV genomes or
the human genome as the reference genome(s). SRPR
ISM, unlike other more commonly used read aligners,
provides guarantees on the number of mismatches toler-
ated. These guarantees are important because (i) the
available whole genomes for AAV are few and (ii) the se-
quence data of previously reported AAV integrations
(GenBank sequences submitted in conjunction with ref-
erence 4) do not match perfectly to the reference gen-
ome for AAV2 (NC_001401.2). In our usage, the
difference between SRPRISM and Readfinder is in par-
ameter setting, but the matches found by both packages
are identical. Readfinder can find reads that have high-
quality alignments to a genome, such as AAV, over part
of the read with default settings, while for SRPRISM one
must specify in what subinterval of the read one expects
to find the match. For blastn we used word sizes (i.e.,
the size of the initial seed) of 11 or 16, which are lower
than the default of 28 because we expected that some
chimeric reads would by chance have the breakpoint be-
tween the AAV segment and the human segment occur-
ring within 16nt of either end of the 151nt read.

For example, a pair of Readfinder commands to com-
pare all reads against all AAV genomes would look like.

readfinder --log-file testl.log --db AAV_genomes -i
samplel_matel.fastq --in-fmt fastq —output samplel_
matel.fa -B 31

readfinder --log-file testl.log --db AAV_genomes -i
samplel_mate2.fastq --in-fmt fastq —output samplel_
mate2.fa -B 31

The outputs are FASTA files (suffix fa) with reads that
have a sufficiently long match. We varied the -B param-
eter, which determines how many nucleotides need to
be matched, between 20 and 31. Separate Readfinder
commands were run for each sample and each set of
read mates.

A blastn command to compare a DNAseq read against
the AAV genomes would look like:

blastn -query oneread.fa -db AAV -word_size 11 -out
oneread_vs_AAV.blastout

where the name of the query file and output file vary.

For reads that mapped only to the human genome or
only to one of the AAV strains, we retained only reads
that had alignments of at least 140nt and 96 % identity.
For reads that mapped to both organisms, we imposed
no filters on alignment quality since these are the likely
chimeric reads.

We developed in-house python programs (i) to identify
cross-species mate pairs in which one mate has a high-
quality alignment to the human genome and the other
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mate has a high-quality alignment to AAV and (ii) to
identify chimeric reads and (iii) to define how much of
the AAV2 genome was covered by reads mapping to
AAV. We defined a read to be “chimeric” if it has align-
ments to both the human genome and AAV that to-
gether span at least 140nt of the 151nt read and overlap
by at most 6nt. We also developed an in-house python
program to summarize the coverage in the AAV genome
by a set of reads in a sample, which we measured as the
number or proportion of nucleotides of NC_001401.2
covered by at least two reads in the sample. The
searches for cross-species mate pairs and chimeric reads
were done after removing a few reads that were likely
assigned to the wrong sample, as described in the next
subsection.

We defined that a sample had AAV present based on
the viral capture sequence if at least 10 read mates map
to AAV and they cover at least 10 % of the AAV2 gen-
ome. Integrations of AAV into patients DNASeq sam-
ples are shown in Table S1. This table shows only those
samples with AAV integrations, but not the other five
patients who had evidence of AAV presence in the
RNASeq data.

Removal of reads likely assigned to the incorrect sample
via “barcode hopping”

One known limitation of multiplexed Illumina sequen-
cing is that reads are sometimes assigned to the wrong
sample via a phenomenon known as “barcode hopping”
or “index hopping”. Although this problem affects only a
small (<1%) proportion of reads, this can be a serious
problem when one is trying to make absolute assertions
about the presence or absence of a rare object in a sam-
ple. In our study, the misassignment of AAV reads to a
sample S, could lead us to conclude incorrectly that
AAV is present in S. We reasoned that a read r is likely
to be misassigned to sample SI, if r occurs exactly one
time in the reads for S1 and multiple times in a different
sample S2 (*). For “multiple times”, we used the thresh-
old 2, but almost all examples of reads meeting the two-
part criterion (*) in our data satisfied the higher thresh-
old of at least 5 reads assigned to sample S2. Using a
combination of unix commands and in-house programs
in perl and python applied to all reads mapping to AAYV,
we identified and removed 71 read pairs in which at
least one read met the criterion (*).

Supplementary information
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Additional file 1 Table S1. AAV presence and integrations in paired
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