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Abstract

Background: Fundamental knowledge of cellular and molecular mechanisms in developing testicular tissues is
critical to better understand gonadal biology and responses to non-physiological conditions. The objective of our
study was to (1) analyze transcriptome dynamics in developing testis of the domestic cat and (2) characterize age
effects on the initial response of the tissue to vitrification. Tissues from adult and juvenile cats were processed for
histology, DNA integrity, and RNA sequencing analyses before and after vitrification.

Results: Transcriptomic findings enabled to further characterize juvenile period, distinguishing between early and
late juvenile tissues. Changes in gene expression and functional pathways were extensive from early to late juvenile

sample response being closest to adult tissues.

either enriched in adult or juvenile testicular tissues.

to adult development stages. Additionally, tissues from juvenile animals were more resilient to vitrification
compared to adult counterparts, with early juvenile sample responding the least to vitrification and late juvenile

Conclusions: This is the first study reporting comprehensive datasets on transcriptomic dynamic coupled with
structural analysis of the cat testis according to the age and exposure to cryopreservation. It provides a
comprehensive network of functional terms and pathways that are affected by age in the domestic cat and are
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Background

Mammalian puberty is a progressive process in which
testis undergoes dramatic developmental and structural
changes, and involves complex hormonal and molecular
modulation to accomplish both somatic cell prolifera-
tion/maturation and the initiation of spermatogenesis
[1]. Large differences exist between species in hormonal
control of puberty and onset of spermatogenesis, as well
as in regulation of spermatogenesis and steroidogenesis
[2, 3]. Recent studies in rodents and humans using
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single-cell RNA sequencing (scRNA-seq) technology
enriched our knowledge on the processes happening in
testis between infancy and adulthood, and further em-
phasized high species-specificity and value of animal
models [4, 5].

The domestic cat is an essential model for biomedical
research as well as conservation of endangered felids [6,
7]. Cat spermatogenic function reaches maturity at the
age of 8 to 10 months, with initial activation and first
signs of spermatogenesis at 5 to 6 months [8, 9]. This is
fundamentally different from the mouse model (sperm-
atogonia begin to differentiate shortly after birth result-
ing in a synchronous first wave of spermatogenesis) and
closer to humans, where spermatogonia are maintained
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in an undifferentiated state prior to the initiation of pu-
berty [3].

In addition to extensive morphological studies of do-
mestic cat testicular tissue [10, 11], the expression of
specific genes has also been investigated in developing
testis [12, 13]. However, we still lack deeper knowledge
on molecular processes happening during testis matur-
ation in cats, as well as the understanding of differences
between immature (neonatal), maturing (pre-, peri-, pu-
bertal), and fully mature (adult) testicular tissue. A dee-
per understanding of the molecular events happening in
testis from infancy to adulthood would contribute
greatly to development of male fertility preservation and
fertility control in domestic cats and wild felids. Whole
transcriptome of testicular tissue during its maturation
has been sequenced in several mammalian species, in-
cluding pig [14], Mongolian horse [15], domestic yak
[16], human [17] and mouse [18]. Further studies using
scRNA-seq were also recently performed for developing
testis in human and mouse [4, 5]. For the domestic cat,
there has been no study so far that looked on the whole
transcriptome of testicular tissue at different stages of its
maturation. The only existing RNA-seq study on cat tes-
ticular tissue used three adult males over 2 years old and
focused on comparison with sterile hybrids [19].

Sperm cryopreservation remains the standard ap-
proach for preserving male fertility in many species, in-
cluding humans. However, when sperm banking is not
possible, preservation of small fragments of testicular tis-
sue offers an alternate way for fertility preservation [20,
21]. Preservation of testicular tissue can benefit not only
prepubertal individuals who do not yet produce mature
sperm, but also post-pubertal and adult patients and ani-
mals who may be azoospermic at the moment of semen
collection [22, 23]. A recent report on the cryopreserva-
tion of testicular tissue for patients across several centers
showed that the age of individuals ranged from 5
months all the way to 35 years old [24]. It is therefore
essential to develop testicular tissue preservation proto-
cols optimized for different age groups.

Recently, our group observed a better recovery of im-
mature testicular tissues compared to adult in domestic
cat after preservation protocol using microwave-assisted
drying [25]. Different separate studies also show that tes-
ticular tissue from immature cats tend to be more resili-
ent to cryopreservation protocols compared to adults
[26-28]. However, there is no study comparing age
groups side by side. We also lack a deeper understanding
of the cellular mechanisms occurring in testicular tissues
in response to vitrification and warming. RNA-seq has
been used to explore the effect of cryopreservation on
mammalian sperm cells in ruminants [29], boars [30, 31]
and giant panda [32], but no studies looked at transcrip-
tome changes in whole testicular tissue. There is
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evidence that the intrinsic response of cells to cryo-
preservation is different depending upon whether the
cells are part of a tissue or whether they are isolated in a
cell suspension [21]. Scaling up of cryopreservation from
a microscopic cellular level to a macroscopic tissue level
will introduce heat and mass transfer phenomena [33].
Additionally, freeze-thaw procedures for tissue products
must result in recovery of both cell viability and tissue
structure [33]. Thus, getting information on the whole
transcriptome changes in the tissue during preservation
is essential for understanding the mechanisms of stress
response and recovery of cells as a system. For instance,
our group recently demonstrated how RNA-seq and
resulting functional networks can help to understand the
response of ovarian tissue to various stresses caused by
preservation [34].

The objective of our study was to (1) analyze tran-
scriptome dynamics in developing testis of the domestic
cat and (2) characterize age effects on the initial re-
sponse of the tissue to vitrification. RNA-seq was per-
formed on adult and juvenile cats (juvenile being defined
as the development period after the infant stage but
prior to full adult sexual maturity [4]) using fresh and
vitrified whole testicular tissues. Because this is the first
study to look at the whole transcriptome of the domestic
cat developing testis, our study focused mainly on
characterization of global changes in transcriptome and
functional pathways throughout testis maturation. We
included conventional methods of histology and DNA
integrity analysis to be able to relate our transcriptomic
data to the available knowledge.

Results

Summary of the acquired dataset

Testicular tissues were obtained from five adult and five ju-
venile male cats and divided into the following four groups:
adult, fresh tissue (AF), adult, vitrified/warmed tissue (AV),
juvenile, fresh tissue (JF) and juvenile, vitrified/warmed tis-
sue (JV; Fig. 1). Samples from all four groups were used for
histomorphology, TUNEL and RNA-seq analyses. Whole
transcriptome of 20 samples was sequenced with one li-
brary per each sample, five biological replicates per group,
30 million read depth per sample and 150 bp paired-end
read length. The acquired sequence data in fastq format is
deposited to NCBI Sequence Read Archive; BioProject ac-
cession number is PRJNA741252. Data retrieved after dif-
ferential gene expression analysis is available in additional
files. Data used to create networks is available in the inter-
active web session view for each network.

Histology and transcriptome dynamics in fresh testicular
tissue from adult and juvenile domestic cats

Figure 2 A presents histological overview of samples
used for RNA-sEq. All samples from adult cats had
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Johnsen score above 7, while scores of juvenile samples
ranged from 3 to 5 (Table S1, [35]). Unsupervised hier-
archical clustering of all genes separated adult and ju-
venile samples, showing clear transcriptomic division of
these age groups (Fig. 2B). Volcano plot in Fig. 2 C rep-
resents the results of differential expression (DE) analysis
in adult vs. juvenile samples; a total of 8,732 differen-
tially expressed genes (DEGs; Additional file 1). Principle
component analysis revealed further division of juvenile
samples into seemingly two age groups which we labeled
as late (JF1, JF2) and early (JE3, JF4. JE5) juvenile ages
(Fig. 2D). DE analysis then was performed using the new
three groups with the following comparison pairs: adult
vs. late juvenile (Additional file 2), late vs. early juvenile
(Additional file 3) and adult vs. early juvenile. Out of all
DEGs, 824 were shared between all three comparison
pairs (Fig. 2E). All except 2 shared genes had the same
expression direction being either continuously upregu-
lated (653 protein coding genes, 140 IncRNAs) or

downregulated (11 protein coding genes) from early to
late juvenile to adult (Additional file 4). The 19 genes
shared only between comparison pairs of late vs. early
juvenile and adult vs. late juvenile all had different ex-
pression directions (Fig. 2E, Additional file 4).

Heatmap in Fig. 2 F presents clustering of samples
based on germ and somatic cell markers (identified from
comprehensive data generated in human testicular tissue
[4, 36, 37]) that were differentially expressed in adult vs.
juvenile. Genes known to be expressed in more differen-
tiated germ cells (SPO11 to PRM3) had higher expres-
sion in adult samples when compared to overall juvenile
group, while HOOK1, SPAG6 and CCNA1l were also
higher expressed in late compared to early juvenile sam-
ples showing continuous increase of these markers
(Fig. 2 F, Additional file 4). The expression of spermato-
gonia markers (UTF1 to KIT) was higher in juvenile
compared to adult samples with no differences within
the overall juvenile group, while the expression of
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Fig. 2 Histology and transcriptome dynamics in fresh testicular tissue of adult and juvenile domestic cats. A Histology of testicular tissue samples
used for transcriptome analysis; AF6 represents the histology of adult samples. Here and further, sample IDs represent age (A, adult; J, juvenile),
tissue condition (F, fresh) and animal (1 to 10). Sg, spermatogonia; Sc, spermatocytes; Sd, round spermatids, Sz, spermatozoa. Scale bar: 50 um.

B Heatmap of one-way hierarchical clustering analysis (Euclidean method, complete linkage) using Z-score for RLE normalized values of all genes
expressed in testicular tissue from adult and juvenile cats. C Volcano plot showing differentially expressed genes in adult vs. juvenile samples
(Wald test, adjusted p-value < 0.05, absolute fold change > 2). D Principal component analysis plot representing variation in samples from adult
and juvenile cats. E Venn diagram of differentially expressed genes from 3 comparison pairs: Adult, Late Juvenile (JF1 and JF2) and Early Juvenile
(JF3, JF4 and JF5); Wald test, adjusted p-value < 0.05, absolute fold change > 2. F Heatmap of one-way hierarchical clustering analysis (Euclidean
method, complete linkage) using Z-score for RLE normalized values of selected differentially expressed cell markers. Cell markers have been
organized to mark more differentiated germ cell populations as they move from the top to the bottom rows. * - differentially expressed in adult
vs. late juvenile; A - differentially expressed in late vs. early juvenile

GFRA1 was also higher in late juvenile compared to adult group, with the expression of Sertoli cell marker
adult samples (Fig. 2 F, Additional file 2). Somatic cell ~AMH continuously decreasing from early to late juvenile
markers had higher expression in juvenile compared to  to adult (Fig. 2 F, Additional file 4). Results from Fig. 2 F
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in addition with hierarchical clustering based on all
genes (Fig. 2B) allowed us to further separate early ju-
venile group into early I (JF5) and early II (JF3, JF4).

In sum, early I juvenile age group (JF5) presented testis
lacking apparent lamina or lumen with only spermato-
gonia and Sertoli cells present in tubules (Fig. 2 A, Table
S1), high expression of undifferentiated spermatogonia
marker UTF1, and low expression of differentiating
spermatogonia marker KIT (Fig. 2 F). A tubular struc-
ture became progressively apparent in early II juvenile
(JE3, JF4) with presence of spermatocytes and only few
spermatids in some tubules, while a clear defined lamina
and lumen were observed across tubules in late juvenile
samples (JF1, JF2) with higher number of spermatids
present in more tubules (Fig. 2 A, Table S1), as well as
significantly higher expression of spermatocyte markers
CCNAL1 and SPAG6 compared to early juvenile (Fig. 2 F,
Additional file 3). Testicular tissue from adult group
showed full establishment of spermatogenesis with many
spermatozoa present in tubules (Fig. 2 A, Table S1), in-
creased expression of great number of IncRNA com-
pared to juvenile (Fig. 2 C), as well as higher expression
of spermatocyte and spermatid markers (SPO11 to
PRM3) and lower expression of spermatogonia (UTF1 to
KIT) and somatic cell (VIM to IGF1) markers compared
to juvenile age group (Fig. 2 F, Additional file 1).

Changes in functional terms and pathways throughout

testicular tissue development in adult and juvenile cats

Figure 3 A visualizes DAVID results of functional ana-
lysis in an Enrichment map for DEGs from comparison
pair adult vs. juvenile. Out of 4,834 protein coding
DEGs, 4,550 were annotated in DAVID database for the
domestic cat; Gene Ontology and KEGG Pathways data-
bases were used for gene set enrichment. Figure 3B visu-
alizes DAVID results for DEGs from adult vs. late
juvenile and late vs. early juvenile comparison pairs.
Additional file 5 contains the web session of both net-
works with interactive view and data table. Functional
terms enriched in testicular tissue from adult animals
(upregulated in adult compared to juvenile) were mainly
related to sperm motility, processes involved in sperm-
atogenesis and fertilization, and cell cycle and division
(Fig. 3 A). Majority of these terms were also enriched in
adult samples when comparing to late juvenile and in
late compared to early juvenile samples, indicating a
continuous increase in function of these terms and path-
ways with testicular development (Fig. 3B). Functional
terms enriched in testicular tissues from juvenile cats
(downregulated in adult compared to juvenile) were
mainly related to cell signaling, cell adhesion, cell migra-
tion, as well as terms associated with extracellular re-
gion, cell surface, membrane and response to stimulus
(Fig. 3 A). Terms related to immune response were
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specifically enriched in early juvenile samples when
comparing with late juvenile (Fig. 3B). Terms related to
cell adhesion, membrane and PI3K-Akt signaling were
specifically enriched in late juvenile samples when com-
paring to adult (Fig. 3B).

Effect of vitrification on histology, DNA integrity, and
transcriptome in testicular tissues from adult and juvenile
cats

Main types of morphological damage caused by vitrifica-
tion were cellular disorganization, shrinkage from the
basal membrane, and nuclear condensation (Fig. 4 A).
The percentage of damaged seminiferous tubules was
higher in tissues from adult compared to juvenile cats
(Fig. 4B). After 24 h of in vitro culture, warmed tissues
from juvenile cats retained a higher percentage of mor-
phologically normal seminiferous tubules compared to
adult (Fig. 4B). DNA damage could not be attributed to
specific cell types and was observed in different parts of
seminiferous tubules (Fig. 4 C). Percentage of cells with
damaged DNA increased after vitrification of tissues
from both adult and juvenile cats (Fig. 4D). After 24 h
in vitro culture, warmed tissues from adult cats pre-
sented higher percentage of DNA fragmentation com-
pared to juvenile (Fig. 4D).

Vitrification led to differential expression of 49 genes
independent of age (adjusted p-value <0.05), with 46
downregulated (7 IncRNA, 40 protein coding, 2 pseudo-
genes) and 3 upregulated (all protein coding) in vitrified
vs. fresh tissue (Additional file 6). Hierarchical clustering
of samples based on these DEGs separated adult vitrified
samples from all the rest representing the biggest vitrifi-
cation effect in adult tissues (Fig. 4E). One vitrified late
juvenile sample (JV1) clustered with vitrified adult, indi-
cating a bigger vitrification effect in that sample com-
pared to the rest juvenile (Fig. 4E). Vitrified and fresh
tissues from early juvenile sample(JV5, JE5) clustered to-
gether, indicating the smallest vitrification effect in that
sample compared to the rest juvenile (Fig. 4E). Cluster-
ing of JF5 together with other vitrified tissues may indi-
cate that the transcriptome of this sample is more
similar to vitrified rather than fresh tissues (Fig. 4E).

Analysis of vitrification effect separately in adult and
juvenile samples identified 21 DEGs in adult and no
DEGs in juvenile vitrified vs. fresh tissue (adjusted p-
value < 0.05; Additional file 6). To compare the effect of
vitrification between adult and juvenile samples, genes
satisfying condition of p-value <0.05 and absolute fold
change > 1.5 were selected for functional analysis as
genes responsive to vitrification. Out of these selected
genes, 18 were shared between the age groups and in-
cluded 17 downregulated and 1 upregulated gene
(Table 1). Out of 116 selected protein coding genes, 110
were annotated in DAVID database for domestic cat;
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Gene Ontology, KEGG Pathways, InterPro Domains,
UniProt Keywords and SMART domains databases were
used for gene set enrichment. Figure 4 F visualizes DA-
VID results in an Enrichment Map network. Figure 4G
visualizes networks of predicted protein-protein interac-
tions built using 109 out of 116 selected protein coding
genes annotated in STRING database for domestic cat;
functional enrichment was performed for each inter-
action cluster using STRING app, which allowed us to
consider pairwise relationships among interacting genes
when checking for biological significance. Additional file
7 contains the web session of both networks with inter-
active view and data table. Functional terms related to
transmembrane were enriched in fresh testicular tissue
(downregulated in vitrified vs. fresh) for both adult and

juvenile ages (Fig. 4 F) and some of the DEGs from that
enrichment gene set formed a protein-protein inter-
action cluster (Fig. 4G). Terms enriched in vitrified tis-
sues (upregulated in vitrified vs. fresh) were related to
transcription activity and TNF signaling for adult
samples and to nucleus and chromosome in juvenile
samples, with shared term of DNA binding enriched
for both ages (Fig. 4 F). The biggest protein-protein
interaction cluster included both upregulated and
downregulated DEGs in vitrified vs. fresh tissue from
adult and juvenile samples (Fig. 4G). Genes with the
most predicted protein-protein interactions were FOS,
JUNB and CREB1 (8 interactions each), JUN and
EGRI1 (6 interactions each), and FOSB and NFAT5 (5
interactions each).
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(See figure on previous page.)

Fig. 4 Effect of vitrification on histology, DNA integrity and transcriptomics in testicular tissues from adult and juvenile domestic cats.

A Representation of morphological damage in vitrified testicular tissue sections showing mature tubule with lumen (upper picture) and immature
tubule without lumen (lower picture). Black arrowhead: separation of the basal membrane; white arrowhead: nuclear condensation; black arrows:
shrinkage from the basal membrane; asterisk: tubular cell disorganization. Scale bar: 20 um. B Changes in percentage of morphologically normal
seminiferous tubules after vitrification and/or 24 h culture. C Representation of DNA fragmentation in testicular tissue sections. White arrowhead:
intact DNA (Hoechst); white arrow: fragmented DNA (TUNEL). Scale bar: 20 um. D Changes in percentage of DNA fragmentation after vitrification
and/or 24 h culture. E Heatmap of one-way hierarchical clustering analysis (Euclidean method, complete linkage) using Z-score for RLE
normalized values of genes differentially expressed in vitrified vs. fresh samples, independent of age effect (likelihood ratio test, condition effect,
adjusted p-value < 0.05). Sample IDs represent age (A, adult; J, juvenile), tissue condition (F, fresh; V, vitrified) and animal (1 to 10). F Enrichment

Enrichment map and STRING networks for interactive view

map displaying enriched gene-sets based on genes responding to vitrification (p-value < 0.05, absolute fold change > 1.5) in vitrified vs. fresh
samples from adult and juvenile cats. G STRING network of predicted protein interactions for genes responding to vitrification (p-value < 0.05,
absolute fold change > 1.5) in vitrified vs. fresh samples from adult and juvenile cats. Protein interaction clusters were analyzed for functional
enrichment within STRING app; clusters with no enrichment were removed from visualization. Additional file 7 contains the web session of both

Discussion

This is the first overview of transcriptome dynamics
coupled with structural analysis in testicular tissue from
adult and juvenile domestic cats. Transcriptomic find-
ings enabled to further characterize juvenile period, dis-
tinguishing between early and late juvenile tissues.
Changes in gene expression and functional pathways
were extensive from early to late juvenile to adult devel-
opment stages. Additionally, tissues from juvenile ani-
mals were more resilient to vitrification compared to
adult counterparts, with early juvenile sample

responding the least to vitrification and late juvenile
sample response being closest to adult tissues.

Gradual testis maturation during puberty in cat

In the domestic cat, the spermatogenic function is sug-
gested to become mature at 8 to 10 months of age with
initial activation and first signs of spermatogenesis at 5
to 6 months [8, 9]. In our study, we defined juvenile
period as the development period after the infant stage
but prior to full adult sexual maturity to make it com-
parable with the recent scRNA-seq study on testis devel-
opment during human puberty [4]. In juvenile samples,

Table 1 Genes responsive to vitrification in both adult and juvenile testicular tissues

Gene Type Fold Change P-value Expression Enriched clusters/
Adult Juvenile Adult Juvenile terms, Fig. 4G

FOSB protein coding 2.72 2.72 0.0019 0.0198 up SGTR, DNA binding

TMEM41B protein coding -1.94 -1.67 6.65E-05 0.0326 DOWN ™

SLC35A3 -1.56 -1.64 0.0008 0.0170 ™

SEMAGA -1.61 -1.61 7.53E-05 0.0304 ™

DPY19L4 -1.60 -152 0.0362 0.0022 ™

CLCN5 -1.84 -1.55 1.69E-05 0.0083 TM, Transport

ILDR2 -244 -2.28 0.0008 0.0206 ™, IG

NFATS -1.76 -1.61 4.01E-06 0.0006 IG, Cytoplasm

DUSP16 -1.56 -1.55 0.0325 0.0427 Cytoplasm

ZNF483 protein coding -1.66 -1.73 5.67E-05 00116 DOWN No enrichment

MCTS1 -1.64 -1.62 0.0468 0.0027

WNK3 -1.64 -1.66 7.83E-06 0.0175

LOC101090710 -1.62 -1.68 0.0007 00114

LOC102899228 INcRNA -1.61 -1.66 0.0020 0.0394 DOWN N/A

LOC109497486 -1.54 -1.74 0.0002 0.0060

LOC111559448 -1.99 -1.67 427E-07 00113

LOC111561755 -2.06 -1.85 3.05E-06 0.0060

LOC111558666 pseudogene -2.86 -2.07 0.0002 0.0003 DOWN N/A

Values are taken from differential expression analysis in vitrified vs. fresh tissue, adult, and juvenile samples
Cluster names: SGTR, TNF signaling, Transcription activity; TM, Transmembrane; IG, Immunoglobulin subtype
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various degrees of maturation and germ cell differenti-
ation were observed, from tubules with only spermato-
gonia in early I juvenile stage to the presence of some
spermatocytes in early II juvenile to many spermatocytes
and round spermatids with occasional spermatozoa in
late juvenile. The expression of cellular markers associ-
ated with more differentiated germ cells also increased
from early to late juvenile period, while the expression
of markers associated with undifferentiated spermato-
gonia was highest in early juvenile period. Functional
terms and pathways related to spermatogenesis and
sperm motility were enriched already in late juvenile and
stayed enriched in adult samples. All of this supports the
gradual progressive establishment of spermatogenesis in
the domestic cat beginning in late juvenile period. This
is similar to humans, where low levels of incomplete
spermatogenesis are observed in portions of the testis in
juveniles prior to puberty, and the appearance of first
spermatozoa during juvenile period does not mark com-
pletion of spermatogenic development, but the begin-
ning of the final stages of puberty, where gradual
improvement in spermatogenic efficiency is the mechan-
ism that leads to complete maturation [38]. It is sug-
gested that rather than sudden activation of the testis at
puberty there is a slow and progressive increase of activ-
ity from mid-childhood or even earlier [38]. This also is
aligned with recent scRNA-seq studies, showing that
spermatogenic cell phenotypes exist on a continuum ra-
ther than in distinct subgroups separated by large tran-
scriptome changes [39].

Sertoli cell maturation

The present study reports downregulation of functional
terms and pathways related to immune response in late
compared to early juvenile period, which also coincided
with the emergence of more spermatocytes and sperma-
tids, as well as the decrease in anti-Mullerian hormone
(AMH) expression. During the Sertoli cell differentiation
in puberty, neighboring Sertoli cells form tight junctions,
which contribute to the blood-testis barrier that permits
the establishment of a special microenvironment needed
for spermatogenesis [40, 41]. This barrier, together with
the expression by Sertoli cells of immunoregulatory fac-
tors that actively suppress innate, humoral and cell-
mediated immune responses, makes the whole testis im-
mune privileged [42]. Around the same time, the expres-
sion of AMH in Sertoli cells decreases, which is
complemented by meiotic entry of germ cells [1]. Based
on this, we hypothesize that maturation of Sertoli cells
begins in late juvenile period in the domestic cat. The
recent scRNA-seq study in human developing testis
showed that the maturation of Sertoli cells in different
tubules is asynchronous and proceeds gradually, with
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first mature Sertoli cells starting to emerge in samples
from 11 years old onward [4].

Long non-coding RNAs in developing testis

Testis is a tissue with the most tissue-specific genes by
far [17], higher fraction of genes and more diverse
mRNA (less dominance of a few highly expressed genes)
[43]. It is also a tissue with the highest amount of long
non-coding RNAs (IncRNAs) even when comparing to
brain or liver [44, 45]. IncRNAs are a large class of non-
coding RNAs more than 200 nucleotides in length. Un-
like mRNAs, IncRNAs exhibit unique cellular
localization patterns highly correlated with the functions
they perform in the cell [46, 47]. Recent studies revealed
critical roles of IncRNAs during spermatogenesis [48]
and accumulation of IncRNAs during meiotic and post-
meiotic stages of spermatogenesis [49, 50]. The present
study reports a progressive increase in expression of
IncRNAs from early to late juvenile period to adult in
cat testicular tissue, which may indicate on the role of
IncRNAs in domestic cat spermatogenesis as well. We
could not conduct functional analysis on the set of dif-
ferentially expressed IncRNAs because there currently is
no comprehensive functional database for domestic cat
IncRNAs and IncRNAs have low sequence conservation.
However, this list will inform future studies for further
analysis of IncRNA functions and their interactions with
mRNA and other non-coding RNAs.

Juvenile testes are more resilient to vitrification protocol

Our results show that vitrification led to more detrimen-
tal changes in mature adult tissues compared to imma-
ture juvenile which only progressed after 24 h culture
and were expressed in increased percentage of damaged
seminiferous tubules and DNA fragmentation. Mature
testicular tissue from adult cats also was more respon-
sive transcriptionally to vitrification compared to juven-
ile. Similarly, immature testes from domestic cat were
reported to be more resilient to microwave-assisted de-
hydration [25] and more successful in surviving and es-
tablishing spermatogenesis in xenografts [51, 52],
compared to mature testes from adult cats. Specifically,
we observed the downregulation of functional terms re-
lated to focal and cell-cell adhesion in adult compared
to late juvenile, as well as to the whole juvenile group.
Thus, the detrimental effect of vitrification and 24 h cul-
ture on testicular tissue in adult might be related to its
increased sensitivity to mechanical damage due to de-
creased connections between cells and cells and extra-
cellular matrix. At the same time, one sample from late
juvenile period that exhibited the highest number of
meiotic and post-meiotic germ cells out of all juvenile
group had a similar transcriptomic response to adult
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samples, which might indicate the effect of the presence
of these cells on tissue sensitivity to vitrification stress.

Initial response of testicular tissue to vitrification and
warming

We identified a cluster of genes responsive to vitrifica-
tion in testicular tissue of adult and juvenile cats and
forming predicted protein-protein interactions and
enriched in transcription and TNF signaling pathway.
These genes were upregulated in response to vitrification
and included early response transcription factors FOS,
FOSB, JUN, JUNB, and EGRI1. Interestingly, the same list
of genes has been reported in studies analyzing the re-
sponse of different tissues to warm ischemia [53-56]. In
those studies, normal and/or tumor tissues that under-
went warm ischemia due to delayed processing after sur-
gical incision demonstrated increased expression of FOS,
FOSB, JUN, EGR1 as well as upregulation in immune
system pathways compared to tissues processes immedi-
ately [53-56]. We hypothesize that the damage occur-
ring in testicular tissue during vitrification is caused by
the warming step and may be similar to the response of
tissues to warm ischemia. Interestingly, in one study that
looked at short intervals of warm ischemia, the pattern
of gene and protein expression in the tissue changed
within minutes following surgical excision [57]. In our
protocol the initial 5-sec warming step is followed by
cryoprotectant removal at room temperature for 15 min,
which might be the period when testicular tissue under-
goes stress similar to warm ischemia resulting in
damage.

Study limitations and next steps

In our current study, we performed bulk RNA-seq on a
whole testicular tissue to have the first look on tran-
scriptome dynamics in the developing testis of domestic
cat. The addition of cell-level transcriptome information
would have been invaluable to our study, however, there
has been no scRNA-seq performed so far on any of the
cat tissues and, therefore, no protocols established yet.
We recognize that the bulk analysis of mature RNA
limits our interpretations. For example, downregulation
of somatic cell markers in adult compared to juvenile
samples is most likely related to the decrease in somatic
to germ cell ratio (in mammals, mature testes germ cells
make up to 90 % of the tubular mass, compared to less
than 5-10% in immature) [2]. Our study, however, is
the first necessary step in unraveling transcriptome dy-
namics of the developing testis in the domestic cat and
the effect of age on tissue response to preservation pro-
tocols. Future studies focusing on cell-specific expres-
sion and post-transcriptional mechanisms, as well as
linking transcriptomic and proteomics [58] would be
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essential to understand the complex process of puberty
in cats, as well as tissue resilience.

Due to unavailability of domestic cat samples from the
infant stage, we could only analyze testis development
starting from early juvenile period. In future, adding
neonatal tissues to the analysis, as well as including
more samples from juvenile period, would contribute
greatly to our understanding of the full timeline of testis
development in domestic cat.

Conclusions

Our study generated a high-quality transcriptomic data
for testicular tissue of adult and juvenile domestic cats,
which provides an important resource for future studies
on testis development, spermatogenesis and fertility in
cats, as well as new insights into tissue resilience. Tran-
scriptomic data can also contribute to identification of
druggable protein targets in male reproductive tracts
and development of male contraception [59]. Our study
provides a network of functional terms and pathways
that are affected by age in the domestic cat and are ei-
ther enriched in adult or juvenile testicular tissues. The
interactive view of our network allows navigation
through many enriched terms, their interconnection,
and the associated set of genes from our study. This is
the first study providing data on transcriptomic dynamic
coupled with structural analysis in the cat testis accord-
ing to the age and exposure to cryopreservation. Collect-
ive findings will also enable the optimization of
testicular tissue preservation.

Materials and methods

Collection of testicular tissues

Testes from juvenile (3 to 6 months old) and adult (over
1 year old) male domestic cats were collected on differ-
ent days after routine orchiectomy at local veterinary
clinics and transported in phosphate buffered saline
(PBS) at 4 °C to the laboratory within 6 h of excision.
Testes were washed once with PBS, dissected from sur-
rounding tissues and cut in pieces of approximately 2—3
mm? in handling medium composed of Hepes-Ham’s
F10 medium (Irvine Scientific, Santa Ana, CA) supple-
mented with ImM pyruvate, 2 mM L-glutamine, 100
IU/mL penicillin, 100 pg/mL streptomycin, 2.5 % fetal
bovine serum (FBS). For each animal, tissue pieces were
either (1) fixed overnight in Bouin’s solution (histomor-
phology) or 4 % paraformaldehyde in PBS (TUNEL ana-
lysis), embedded in paraffin and sectioned at a thickness
of 5 um, (2) incubated overnight in RNAlater"™ solution
(Invitrogen, Carlsbad, CA) for RNA isolation, or (3)
processed for vitrification and/or in vitro culture as de-
scribed below (Fig. 1). All chemicals and reagents were
purchased from Sigma-Aldrich (St. Louis, MO), unless
otherwise indicated.
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Vitrification and warming

Vitrification and warming was performed using modified
protocol reported previously for domestic cat testicular
tissue [26]. Tissue biopsies were exposed to equilibration
solution (1.4 M dimethyl sulfoxide (DMSO) + 1.4 M gly-
cerol + 0.25 M sucrose in Ham’s F10) for 10 min at
room temperature (~22 °C) followed by a vitrification
solution (2.8 M dimethyl sulfoxide (DMSO) + 2.8 M gly-
cerol + 0.5 M sucrose +10% FBS in Ham’s F10) for
5 min at room temperature (~22 °C), then placed in
cryotubes and plunged directly into liquid nitrogen and
stored for at least one week in liquid nitrogen. Warming
was performed by immersing cryotubes in a water bath
at 50 °C for 5 s. Tissue fragments were then transferred
to a sucrose gradient (0.50 M; 0.25 M; 0.00 M in Hepes-
Ham’s F10 and 20 % of FBS) for 5 min at each step at
room temperature (~22 °C) in order to remove the
cryoprotectants. Warmed tissues were fixed for histology
and RNA isoltation as described above or processed for
in vitro culture.

In vitro culture

Tissue culture was performed using the same protocol
reported previously for domestic cat [26]. Tissue frag-
ments were placed into 1cm?® pieces of 1.5 % agarose gel
that were pre-conditioned by immersion in culture
medium composed of Hepes-Ham's F10 (supplemented
with 2mM L-glutamine, ImM pyruvate, 100 IU/ml peni-
cillin, 100 pg/ml streptomycin and 5 % EBS). Two tissue
biopsies on each gel were incubated for 24 h in a 4-well
culture plate with 400 pl of culture medium at 38.5 °C
in a humidified atmosphere of 5% CO, in air.

Assessment of tissue histomorphology

Testicular tissue morphology was assessed via
hematoxylin-eosin staining. Samples used for RNA-seq
were scored using Johnsen method for registration of
spermatogenesis [35]. In short, each seminiferous tubule
in testicular tissue section was given a score from 10 to
1 according to the presence or absence of the main cell
types arranged in the order of maturity: presence of
spermatozoa scores 10, 9 or 8; spermatids (and no fur-
ther) 7 or 6; spermatocytes (and no further) 5 or 4; only
spermatogonia 3, only Sertoli cells 2 and no cells 1. The
mean score for each sample was calculated by multiply-
ing the number of tubuli recorded at each score with the
score and then dividing the sum of all 10 multiplications
by the total number of tubuli recorded [35].

Integrity of seminiferous tubules and cells was evalu-
ated according to criteria previously established [26]. In-
tact tubules with no detachment of cells from the
basement membrane, no rupture of stroma, no swelling
of the lamina propria and normal junctions between
cells were considered as a normal structure (score 1).
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Score 0 was attributed to tubules with changes in any of
the previous criteria. A total of 30 randomly selected
seminiferous tubules for each animal in each experimen-
tal group were classified as normal structure (score 1) or
damage structure (score 0) totaling 180 tubules per
group. Percentage of normal seminiferous tubules was
calculated relative to the total number of observed
tubules.

Assessment of DNA integrity

DNA integrity was assessed using the protocol reported
previously for domestic cat testicular tissue using the In-
Situ Cell Death Detection kit (Roche, Basel, Switzerland)
[25]. Deparaffinized rehydrated sections were rinsed
twice with 0.05% Triton X-100 in PBS for 5 min each,
permeabilized with 0.5% Triton X-100 in PBS for
30 min, rinsed once with 0.05 % Triton X-100 in PBS for
5 min and incubated in TUNEL reaction mixture (en-
zyme solution with terminal deoxynucleotidyl transferase
(TdT) and label solution with nucleotide polymers) for
1 h at 37 °C within a humidified darkened container.
Negative control (omitted TdT) was included in each
run. For positive control, tissue was incubated with re-
combinant DNase I for 10 min before labeling. The nu-
cleus of all cells was stained with Hoechst 33,342 (1:100)
in a humidified chamber for 10 min at room
temperature and then, the slides were mounted with
Vectashield mounting medium (Vector laboratories,
Burlingame, CA). We evaluated 60 images per experi-
mental group, which were captured using an Olympus
BX41 epifluorescence microscope (Olympus Corpor-
ation, Tokyo Japan) with SPOT advanced software 5.0
(Diagnostic Instruments, Inc., Sterling Heights, MI). Per-
centage of DNA damage (TUNEL positive cells) was cal-
culated relative to the total number of observed cells.

RNA preparation

Twenty samples were selected for transcriptomic ana-
lysis and assigned to the following 4 groups: adult, fresh
tissue (AF, n = 5), adult, vitrified/warmed tissue (AV, n =
5), juvenile, fresh tissue (JF, n =5) and juvenile, vitrified/
warmed tissue (JV, n = 5; Fig. 1). Total RNA was isolated
from up to 10 mg of tissue using PureLink  RNA Mini
Kit with on-column DNase Set (Invitrogen); tissue was
homogenized in RNA lysis buffer using TissueLyser
(Qiagen, Hilden, Germany; 2 x 2 min at 30 Hz; 5 mm
stainless steel beads). Concentration and purity of iso-
lated RNA was measured with NanoDrop spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA); RNA
integrity was assessed using 2100 Bioanalyzer instrument
(Agilent Technologies, Santa Clara, CA). Purified RNA
was stored in nuclease-free water at -80 °C until library
preparation.
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Library preparation and transcriptome sequencing

Only samples with RIN > 7 were used for library prepar-
ation. Sequencing libraries were generated using TruSeq
Stranded mRNA LT Sample Prep Kit from Illumina (San
Diego, CA) according to the manufacturer’s recommen-
dations. In short, the workflow included randomly frag-
menting total RNA for short read sequencing, reverse
transcribing fragmented RNA into cDNA, ligating adap-
tors onto both ends of the cDNA fragments, amplifying
c¢DNA and selecting fragments with insert sizes between
200 and 400 bp. The libraries were sequenced 150 bp
paired-end using an Illumina NovaSeq 6000 System at
the Psomagen Inc. (formerly Macrogen Corp., Rockville,
MD) attempting 30 million reads depth per sample and
5 biological replicates per group.

Quality control

The quality of produced data was determined by the
phred quality score at each cycle using FastQC (v.
0.11.7). Trimmomatic (v. 0.38) [60] program was used to
remove adapter sequences and bases with base quality
lower than three from the ends. Using sliding window
method, bases of reads that did not qualify for window
size 4 and mean quality 15 were trimmed. Afterwards,
reads with length shorter than 36 bp were dropped to
produce trimmed data. Quality information for each
sample after trimming is provided in Table S2.

Reads mapping and gene expression levels quantification
Trimmed reads were mapped to reference genome
GCF_000181335.3_Felis_catus_9.0 with HISAT2 (v.
2.1.0) [61], which is known to handle spliced read map-
ping through Bowtie2 (v. 2.3.4.1) aligner, splice-aware
aligner. Table S3 shows the statistic obtained from HISA
T2. After the read mapping, known genes and tran-
scripts were assembled with StringTie (v. 1.3.4d) [62, 63]
based on reference genome model. After assembly, the
abundance of gene/transcript was calculated in the read
count and normalized value as FPKM (Fragment per
Kilobase of transcript per Million mapped reads) for a
sample.

Differential expression analysis

Differentially expression analysis was performed on data
obtained from 20 samples using the DESeq2 R package
[64]. For visualization, size factors were estimated from
the count data and the Relative Log Expression (RLE)
normalization was used to obtain regularized log trans-
formed values. These normalized values were then used
for principal component analysis (plotPCA function in
DESeq2 R package) and creation of clustered heatmaps
(pheatmap R package). Wald test (age effect) and likeli-
hood ratio test (vitrification effect) were used on genes
that passed an independent filtering step and resulting P
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values were adjusted for multiple testing using the
Benjamini-Hochberg procedure.

Functional enrichment analysis using DAVID and
Enrichment Map

Selected genes from differential expression analysis were
used for gene-set functional enrichment analysis with
DAVID tool [65], setting species to domestic cat. For
each comparison pair, total number of genes and separ-
ately up- and downregulated genes were analyzed. EASE
score (modified Fisher Exact p-value of enrichment) was
set to 0.05. Functional enrichment network was built
based on DAVID output charts of gene-set enrichment
for each comparison pair using Enrichment Map app (v.
3.3.0) [66] in Cytoscape software (v. 3.8.0) [67, 68] with
Overlap set to 0.5. Autoannotate App (v. 1.3.3) with
MLC algorithm based on similarity coefficient was used
to create annotated groups.

In silico protein-protein interaction analysis using STRING
In silico protein-protein interaction analysis of selected
genes was performed on the basis of the STRING data-
base for the domestic cat [69, 70]. Interaction network
was built based on the list of selected genes from each
comparison pair using stringApp (v. 1.5.1, [71]) in
Cytoscape with confidence cutoff score set to 0.4. Func-
tional enrichment of formed clusters was performed
using domestic can genome as a background, enriched
terms were analyzed with varying redundancy cutoff
settings.

Statistical analysis

Statistical analysis of RNA-seq data is provided above.
For histomorphology and TUNEL analyses, data were
expressed as mean and standard error and analyzed
using the statistical software graphpad prism version
5.01 (GraphPad Software Inc., San Diego, CA). Data was
tested for normality (Shapiro—Wilk test) and homosce-
dasticity (Levene’s test). Analysis of variance (ANOVA)
followed by Tukey test was used to compare the effect
of vitrification and 24 h in vitro culture in different ex-
periment groups.
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absolute fold change > 2.



https://doi.org/10.1186/s12864-021-08099-8
https://doi.org/10.1186/s12864-021-08099-8

Amelkina et al. BMC Genomics (2021) 22:847

Additional file 3 Differentially expressed genes in fresh testicular tissue
of late compared to early juvenile cat; Wald test, adjusted p-value < 0.05,
absolute fold change > 2.

Additional file 4 Differentially expressed genes in fresh tissue shared
between all comparison pairs adult vs. late juvenile, adult vs. early
juvenile and late vs. early juvenile (Sheet-1) or only between comparison
pairs adult vs. late juvenile and late vs. early juvenile (Sheet-2); Wald test,
adjusted p-value < 0.05, absolute fold change > 2.

Additional file 5 Web session interactive view with data table of
Enrichment Map networks for comparison pairs adult vs. juvenile, adult
vs. late juvenile and late vs. early juvenile. For description and legends
refer to Fig. 3 A (adult vs. juvenile) and Fig. 3B (adult vs. late juvenile, late
vs. early juvenile).

Additional file 6 Genes affected by vitrification independent of age;
likelihood ratio test, condition effect, adjusted p-value < 0.05 (Sheet-1).
Genes responsive to vitrification protocol in adult (Sheet-2) and juvenile
(Sheet-3) samples; likelihood ratio test, p-value < 0.05, absolute fold
change > 1.5.

Additional file 7 Web session interactive view with data table for
Enrichment map and STRING network for genes responsive to vitrification
in adult and juvenile samples. For description and legend refer to Fig. 4 F
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