
RESEARCH Open Access

Testing assembly strategies of Francisella
tularensis genomes to infer an evolutionary
conservation analysis of genomic structures
Kerstin Neubert1,2, Eric Zuchantke3, Robert Maximilian Leidenfrost4, Röbbe Wünschiers4, Josephine Grützke2,
Burkhard Malorny2, Holger Brendebach2, Sascha Al Dahouk2, Timo Homeier5, Helmut Hotzel3, Knut Reinert1,
Herbert Tomaso3 and Anne Busch3,6*

Abstract

Background: We benchmarked sequencing technology and assembly strategies for short-read, long-read, and
hybrid assemblers in respect to correctness, contiguity, and completeness of assemblies in genomes of Francisella
tularensis. Benchmarking allowed in-depth analyses of genomic structures of the Francisella pathogenicity islands
and insertion sequences. Five major high-throughput sequencing technologies were applied, including next-
generation “short-read” and third-generation “long-read” sequencing methods.

Results: We focused on short-read assemblers, hybrid assemblers, and analysis of the genomic structure with
particular emphasis on insertion sequences and the Francisella pathogenicity island. The A5-miseq pipeline
performed best for MiSeq data, Mira for Ion Torrent data, and ABySS for HiSeq data from eight short-read assembly
methods. Two approaches were applied to benchmark long-read and hybrid assembly strategies: long-read-first
assembly followed by correction with short reads (Canu/Pilon, Flye/Pilon) and short-read-first assembly along with
scaffolding based on long reads (Unicyler, SPAdes). Hybrid assembly can resolve large repetitive regions best with a
“long-read first” approach.

Conclusions: Genomic structures of the Francisella pathogenicity islands frequently showed misassembly. Insertion
sequences (IS) could be used to perform an evolutionary conservation analysis. A phylogenetic structure of
insertion sequences and the evolution within the clades elucidated the clade structure of the highly conservative F.
tularensis.
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Background
Francisella (F.) tularensis is a highly infectious, Gram-
negative, fastidious bacterial pathogen [1]. F. tularensis
causes tularemia. It is considered a potential biological
agent. F. tularensis subspecies holarctica is endemic in
Europe [2]. For phylogenetic studies and outbreak ana-
lyses, high-quality reference genomes are needed [3, 4].
Studies of the genomic structure of Francisella, such

as pathogenicity islands and insertion sequences, allowed
new insights into the development of the species. Patho-
genicity islands are defined as a class of genomic islands
acquired by microorganisms through horizontal gene
transfer and contribute to evolution. Insertion sequences
(IS elements) are transposable elements, which code only
for transposition activity and can occur in different copy
numbers and positions within the genome [5, 6]. IS ele-
ments constitute genomic rearrangement events during
evolution that are correlated to pathogenicity [7–9].
Genome sequencing is necessary to elucidate the gen-

ome structure and the phylogenetic and evolutionary
context of bacteria. The analysis of bacteria with a very
conservative genome structure, such as F. tularensis, re-
quires reliable sequence data.
Short-read sequencing and long-read sequencing tech-

nologies can be used to exploit genomes. However, the
reconstruction of genome assembly is complex, espe-
cially when it comes to duplications of genetic element
as in F. tularensis. With F. tularensis subsp. tularensis
strain SCHU S4 a Sanger sequenced reference genome is
available, and assembly results could be evaluated and
benchmarked by direct mapping [4].
Thus, we could evaluate de novo assembly methods

for short-read, long-read and hybrid approaches. The
most frequently used methods are based either on
Overlap-Layout-Consensus graph, de Bruijn graph, or
greedy approaches.
Assembly of reads into contigs with one of these ap-

proaches is followed by scaffolding contigs using mate-
pair or paired-end reads.
The quality of the resulting assembly can be evaluated

by comparing it to previously published finished ge-
nomes. For an evaluation, genome size, GC content, and
repetitive regions were evaluated based on an independ-
ent reference genome created with a different method:
Sanger sequencing as the gold standard. The accuracy of
the assembly depends on sequencing technology, gen-
omic structure, and used algorithms. Short-read tech-
nologies are accurate at low costs with low sequencing
error rates. However, large duplications such as the 27
kb Francisella pathogenicity island (FPI) cannot be re-
solved solely by short-read assembly.
Consequently, most available bacterial genomes are in-

complete or fragmented. Long reads can exceed the
length of repeats and resolve repeats but have relatively

high sequencing error rates. However, some library
preparation techniques for Oxford Nanopore Technolo-
gies MinION sequencer (ONT) can perform poorly for
genomes with low GC contents [10–15]. With a GC
content of 32%, Francisella represents AT-rich patho-
gens that are far more frequent than GC-rich organisms
[16], making them less prone to segregating mutations.
As mutations occur only rarely, the analysis of their gen-
omic nature can be challenging [17].
Hybrid assembly strategies combine the accuracy of

short-read sequencing with the capacity to extend over
long reads. The optimal combination of long and short-
reads is unpredictable and needs to be assessed. We
evaluated different assembly strategies and determined
several quality parameters like error rates, contiguity,
misassemblies, and the number of circularized contigs.
The Francisella pathogenicity island (FPI) is a gene

cluster that occurs twice (duplicated) in the genomes of
F. tularensis ssp. holarctica and F. tularensis ssp. tular-
ensis. F. tularensis ssp. novicida has only one copy of this
region [18, 19]. The function and expression of the FPI
have already been studied extensively [7]. It is known
that the FPI is challenging to resolve on a genomic level
[7]. The FPI contains a cluster of 16–19 genes that en-
code the Francisella Type VI Secretion System, which is
essential for pathogenicity [20].
We aimed to determine which sequencing technology

suits best for analyzing Francisella. Although in this
context, many studies are performed, few used Sanger
sequenced genomes as a gold standard or used all major
sequencing technologies [21]. The genome NC_006570.2
generated with Sanger sequencing was used as the refer-
ence genome [6]. Sanger Sequencing is time-consuming
and thus expensive, but it produces relatively long DNA
sequences of high quality.
We evaluated five independent sequencing technolo-

gies: Illumina MiSeq (MiSeq), Illumina HiSeq (HiSeq,
and Ion Torrent’s Ion S5XL (Ion Torrent’s) to gener-
ate short-read sequences; Pacific Biosciences RS (Pac-
Bio) and Oxford Nanopore Technologies MinION
(MinION) for long-read sequences. Sequencing tech-
nologies have been extensively described elsewhere
[22]. We sequenced four genomes of diagnostically
relevant F. tularensis subsp. holarctica from Germany
together with F. tularensis subsp. tularensis SCHU S4
(FSC237). It is well known that each sequencing tech-
nology is prone to specific error types with different
probabilities [23–27].
Short-read assemblies are less error-prone and

cheaper. They are used frequently in diagnostic labora-
tories, where SNP detection and outbreak analysis are
relevant. All three short-read sequencing technologies
and eight free available software solutions [28–36] were
assessed and evaluated. We benchmarked the optimal
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combination of sequencing technology and assembly
software. The parameters for the evaluation of the as-
semblies were total length, GC content, assembly con-
tiguity, error rate, genomic fraction, and gene annottion
in accordance with established software solutions [37–
42]. To achieve better insight into the assembler per-
formance, we preprocessed reads either by downsam-
pling or filtering with a minimum length
cutoff, respectively a quality cutoff. Assembly quality was
assessed statistically and visually [43, 44].
The growing availability of 3rd generation sequencing

technologies such as Single Molecule, Real-Time (SMRT)
sequencing (PacBio), and nanopore MinION sequencing
enable sequencing of long reads up to 65 kb or even up to
several hundreds of kb in the latter case. Assembly of
high-quality genomes can be achieved using exclusively
long reads or short reads, preferably paired-end or mate-
pair reads, to resolve complex genomic structures and
compensate for the somewhat erroneous long reads.
Hybrid assemblers use two different sequencing tech-

nologies (long-reads and short-reads) to produce high-
quality sequences [24, 37, 394044, 45]. This approach
improves scaffolding and makes the process computa-
tionally more efficient [21]. We assessed two-hybrid as-
sembly strategies to establish optimal genome
assemblies. The first approach is the “long-read first” ap-
proach as performed with Canu/Pilon and Flye/Pilon
[46–48]. Long reads are assembled, and resulting assem-
blies are corrected with short reads. The second ap-
proach is the “short-read first” approach as performed
with SPAdes and Unicycler [34, 49]. Therein short-reads
are assembled into contigs, which are mapped to a long-
read scaffold.
We benchmarked with a processing workflow (Fig. 1)

for an optimal combination of sequencing technology
and assembly software that produces high-quality assem-
blies for elucidation of genome structure, including the
FPI and the insertion sequences.

Results
Sequencing data quality
Illumina MiSeq sequencing yielded approximately 0.5
million paired-end reads with a median read length of
251 bp and 148–266Mb data per isolate. Approximately
99.8% of reads could be mapped to the respective refer-
ence genome resulting in 99.2–99.7% of bases covered
with 78-140x on average. The anticipated median insert
size was 600 bp.
Illumina HiSeq sequencing yielded between 9 and 48

million paired-end reads with a length of 151 bp result-
ing in 2.7–17.7 Gb sequence data per isolate. Mapping
to reference genomes resulted in 1432–7711x average
coverage with all genomic positions covered. The antici-
pated median insert size was 300 bp.

Ion Torrent sequencing yielded 0.5–1.2 million single-
end reads with a median length between 314 and 348 bp
and a maximum of 533 bp, with 175–389Mb data per
sample. Reference genomes were covered 92-204x with
around 100% bases covered.
PacBio SMRT sequencing data yielded 116,415–

156,128 sub-reads per isolate with a median length of
4.4–7.5 kb and a maximum of 55.8 kb, generating 1–1.3
Gb data per isolate. Mapping to reference genomes re-
sulted in 383-533x average coverage.
MinION sequencing yielded between 103,063 and

407,864 with a median length of 619–1317 bp and a
maximum of 1.5 Mb. Between 86 and 90% of ONT-
reads could be mapped to the reference genome result-
ing in a coverage of 64-282x with all bases covered at
least once (Supplementary Table 1).
The long-read sequences were additionally assessed

with a bivariate plot of the log-transformed read length
against base-call quality with hexagonal bins and mar-
ginal histograms [41] (Supplementary Fig. 2).
The log-transformed read lengths of all data showed

differences in the length profile with longer reads in the
PacBio dataset. We observed a higher variability of the
read length distribution across samples for MinION than
PacBio (Supplementary Fig. 2).

Alignment validation and sequencing error

The sequencing error rates could be assessed using an
alignment validation with the reference genome of the
isolate F. tularensis subsp. tularensis strain SCHU S4
(FSC237), NC_006570.2 (Table 1).
ONT sequencing reads had the highest total error rate

with 16.88%, followed by PacBio with 14.99%. MiSeq
reads contained the lowest number of errors with only
0.27%, closely followed by HiSeq reads with 0.31% and
Ion Torrent with 0.51%. We found the smallest percent-
age of insertions in MiSeq reads (0.0002%), but four
times higher, percentage of deletions (0.0032%) com-
pared to HiSeq (0.0008%). PacBio and Ion Torrent reads
were more prone to insertions (4.55 and 0.26%), whereas
ONT-reads were more susceptible to deletions (3.4%).

Coverage evenness and GC bias
We analyzed the sequencing bias of each technology
by computing the distribution of coverage across
protein-coding genes and 100-base windows with vari-
ous GC percentages. The evenness score was very
similar across technologies, with the best score for
HiSeq (0.99) and PacBio (0.97), except for MiSeq with
a relatively low score of 0.6715 (Table 1). The uneven
coverage of MiSeq data was demonstrated in its
biased coverage distribution with 85 genomic regions
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with low coverage < 15 and 302 regions with coverage
between 15 and 45 (Supplementary Fig. 1) .
GC percentage of MiSeq reads deviated with 36.29%

substantially from the GC content of the reference gen-
ome with 32.3%, resulting in a strong bias towards reads
with high GC content (Table 1, Fig. 2). While sequen-
cing and base-call errors could be compensated with a
slightly higher sequencing depth, GC bias had a perva-
sive impact on the result of de novo assembly and geno-
typing. Interestingly, normalized coverage of HiSeq,

PacBio, and ONT was biased towards genomic regions
with low GC content, while MiSeq and Ion Torrent se-
quencing preferred regions with high GC content (Fig.
2). We observed the lowest GC bias within short-read
and long-read platforms for HiSeq and ONT,
respectively.

Evaluation of short-read assemblers
Long-read sequencing is error-prone and depends on
high-quality DNA. In typical settings, short-read

Table 1 Sequencing data and error rates for isolate FSC237 to reference NC_006570.2, with a GC content of 32.26%

Platform GC
reads
(%)

Mapped
bases (bp)

Mismatches Insertions Deletions Mismatch
error rate
(%)

Insertions
error rate
(%)

Deletions
error rate
(%)

Total
error
rate (%)

Even
score

Total error
rate added
(%)

MiSeq 36.29 265,564,803 710,772 653 8371 0.268 0.0002 0.0032 0.27 0.6715 0.2710

HiSeq 32.12 7,402,011,869 22,972,180 43,344 56,564 0.310 0.0006 0.0008 0.31 0.9862 0.3117

Ion Torrent
32.66 350,087,308 783,525 911,991 522,265 0.224 0.2605 0.1492 0.51 0.9400 0.6335

PacBio 32.45 1,118,125,280 77,755,474 50,861,188 35,660,450 6.954 4.5488 3.1893 14.99 0.9747 14.6922

MinION 32.26 533,513,044 68,465,798 13,287,287 18,136,808 12.833 2.4905 3.3995 16.88 0.9669 18.7230

Fig. 1 Processing workflow for sequencing data including data QC, preprocessing, de novo assembly, assembly evaluation and
annotation (utilized tools in brackets).

Neubert et al. BMC Genomics          (2021) 22:822 Page 4 of 21



sequencing is mostly cheaper, more robust, and often
used in diagnostics. We assessed the best short-read as-
sembly strategy for F. tularensis. All short-read sequences
of MiSeq, HiSeq, and Ion Torrent were evaluated with
eight short-read assemblers: ABySS [28], A5-miseq [29],
IDBA [30], MaSuRCA [31], MIRA [32], SGA [33], SPAdes
[34, 35], Tadpole [36], VelvetOptimiser [88]. A5-miseq
did not apply to Ion Torrent data.
To compare assembler performance, we reduced all

data sets to 80x coverage. Total length, GC content, as-
sembly contiguity (N50, NA50, and NGA50), error rate,
genomic fraction, genomic features (complete + partial),
the complete Busco, and the errors/per 100 kb were the
chosen metrics for the evaluation of the assemblers
(Supplementary Table 2) [50]. Optimal results were de-
fined as maximal contiguity with minor errors.
All assemblers were analyzed for contiguity, with the

contig sizes in terms of NA50. Except Tadpole with a very
low N50 of 6.55 and MaSuRCA with a relatively high error
rate (25.5 errors per 100 kb), all assemblers were able to

produce assemblies with an N50 value between 20 and 30
kb with at most 130 contigs and at least 93% of genome
covered using HiSeq data (Supplementary Fig. 3, 5 and 6).
Assemblies based on MiSeq data were mainly unsatisfac-
tory, with N50 values smaller than 20 kb. Notable excep-
tions were the assemblies produced by A5-miseq with
N50 values of at least 27 kb and low error rates. N50
values of MIRA assemblies using Ion Torrent data were
higher than those of any other assembler (26–43 kb), but
due to large misassemblies, NA50 values were lower com-
pared to SPAdes (Supplementary Fig. 4).
Subsequently, the genome fraction, the total number

of aligned bases in the reference, is calculated and di-
vided by the genome size [43]. Illumina HiSeq reads
yielded the best results, while Ion Torrent data and
MiSeq data resulted in a lower genome fraction (Supple-
mentary Fig. 5). Here, ABySS and A5-miseq with Illu-
mina HiSeq/MiSeq data performed best, whereby
the latter method was capable of dealing with the
poor sequencing quality of MiSeq reads analyzed before.

Fig. 2 GC-bias plots for dataset FSC237 sequences for short-read (A) and long-read platforms (B). Normalized coverage is plotted for GC
percentages with at least 1000 windows in the genome. Unbiased coverage is represented by a dashed line at normalized coverage of 1. GC
distribution of FSC237 to reference NC_006570.2 (C)
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MaSuRCAand SGA assemblies covered only a part of
the genome with MiSeq and Ion Torrent data (50% and
78%) (Supplemental Table 2).
Additionally, a contig weighted score was calculated to

represent an N50 value normalized to the contig num-
ber (Supplementary Fig. 7). Then we plotted the genome
fraction versus the errors to combine an assessment of
sequencing technologies and assembler performance
(Fig. 3). For all assemblies, canSNPer yielded the same
results as qPCR and short-read assemblies and are thus
applicable in a diagnostic setup.
In conclusion, best assembly results were obtained for

HiSeq data with Abyss_128k, for MiSeq data with A5-
miseq, and Ion Torrent data with Mira. SPAdes yielded
promising results, but performance is not optimal for
the transposase library preparation used for MiSeq data.
Assembly quality was assessed with Quast [43]. The

duplication of the ~ 27 kb FPI could not be resolved in
short-read assemblies.

Analyzing assemblies of the reference strain
As a high-quality complete genome of F. tularensis
subsp. tularensis strain SCHU S4 sequenced with Sanger
is available with ASM898v1 we were able to make an in-
depth evaluation of assembly quality using data from
various sequencing platforms. To apply uniform condi-
tions for comparison, we used randomly subsampled
reads to obtain an average coverage of 50x for PacBio
and MinION data and 80x for HiSeq, MiSeq, and
Ion Torrent data (Table 2 and Table 3). Long-read as-
sembly with Canu and Flye followed by polishing with
Pilon resulted in assemblies with the highest contiguity
concerning NGA50 values between 1.53 and 1.89Mb.
PacBio-based hybrid assemblies from Canu/Pilon were

Fig. 3 NA50 values versus assembly errors for short-read assemblies. Optimal results are expected to have high NA50 with low error rates
(located in the upper left corner)

Table 2 Hybrid assembly results for FSC237 isolate based on PacBio data

Assembler Short
read
library

Total
length
(bp)

GC
(%)

Contigs
(> = 500
bp)

NGA50
(Mb)

Genome
covered
(%)

Genomic features
(Complete + partial)

Complete
Busco (%)

True/all circular
contigs (size)

Errors
(per 100
kb)

Canu/
Pilon

HiSeq 1,889,842 32.27 1 1.89 99.85 3794 + 3 part 93.92 0/0 4.34

MiSeq 1,889,606 32.27 1 1.89 99.85 3794 + 3 part 92.57 0/0 17.14

Ion Torrent 1,889,812 32.27 1 1.89 99.85 3794 + 3 part 93.24 0/0 5.82

Flye/Pilon HiSeq 1,892,761 32.26 2 1.50 100.00 3795 + 2 part 93.92 1/1 (1892709) 0.74

MiSeq 1,958,505 32.22 2 1.53 100.00 3796 + 1 part 92.57 1/1 (1892639) 23.78

Ion Torrent 1,958,909 32.22 2 1.53 100,00 3796 + 1 part 93.92 0/1 (393321) 28.16

SPAdes HiSeq 1,858,769 32.28 2 1.12 98.20 3736 + 3 part 93.92 0/1 (1499404) 0.16

MiSeq 1,830,140 32.33 29 0.09 96.69 3600 + 15 part 93.92 0/0 14.09

Ion Torrent 1,858,056 32.28 2 1.50 98.17 3738 + 1 part 92.57 1/1 (1892668) 4.36

Unicycler HiSeq 1,856,294 32.29 6 1.46 97.79 3703 + 7 part 93.92 1/1 (1892695) 0.05

MiSeq 1,865,687 32.28 7 1.15 98.08 3730 + 4 part 93.92 0/1 (393314) 10.28

Ion Torrent 1,855,936 32.29 6 1.46 98.06 3718 + 5 part 93.92 1/1 (1892586) 6.04
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the best compared to all PacBio/ HiSeq assemblies of
FSC237 isolate for contiguity with a length of 1.889.842
bp (compared to 1.892.775 bp in NC_006570.2), 99.85%
of bases aligned to NC_006570.2 and 3794 covered gen-
omic features. Although assemblies with Canu/Pilon had
the highest NGA50 values, only 2 of 6 assemblies could
be circularized properly with Circulator (Table 2 and 3).
In contrast, 4 out of 6 Flye/Pilon assemblies could be

circularized appropriately. The covered genome fraction
of the reference exceeded 97% in all assemblies except
for those assembled with SPAdes based on MiSeq data.
Most genomic features were found in Canu/Pilon and
Flye/Pilon assemblies with at most 3796 complete and
one partial. Very few assembly errors occurred in
SPAdes and Unicycler assemblies, with only 0.05 errors
per 100 kb for Unicycler assemblies based on HiSeq data.
Conversely, Flye showed the highest number of errors
with about 1060 errors per 100 kb using MinION and
MiSeq data. SPAdes often produced large misassemblies
caused by an extensive repeat, the FPI, whereas Unicy-
cler resulted in a misassembly only with PacBio/MiSeq
data (Supplementary Table 4, Fig. 5). A high number of
misassembled bases identified by QUAST were detected
around the origin of replication. This was correlated to
the overall error rate, which is highest with MiSeq data,
concordant with the GC bias.
Further evaluation of assembly errors in FSC237 with

DNAdiff showed more GIndels in Canu/Pilon assem-
blies compared to others for PacBio/HiSeq and PacBio/
MiSeq data (Supplementary Fig. 11). Flye/Pilon showed
the most GIndel errors in all MinION assemblies (Supple-
mental Table 4). Analysis of assemblies with REAPR re-
vealed twice as many errors in Flye/Pilon assemblies using
PacBio/MiSeq data and nearly three times more errors
using PacBio/Ion Torrent data compared to Canu/Pilon.

With MinION data, the number of REAPR errors is simi-
lar in Canu/Pilon and Flye/Pilon assemblies. As noted be-
fore Unicycler and SPAdes assemblies had the lowest
number of errors. Nevertheless, unlike QUAST results,
Unicycler assembly had one third more GIndels for Pac-
Bio/Ion Torrent data and more than four times more GIn-
dels for MinION/MiSeq data than SPAdes. The
occurrence of FPI at two positions in the genome poses a
central problem to assemblers, as seen in assembly
graphs (Supplementary Fig. 17).

Evaluation of hybrid assembly methods
We computed hybrid assemblies for each combination
of long reads (PacBio, ONT) and short reads (HiSeq,
MiSeq, Ion Torrent) using Canu/Pilon, Flye/Pilon,
SPAdes, and Unicycler.
We compared NGA50, genome fraction, and errors

per 100 kb aligned sequence in assemblies of five F.
tularensis isolates based on their respective reference ge-
nomes. As before, we used subsampled data for the ana-
lysis. In general, the “long-read first” approaches (Canu/
Pilon and Flye/Pilon) were more prone to sequence er-
rors (mismatches, Indels) compared to “short-read first”
approaches (SPAdes and Unicycler). Canu/Pilon assem-
blies based on PacBio data had often the highest NGA50
values among all results, with 9 out of 15 above 1.5
Mb (Supplementary Fig. 8, Supplementary Table 3).
In contrast, Flye/Pilon resulted in the best assemblies

for MinION data with 9 out of 15 above 1.5Mb. Canu/
Pilon and Unicycler had the lowest overall failure rate
with only 3 out of all 30 assemblies with NGA50 values
below 0.5Mb. Unicycler assemblies occasionally had
lower NGA50 values compared to Canu and Flye. All
hybrid SPAdes assemblies based on MiSeq reads showed
very low NGA50 values smaller than 0.1Mb. Coverage

Table 3 Hybrid assembly results for FSC237 isolate based on MinION data

Assembler Short
read
library

Total
length
(bp)

GC
(%)

Contigs
(> = 500
bp)

NGA50
(Mb)

Genome
covered
(%)

Genomic features
(Complete + partial)

Complete
Busco (%)

True/all circular
contigs (size)

Errors
(per 100
kb)

Canu/
Pilon

HiSeq 1,949,612 32.26 1 1.95 99.97 3794 + 3 part 93.24 1/1 (1891217) 53.90

MiSeq 1,942,673 32.34 1 1.94 99.97 3794 + 3 part 62.16 0/0 351.18

Ion Torrent 1,948,850 32.27 1 1.95 99.97 3794 + 3 part 88.51 1/1 (1890592) 78.43

Flye/Pilon HiSeq 1,921,160 31.96 3 1.89 99.97 3793 + 3 part 77.70 1/1 (1893441) 98.56

MiSeq 1,944,710 31.58 3 1.92 99.97 3792 + 3 part 64.86 1/1 (1913901) 1059.83

Ion Torrent 1,921,860 31.95 3 1.89 99.97 3792 + 3 part 67.57 0/0 162.61

SPAdes HiSeq 1,892,530 32.28 1 1.86 98.21 3740 + 2 part 93.92 1/1 (1891993) 0.16

MiSeq 1,827,899 32.33 32 0.09 96.58 3592 + 15 part 93.92 0/0 20.84

Ion Torrent 1,858,435 32.28 2 1.40 98.19 3736 + 2 part 91.89 0/1 (1498148) 4.57

Unicycler HiSeq 1,892,775 32.26 1 1.89 100.00 3794 + 3 part 93.92 0/0 0.05

MiSeq 1,921,618 32.25 12 1.89 99.88 3789 + 3 part 93.92 1/1 (1891153) 57.40

Ion Torrent 1,892,630 32.26 1 1.89 100.00 3794 + 3 part 93.92 0/0 6.77
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of reference genomes was higher with PacBio than Min-
ION data with values above 98% in Canu and Flye as-
semblies (Supplementary Fig. 9). Flye assemblies had a
higher genome fraction compared to Canu assemblies
with MinION data. Hybrid assembly with Unicycler and
HiSeq reads resulted in the smallest assembly errors, in-
cluding mismatches and Indels (Supplementary Table 4).
Looking at cumulated error rates in assemblies based on
PacBio data, the results were similar for all methods ran-
ging from 0.01 to 40.47 errors per 100 kb, where Flye had
slightly more errors altogether (Supplemental Fig. 10,
Supplemental Table 4). Long read assembly resulted in a
much higher error rate with MinION data compared to
hybrid methods. The highest error rate was observed in
Flye/Pilon assemblies with more than 1000 errors per
kb. Assembly polishing with Pilon was not very success-
ful with MiSeq reads as the highest error rates occurred
in those assemblies (Supplementary Fig. 10). In general,
hybrid assemblies that used MiSeq data generated with
the transposase library resulted in more misassemblies,
mismatches, and Indels compared to those that used
HiSeq or Ion Torrent data. SPAdes assemblies had the
lowest overall error rate but were considerably more
often affected by large misassemblies (Supplemental
Table 4). Assemblies with the lowest error rate were
produced by hybrid assembly with Unicycler based on
PacBio/HiSeq or MinION/HiSeq data.
ONT-based hybrid assemblies are more error-prone

than PacBio-based hybrid assemblies. For SPAdes and
Unicycler assemblies with Ion Torrent and MiSeq reads
misassemblies profoundly impacted the assembly

structure (Fig. 5). Canu/Pilon avoided large misassem-
blies with ONT reads, possibly due to its inbuilt read-
error correction by computation of consensus reads.
The variability of assembly quality was higher with

ONT data than PacBio data correlating with the read
length and read quality (Supplemental Table 1).
In summary, we evaluated the NGA50 values versus

the errors (Fig. 4) to combine an assessment of sequen-
cing technologies and genome fidelity. PacBio sequences
resulted overall in a better genome fidelity and lower er-
rors. In terms of both contiguity (NGA50) and error
rate, optimal assemblies were produced by Canu/Pilon
and Unicycler. Flye/Pilon assemblies could be circular-
ized more often than those from the other methods e.g.
for subsampled data in 9 cases in contrast to 7 in Unicy-
cler, 5 in Canu/Pilon, and 2 out of 30 in SPAdes (Sup-
plementary Table 5).

Genomic variants in holarctica isolates
To assess the application of all significant short-read se-
quencing technologies in diagnostics, we conducted a
variant analysis.. We computed SNPs and Indels using
short reads from all platforms. HiSeq reads had the low-
est sequencing error rate and were sequenced to ex-
tremely high coverage of more than 1400x. We used
them to determine the actual variation between our iso-
lates and their reference genomes (Table 4). As ex-
pected, no difference in SNPs and Indels was found
between FSC237 compared to the SCHU S4 reference.
We found 35–207 SNPs and up to 2 Indels in F. tularen-
sis subsp. holarctica isolates relating to their reference.

Fig. 4 NGA50 values versus assembly errors for hybrid assemblies
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Accordingly, 11 mismatches per 100 kb are actual varia-
tions in isolate 08 T013, but only 5 and 2 per 100 kb can
be expected in the isolates 12 T0058 and 12 T0050/ 12
T0052. SNP calling was more robust with all sequencing
technologies, while Ion Torrent data were prone to add-
itional Indel calling.

Effect of coverage on assemblies
We determined the required coverage of both long and
short reads for SPAdes and Flye/Pilon to achieve assem-
blies from FSC237 isolate of sufficient quality (Supple-
mental Fig. 12 and 13). SPAdes produced assemblies
with an N50 value of 1.6 Mb with 10x coverage of long

Fig. 5 Genome assemblies of FSC237 isolate based on different sequencing platforms and assemblers aligned to the SCHU S4 reference genome
a) Canu b) Flye c) SPAdes and d) Unicycler. Assembled contigs from inside to outside: ONT+Ion Torrent, PacBio+Ion Torrent, ONT+MiSeq,
PacBio+MiSeq, ONT+HiSeq, PacBio+HiSeq; misassembled bases identified by QUAST (dark red); mismatches in total error (grey bars); outer circle:
F. tularensis subsp. tularensis str. SCHU S4 reference, inner circle: F. tularensis subsp. tularensis str. SCHU S4 RefSeq genes (yellow) and
pathogenicity islands (cyan bars) and ISFTu 1-6 (red/ purple/ blue bars), repeats (black) presented with Circos. The origin of replication is at
twelve o’clocd
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reads from Pacbio combined with 90x coverage of short
reads from HiSeq. A higher long read coverage of 50x
and short read coverage of 20x produced lower N50
values of about 1.5 Mb. SPAdes required far fewer
Ion Torrent reads to produce good assemblies with an
N50 value of 1.5–1.9 (minimum 20x) combined with
long PacBio reads of at least 20x coverage. N50 values of
SPAdes assemblies were very low with MiSeq data with
a maximum of 0.16Mb for 20x long read coverage and
140x short read coverage. SPAdes assemblies based on
long reads from ONT data resulted in high variability of
N50 values depending on the selected read subset. Flye
required 30x coverage for PacBio and 20x for MinION
reads to produce assemblies with an N50 value of at
least 1.5Mb. Covered genome fraction was at least 97%
for all SPAdes assemblies except those using MiSeq data
with a minimum of 85%. Flye required at least 20x
coverage for PacBio and MinION to cover 98% of the
reference genome. Assembly errors such as mismatches,
Indels, and misassemblies might impair assembly quality.
SPAdes assemblies based on HiSeq reads of at least 20x
coverage had an error rate of less than one error per
100 kb (Supplemental Fig. 12). Flye/Pilon assemblies re-
sulted in more errors with PacBio/HiSeq data with 0.1–
1.9 errors per 100 kb for a PacBio coverage of 533x
(Supplemental Fig. 13). They showed a lower error rate

with PacBio/MiSeq and PacBio/Ion Torrent data than
those produced with SPAdes using all PacBio reads
(533x), but a much higher error rate with MinION with
more than 100 errors per 100 kb independent of the
coverage.

Effects of preprocessing on assemblies
Down-sampling, error correction and filtering reads (to
reduce misassemblies due to repeats) might benefit the
assembly quality [24, 37, 46, 51]. We compared sub-
sampling (50x), error correction with Canu and filtering
of reads that reach a minimum length of 10 kb. Sub-
sampling and error correction of PacBio reads improved
NGA50 values of some Canu/Pilon assemblies, but with
a reduced genome fraction (Supplemental Fig. 14, Sup-
plemental Table 5). Conversely, preprocessing of Min-
ION reads decreased NGA50 values and genome
fraction in Canu/Pilon, Flye/Pilon and Unicycler assem-
blies. Error correction of PacBio reads raised the error
rate in assemblies (Supplementary Fig. 15). Canu was
also strongly affected by the filtering process, which low-
ered the NGA50 of six assemblies to half of the actual
genome size. Flye could maintain an NGA50 of one in
five assemblies independent of preprocessing, although it
resulted in worse quality. Filtering of PacBio reads with
a minimum length of 10 kb substantially increased error
rates with Flye/Pilon. Error correction of MinION reads
reduced total errors in Flye/Pilon assemblies (Supple-
mentary Fig. 15).
In summary, preprocessing of MinION reads might

affect assembly quality by increasing error rates and de-
creasing NGA50 values. With original MinION data,
most assemblies have a high NGA50 value over 1.5Mb
and a relatively low error rate, thus can be found in the
upper left corner in the graph provided in Supplemental
Fig. 16. The error rate of some erroneous Flye/Pilon as-
semblies was improved with error correction. Subsamp-
ling reduced the maximum number of detected errors in

Table 5 Maximum RAM consumption and running time for
assembly of FSC237 isolate with subsampled data (PacBio: 94
Mb, MinION: 92 Mbp, HiSeq: 151 Mb)

Assembler Max RAM (Gb) Running time (min)

PacBio MinION PacBio MinION

Canu 1.8 3.56 6.06 27.93 97.03

Flye 2.4.2 2.64 10.33 6.91 96.91

Flye 2.5 2.60 7.42 7.26 67.43

SPAdes 3.13.0 2.74 2.70 6.09 5.84

Unicycler 0.4.7 8.00 6.01 52.32 44.32

Table 4 Genomic variants in holarctica isolates with respect to their reference genomes called with three different short-read
sequencing datasets

Isolate FSC237 08 T013 12 T0050 12 T0052 12 T0058

NCBI ID NC_006570.2 NC_017463.1 NC_009749.1 NC_009749.1 NC_019551.1

HiSeq Average coverage 3910x 4793x 1432x 3232x 7711x

SNPs 0 207 35 35 96

Indels 0 2 0 0 0

Miseq Average coverage 140x 102x 79x 78x 89x

SNPs 81 312 153 173 246

Indels 0 67 9 12 11

Ion Torrent Average coverage 185x 204x 202x 163x 92x

SNPs 0 189 49 47 94

Indels 1 619 611 617 924
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all assemblies from about 64 errors to 40 with PacBio
data and 1300 to 1083 with MinION data.

Performance comparison
We calculated running time and maximal RAM con-
sumption with subsampled data (Table 5). Canu/Pilon
and Unicycler had the highest needs in time and RAM,
while SPAdes could finish the assemblies with substan-
tially less time and RAM with at most 6 min and the
need for 2.7 Gb RAM. Flye version 2.5 had an improved
performance requiring 67min (Table 5). Also, RAM
consumption was highest with MinION data and Canu
or Flye assembly with up to 10 Gb.

Evaluation of pathogenomic regions
Francisella pathogenicity island
For hybrid assemblies, the comparison was made with
downsampled sequences (50x long/ 80x short reads).
The sequence alignment of the genomes revealed se-
quences for FPIs (Fig. 6). Misassembly of the FPI se-
quences disabled circularization or resulted in two
chromosomal rings (Supplementary Fig. 17).

Host-vector genotyping
The heterogeneity of Francisella isolated from host and
vector was analyzed comparing 12 T0050 from a hare
and 12 T0052 from its sucking tick. Based on the remap-
ping of HiSeq data, variations between 4 and 12 SNPs
were found due to shortened repeats in the HiSeq data
or wrong mapping. These SNPs could be excluded with
manual curation. Thus, no difference between the iso-
lates from the host and the vector could be de-
tected. Additional SNP typing and phylogenetic analysis
was done with Geneious comparing the genome 12

T0050 and 12 T0052. The result confirmed the absence
of SNP variants between the two F. tularensis isolates
from host and vector.

Erythromycin resistance
The erythromycin resistance of the isolates showed a
perfect correlation with the phylogenetic group B.12
(Table 6). Only B.12 strains had an A-C SNP at position
2059 in the three copies of the rrl gene as reported be-
fore [52].

Insertion sequences
The insertion sequences (IS or ISFtu) are short repetitive
sequences that are evolutionary important and help to
understand the evolutionary structure. Sequence alignment
of the genomes revealed 123 ISFtu insertion sequences
(Fig. 6, Table 6). ISFtu1 – ISFtu6 of FSC237 were assem-
bled and annotated correctly at appropriate locations within
the genome compared to the Sanger sequence.
The phylogenetic analysis allowed us to reveal the

most ancient insertion sequence [53, 54]. Within all in-
sertion sequences of the closest related species, a phylo-
genetic analysis was done. The insertion sequence with
the name ISFtu1 CDS107 as part the F. tularensis ssp.
holarctica 12 T0050 sequence was at the root of the
phylogenetic tree. It can be suspected that this is the
most ancient ISFtu. The differentiation of F. tularensis
ssp. tularensis FSC237 occurred later.
These could be distinguished in three groups with af-

finity propagation clustering (Supplemental Fig. 18). The
changed order of these insertion sequences or chromo-
somal segments suggests that regions moved during evo-
lution. The chromosomal segments were nearly
identical. However, they were differently arranged, and

Fig. 6 Alignment of genomes including Francisella pathogenicity island (FPI) and insertion sequences (IS or ISFtu) as coloured bars with neighbor
joining tree based on kSNP on the left side
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affinity propagation clustering revealed three distinct
clusters independent of the previously annotated
ISFtu1–6 describing a closer phylogenetic and evolution-
ary relation than suspected before.

Discussion
Data quality
To assess the sequencing data quality of all five sequen-
cing technologies, we evaluated sequencing error, the
coverage evenness, and the GC bias with mapping to the
genome NC_006570.2. This strain was characterized by
Sanger sequencing of the highest quality [55–59].
As expected, long sequencing reads were more error-

prone as was reported before [26, 48, 60, 61]. In order to
obtain the least possible insertion/ deletion rate, we sug-
gest HiSeq reads for short-reads and PacBio for long-
reads. The evenness score was very similar across all
technologies. Although the same sequencing technology
generated HiSeq and MiSeq results, bias could also be
introduced by library construction and read length. This
finding was congruent with other publications [62, 63].
While modest variation was seen for all sequencing tech-
nologies, the GC-bias observed for MiSeq data was strik-
ing. The transposases-dependent library preparation of
Illumina Nextera XT and long-reading length appear to
be causative. MiSeq reads can be improved by using
stringent quality filtering, for example, with Trimmo-
matic or Sickle [64–67]. We suggest considering shorter
reads (150 bp) with better quality values. Alternatively,
we recommend cutting the reads to 150 bp and using a
transposase independent library protocol to ameliorate
the GC bias.
Long-reads of PacBio sequencing provided better data

in terms of sequencing quality, error rate, and homogen-
eity. ONT sequencing is less expensive, with MinION
as the only portable platform for potential field applica-
tions. Improved ONT technology and library preparation
will probably result in better quality and longer reads in
the future [61].
The assembly quality correlates with the sequencing

quality, leading to the conclusion that errors in the se-
quencing data significantly impact assembly.

Short-read assembly
Assembly programs have difficulties in properly locating
reads from (almost) identical multicopy regions and in-
duce fragmented assemblies, as was shown here due to
the presence of two copies of the FPI. We benchmarked
eight de novo assembly tools focused on short-read se-
quencing data. Each examined tool proved capable of as-
sembling a Francisella genome over 90%. However, all
assemblers evaluated in this study are under constant de-
velopment, and therefore, our data can only be a snapshot
of their performance under the described circumstances.

Data from transposase-generated libraries should be
filtered (Fig.1). Keeping in mind the uniqueness of the
data set and the requirements for diagnostics, we recom-
mend using assemblers that are adapted optimally to
the characteristics of the data: A5-miseq for MiSeq, Mira
for Ion Torrent and ABySS for HiSeq data. However, the
FPI duplication will not be resolved.

Hybrid assembly
We benchmarked four state-of-the-art software solutions
that are freely available and applicable to the here used
down-sampled datasets. Although long-reads feature
relatively high base-calling error rates, polishing the
Canu/Pilon or the Flye/Pilon assembly graph using
short-reads reduced the error rates by one order of mag-
nitude. The higher error rate of ONT reads could not be
fully compensated. PacBio sequencing resulted in better
genomes. Preprocessing was not always beneficial.
The assemblers Flye/Pilon and SPAdes are substan-

tially faster than Canu but resulted in more errors and
misassemblies. For datasets of eukaryotes, it was shown
that Flye/Pilon provide more contiguous and accurate
assemblies than Canu while being notably faster. How-
ever, our study with bacteria Canu/Pilon provided fewer
errors [48]. The software Canu/Pilon and Unicycler had
the best results concerning error rate and contiguity in
our hands. Financial aspects, correctness, and availability
of computational powers are often a concern, but estab-
lishing corrective measures is also relevant.
Overall, the “long-read first” approach of Canu/Pilon

provided the best assembly by showing the correct struc-
ture of the genome with the least error rate.

Pathogenomics
Accurate hybrid genome assembly is hampered by re-
petitive regions [68]. Although long sequencing reads
are more able to resolve genomic repeats than short-
read data, most long-read assembly algorithms do not
provide the repeat characterization necessary for produ-
cing optimal assemblies.
The hybrid assemblies generated here led to striking mis-

assemblies around the pathogenicity islands, shown with
alignments to the reference. The ~27 kb duplication was
the cause of major local misassemblies. The “short-read
first” approaches (SPAdes and Unicycler) had a low total
error rate but were prone to misassemble this duplication.
The “long-read first” approach Canu/Pilon provided the
correct assembly of this duplication. Misassembly could,
however, be prevented with higher coverage.
The assessment of the genomes obtained from a host

(12 T0050) and vector (12 T0052) showed no genetic dif-
ferences, which was expected from previous reports [52,
69]. The detected antibiotic resistance of clade B.12 to
erythromycin was in agreement with previously reported
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results [52]. The heterogeneity within the bacterial ge-
nomes of strains isolated from a host and its vector was
so minimal that chromosomal variations could not be
detected due to the assembly artifacts mentioned above.
Insertion sequences are transposable elements capable

of increasing their copy number within the genome, and
they can move within the genome. In the genomes of
pathogenic F. tularensis strains, the most common inser-
tion sequences are ISFtu 1 (IS630) and ISFtu2 (IS5), which
belong to the Class II of mobile elements. They transpose
by excision, and the subsequent reinsertion occurs at ran-
dom genomic loci [5, 6, 70, 71]. ISFtu1 belongs to the Tc-
1 mariner family of insertion sequences and has a single
open reading frame [72, 73]. ISFtu1 is highly regulated, as
was shown previously in published genome structure ana-
lyses [74, 75]. Ribosomal frameshifting is required to
translate ISFtu1 as the DDE triad, which is essential for
transition at the IS positions, which is generated only after
a frameshift. The ribosomal frameshifting motif may be
used to control the transposition of insertion sequences.
The analysis with affinity propagation clustering suggests
that this happened three times in FSC237. Insertion se-
quences in the same order suggest that these were existent
before the human pathogenic subspecies differentiated
from a common ancestor. The other insertion sequences
that differ in content and order can be presumed to
have formed after differentiation. We concluded that the
subspecies and clades split early.
Normally, a phylogenetic tree shows the relatedness of

species when based on rRNA or whole genome sequences.
Here we used a phylogenetic tree to show the relatedness
between the ISFtu. The difference to the traditional rRNA
sequences tree is explained that does not base on the most
common ancestor under a continuous mutation rate, but
on the actively jumping ISFtu. As reported before the ob-
served genome to genome variation in gene content and
IS elements were different and reinforces the view that
similar evolutionary paths of host adaptation might
have developed independently [76].
Insertion sequences with the highest identity (70%) to

F. tularensis can be found in the pathogens Piscirickett-
sia salmonis, Orientia tsutsugamushi, and Legionella
pneumophila (blastn [77], indicating a general mechan-
ism with which insertion sequences can give rise to
pathogenicity or adaption to the hosts or environment
as known from other species [53, 54].
The results are shown here (Fig. 5) indicate that all as-

semblers provided high error rates around the origin of
replication. The structure of the origin of replication is
AT-rich and repeat-rich and might thus complicate the
assembly.
Better algorithms for resolving repeats in assembly

graphs might have the potential to improve bacterial as-
semblies significantly by increasing their contiguity and

reducing the error rate. Assembly graphs as generated
with SPAdes, Flye/Pilon, and Bandage can also be used
to create breakpoint graphs [44] and are helpful tools to
analyze structural variations.

Conclusions
Our study evaluated five sequencing technologies to assess
the genome of F. tularensis. Our data show that short-
reads are less error-prone than long-reads. HiSeq and Pac-
Bio provided the best results among the respective tech-
nologies (and in combination for creating hybrid genome
assemblies). The sequencing quality corresponded to as-
sembly quality. Short-read sequencers provide high-
quality data suitable for genotyping and diagnostics. Ex-
cept for the MinION platform, they are generally cheaper
per base pair compared to long-read sequencers.
For the assembly of Francisella with HiSeq data,

Abyss_128k proved optimal. However, alternative com-
binations such as MiSeq data and A5-miseq are accept-
able, while Mira generated with Ion Torrent data eligible
assemblies in our study.
Hybrid assembly strategies were assessed to establish

optimal genome assemblies. The “long-read first- error
correct - with short-reads afterward” approach as per-
formed with Canu/Pilon resulted in the best results.
The duplicate FPI is essential for the host-pathogen

interaction and has to be resolved correctly, but it could
be a significant cause for misassembly. The detailed ge-
nomes allowed an evolutionary analysis of insertion se-
quences, revealing a highly regulated adaption process of
Francisella. Other bacteria that have similar genome
structures as Francisella might be analyzed with our
strategy.

Methods
Strain selection and reference genomes
Four F. tularensis subsp. holarctica strains 08 T0013, 12
T0050, 12 T0052, 12 T0058, and F. tularensis subsp.
tularensis FSC237 were used in the present study. All F.
tularensis subsp. holarctica strains were isolated on cyst-
eine heart agar from carcasses of hares (Lepus euro-
paeus), the main source of infection in Germany [78].
The strains were assigned to the subclades using a set of
real-time PCR assays and bioinformatics analysis using
CanSNPer (https://github.com/adrlar/CanSNPer), which
is an assay for whole-genome sequencing data based on
canonical single nucleotide polymorphisms developed by
Larkeryd et al., 2014 [79]. Strain 08 T0013 was isolated
near Ehingen (Bavaria, Germany) in 2008. The subclade
was identified as clade B.4. We used an isolate from
OSU18 (NC_017463.1) as a reference. 12 T0050 was iso-
lated in Herringhausen (North Rhine-Westphalia,
Germany) and the clade was identified as B.6. The refer-
ence genomes were selected according to their reported
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subclade and were used as reference genomes for ex-
ample in the canSNPer. For the strains 12 T0050 and 12
T0052, we used FTNF002–00 (NC_009749.1) as the ref-
erence genome. Strain 12 T0058 was isolated in Heideck
(Bavaria, Germany), and the clade was identified as B.12.
We selected FSC200 (NC_019551.1) as its reference gen-
ome. F. tularensis subsp. tularensis strain SCHU S4
(FSC237) (SCHU S4; NC_006570.2) was included as a
control. Initially isolated in the US, FSC237 was obtained
from the Institut für Mikrobiologie der Bundeswehr
(Munich, Germany) on 30 Nov. 2006 in a cryotube. Via-
bility was checked in 2007 and 2013, but the strain was
not passaged in subsequent cultivations.
The DNA sequence of the FPIs was used from F. tular-

ensis subsp. novicida strain U112, (GenBank accession no.
AY293579) [19]. For the insertion sequences the following
sequences were used as annotation reference: isftu1: NC_
006570.2: 1683438..1684222, isftu1 transposase, Gene ID:
3192293; ISFtu2: NC_006570.2: 383702..384445 isftu2
transposase, Gene ID: 3192483; ISFtu3 (discontinued) =
FTH_1009 pseudo, NC_008369.1: 992987–993,874, Gene
ID: 4307123; ISFtu4 (discontinued) = pseudogene of
ISFtu4 transposase, NC_008369.11610822..1611085, com-
plement; ISFtu5 (discontinued) = FTH_0855 pseudo NC_
008369.1 (637,547..637960, complement), Gene ID:
4306969; ISFtu6 (discontinued) = FTH_0855 pseudo NC_
008369.1 (850,708..851016), Gene ID: 4306969 (Table 7).

DNA extraction and sequence generation
The cultivation of bacteria from organ specimens was
performed on cysteine heart agar at 37 °C with 5% CO2

for 48 h. DNA for whole-genome sequencing was pre-
pared from a 10 mL culture in brain heart infusion
broth. Bacterial cells were harvested after 72 h by centri-
fugation, and the DNA was purified using QIAGEN
Genomic-tip 20/G and a QIAGEN Genomic DNA buffer
set kit (Qiagen, Hilden, Germany). The DNA quality was
examined using a Qubit 2.0 fluorometer (Life Technolo-
gies, Germany) and agarose gel electrophoresis.

Library preparation and sequencing
Illumina Nextera XT libraries were uniquely barcoded,
pooled, and run on a MiSeq flow cell with paired 250

base reads plus an 8-base index read. According to the
manufacturer’s instruction, one ng of the genomic DNA
was prepared with the Nextera XT library preparation.
The resulting libraries were sequenced in a 250 bp Illu-
mina MiSeq paired-end sequencing run. HiSeq libraries
were constructed by GATC (Konstanz, Germany) using
TruSeq protocols and were sequenced on a single lane
of an Illumina HiSeq with paired 75 base reads plus an
8-base index read. Ion Torrent libraries were used on
single 316 chips with 65 cycles generating mean read
lengths of 112–124 bases in each run. PacBio sequencing
was performed with an amplification-free workflow. The
genome sequencing was done with SMRT DNA sequen-
cing [80] using a PacBio RSII sequencer. Standard Pac-
Bio libraries contained inserts with an average of 2 kb.
The libraries were run individually over multiple SMRT
cells using C1 chemistry. For each genome, ≥20x se-
quence coverage data was obtained (GATC, Konstanz,
Germany).
Nanopore sequencing libraries were prepared with one

μg genomic DNA using the 1d2 kit (SQK-LSK308). DNA
was not sheared before library preparation and was end-
repaired and dA-tailed. An individual R9.5 flow-cell was
used for each sample, providing ≥30x sequence coverage
data for each genome. The technical specifications of the
platform were summarized in Table 1.

Base-calling
Base-calling of ONT reads was performed with Albacore
version 1.7.4 and version 2.0.2 (ONT). Initial quality
control and data inspection were performed using
NanoOK [81]. For ONT, Albacore was used for base-
calling with standard parameters. For PacBio sequencing,
HGAP algorithm version 3 (RS_HGAP_Assembly.3) im-
plemented in PacBio SMRT portal version 2.3.0 was
used [82].

Quality assessment of raw reads
Quality statistics for raw fastq data were calculated using
PRINSEQ-lite, version 0.20.4 [67]. Reads were aligned
against the respective reference genome using BWA
(version 0.7.17) and sorted by coordinate with Samtools
(version 1.3.1). Long reads from PacBio and ONT were

Table 7 Strain selection and reference genomes

Species Isolate Clade Reference strain
(NCBI ID)

Reference assembly (RefSeq ID) Reference genome size

F. tularensis subsp. tularensis FSC237 AI SCHU S4 NC_006570.2 GCF_000008985.1 1,892,775

F. tularensis subsp. holarctica 08 T0013 B.4 OSU 18 NC_017463.1 GCF_000011405.1 1,895,727

12 T0050 B.6 FTNF002–00
NC_009749.1

GCF_000017785.1 1,890,909

12 T0052 B.6

12 T0058 B.12 FSC 200
NC_019551.1

GCF_000168775.2 1,894,157

Neubert et al. BMC Genomics          (2021) 22:822 Page 15 of 21



alternatively mapped with Minimap2 (version 2.16-
r922). We used QualiMap (version 2.2.1) to approximate
sequencing error rate and GC percentage with strain
FSC237 as described below. Substitutions and Indels
relative to the reference genome were computed from
CIGAR values of mapping results. The general error rate
was calculated as the total collected edit distance ratio to
the number of mapped bases in percent. GC percentage
of reads was computed from all alignments. Per-scaffold
average coverage and GC percentage of the reference ge-
nomes were calculated using the script pileup.sh from
BBMap (version 38.22).
To analyze the distribution of coverage across protein-

coding genes for each sequencing platform, we used the
bedtools package [83] and custom scripts written in Py-
thon and R. We converted BAM files to bedGraph for-
mat and intersected the bedGraph file with CDS regions
from the RefSeq genome annotation (as suggested by
Barbitoff [84]. We calculated coverage evenness score E
across genes as described in Mokry et al., 2010 [85].
We evaluated the GC bias of each platform from

sorted alignments using CollectGcBiasMetrics from Pic-
ard tools (version 2.14.0), which computes a relative
measure of sequence coverage by the reads with a cer-
tain GC content. We used local polynomial regression
fitting (loess) with ggplot2 to plot the distribution of GC
versus normalized coverage.

Subsampling of reads
For better comparability of sequencing platforms, se-
quencing data were subsampled from FSC237 to deter-
mine the minimum read depth required for complete

assemblies. Reads from MiSeq, HiSeq, Ion Torrent, Pac-
Bio, and ONT sequencers were randomly subsampled
using Seqtk to achieve a target coverage between 10x
and 100x to the reference genome calculated using the
mean sequence read length.

Curation of the final genome assembly
Based on the Sanger sequence as a reference genome,
assemblies were adjusted manually, applying Contiguator
[86] and Circulator [87] to obtain the final assemblies.
Remapping was done for all final genomes.

Short-read assembly
Paired and single-end reads from HiSeq, MiSeq, and
Ion Torrent were subsampled to a target coverage of
80x to the reference genome. Paired-end reads with
coverage of 80x from HiSeq and MiSeq were prepro-
cessed using Trimmomatic (version 0.39) [66]. Gentle
quality trimming and adapter clipping was applied (pa-
rameters ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keep-
BothReads LEADING:3 TRAILING:3 MINLEN:18 for
HiSeq and ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:2:
keep Both Reads LEADING:3 TRAILING:3 MINLEN:18
for MiSeq reads).
Paired-end reads were assembled using A5-miseq

pipeline, ABySS with kmer length of 96 and 128, IDBA,
MaSuRCA, MIRA, SGA, SPAdes, Tadpole, and Velve-
tOptimiser using parameters as given in Table 8.
Ion Torrent reads were processed with all assemblers in
single-end mode except for A5-miseq, which cannot be
applied for single-end reads.

Table 8 Assembler software for short-read assembly

Assembler Assembly method Version Release
date

Parameter

ABySS [28] Single k-mer De Bruijn graph 2.2.3 27/09/2019 -k 96 /
-k 128

A5-miseq [29] Automated pipeline including read cleaning, k-mer based error
correction, assembly with IDBA and misassembly correction

20,160,825 25/08/2016 default

IDBA [30] Accumulated De Bruijn graph with iteratively increased k-mer size 1.1.3 11/07/2016 --mink 20
--maxk 124

MaSuRCA [31] DeBruijn graph and Overlap-Layout-Consensus (OLC) 3.3.4 13/09/2019 GRAPH_KMER_SIZE = auto
cwgErrorRate = 0.25
CLOSE_GAPS = 1

MIRA [32] ‘High-quality alignments first’ contig building strategy with iterative
removal of technology-specific errors

V5rc2 26/02/2019 Default

SGA [33] String graph based on read pair overlaps (using FM index) 0.10.15 05/08/2016 -m 111
--min-branch-length 400

SPAdes [35] Multi-kmer De Bruijn graph 3.13.0 16/10/2018 --cov-cutoff auto
--careful

Tadpole [36] Single k-mer-based assembly with read extension optimized for
correctness

BBMap 35.85 16/08/2016 Default

VelvetOptimiser [88] Single k-mer De Bruijn graph with optimised N50 2.2.6
Velvet: 1.2.10

03/08/2017
05/07/2018

-s 97 -e 127 -x 10
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Hybrid assembly
Long-reads from PacBio and ONT were preprocessed
with three different approaches:

1. Subsampling: Reads were randomly subsampled
using Seqtk to 50x target depth and achieved an
average coverage of 30-40x of the reference
genome.

2. Correction: Subsampled reads were corrected using
Canu (1.8) with default options.

3. Filtering (10 kb): Long-reads were filtered using Filt-
long (v.0.2.0) with a minimum read length of 10
kbp keeping only the best reads up to 60 Mbp in
total.

All short-reads were subsampled to a target coverage
of 80x. Paired-end reads were preprocessed with Trim-
momatic, as mentioned. Hybrid assemblies with long-
read first approaches were computed using Canu and
Flye combined with assembly polishing with Pilon, for
Canu stopOnLowCoverage parameter was set to 5 and
genome size = 1.9 m. Flye (v. 2.4.2) was applied with de-
fault parameters and -g = 1.9 m. Short-reads were aligned
to the assembly with BWA (v. 0.7.17) and indexed using
Samtools (v. 1.9). Assemblies were polished with Pilon
(v. 1.23) using mapped short-reads (with parameters
“fix-all” and “mindepth 0.5”).
The short-read first approach was applied using

SPAdes (v. 3.13.0) with the parameters –careful and –
cov-cutoff auto and Unicycler (v. 0.4.7) with default
parameters.

Assembly comparison metrics
To evaluate the completeness and quality of genome as-
semblies, several metrics were used:

1. Contiguity: The N50 metric has been widely
adopted as a measure of assembly contiguity. The
length-weighted median contig size means that half
of the entire assembly is contained in contigs of
length with at least this value. As large-scale misas-
semblies might confound the result, the N50 value is

often corrected by breaking contigs at misassembled
sites. Thus obtained NA50 metrics might be normal-
ized by actual genome length to enable comparisons
among assemblies of genomes of different sizes
resulting in the NGA50 metric. We computed N50,
NA50, and NGA50 values using QUAST.

2. Completeness: The F. tularensis genome consists
of one circularized contig of 1.89 Mbp, which is also
true for the subspecies tularensis and holarctica.
We utilized Circulator (v. 1.5.5) [87] with Canu (v.
1.4) and SPAdes (v. 13.3.0) to circularize assemblies
using corrected reads obtained using Canu. We
consider an assembly as complete if it can be
circularized correctly. In our study, we postulated
that a circularized contig is at least 1.8 Mbp long.
We accessed the completeness of the gene set
measured by the percent of BUSCO (Universal
single-copy Ortholog) genes found in the assembly
in a complete or partial form.

3. General assembly metrics: We measured total
length, number of contigs with at least 500 bp
length, GC content, percentage of reference
genome covered, and number of genomic features
(genes, transcripts, CDS) in the assembly based on
an annotated list of gene positions in the reference
genome using QUAST (v. 5.0.2) [43]. Genomic
features correspond to all features (genes,
transcripts, CDS) in the reference annotation found
complete or partial in the assembly. Complete
Busco is the percentage of complete BUSCO
(Universal Single-Copy Ortholog) genes found in
the assembly.

4. Assembly accuracy: The number of assembly errors,
i.e., the number of misassemblies, local
misassemblies, misassembled contig length, and
mismatches, Indels, and Ns per 100 kbp were
calculated to the reference using QUAST (v. 5.0.2).
Misassemblies per 100 kbp were computed from the
number of misassemblies in a 100 kb aligned
sequence. Total errors per 100 kbp comprise
misassemblies, mismatches, and Indels. Additionally,
total assembly errors were estimated by mapping of

Table 9 Assembler software for hybrid assembly

Assembler Version Method Read error correction Assembly polishing

Canu +
Pilon

1.8/
1.23

Long-read first/ Best overlap graph (BOG) consensus of long-reads from
overlapping reads

Pilon

Flye +
Pilon

2.4.2/
1.23

Long-read first/Repeat graph None Pilon

SPAdes 3.13.0 Short-read first/ de Bruijn graph BayesHammer (Illumina);
hammer (Ion Torrent)

MismatchCorrector
(default: disabled)

Unicycler 0.4.7 Short-read first/ de Bruijn graph (SPAdes) and string graph of short-
read contigs and long-reads (Minasm)

BayesHammer (Illumina) Racon + Pilon

Neubert et al. BMC Genomics          (2021) 22:822 Page 17 of 21



paired-end Illumina HiSeq reads (200x coverage) to
the assembly using REAPR (v. 1.0.18) [89]. High-
quality SNPs and Insertions/ Deletions (programmed
as bounded by 20 exact, base-pair matches on both
sides) were computed to the reference genome using
DNAdiff (MUMmer 3.23) [90]. Assembly graphs
were inspected using Bandage [44].

Running time/ RAM comparison
Performance tests of assemblers were run on a server
with 32 cores (2x Intel Xeon CPU E5–2667 v2 Octa-
Core) and 387 GB RAM using eight cores (Table 9).

Variant calling
Traditionally whole genome sequences of Francisella
were analyzed with canSNPer [79] elucidating a detailed
analysis suitable here, although other methods provided
useful analysis methods, as described elsewhere [91].
Reads were mapped to the reference genome with BWA
(0.7.17). Alignment files were sorted by position and
indexed with Samtools (1.3.1). Variants (SNPs and short
Indels) were called using the mpileup command of Sam-
tools along with Bcftols.

Genomic analyses
IS elements were identified using the geneious annota-
tion and extraction [92]. The alignment was done with
geneious alignment with “global alignment-free end
gaps” and 65% similarity. The Geneious tree builder was
used in Takamura-Nei in Neighbor-Joining Tree mode
with no outgroup. The distance matrix was exported
and subjected to affinity propagation [93, 94].
FPI and Insertion sequences were located in assem-

blies and reference genomes using Blast with sequence
AY293579 and IS elements ISF 1–6 as query. Blast was
run with default options for IS and –qcov_hsp_perc 80
for FPI. A phylogenetic tree was computed using kSNP
3.0 with –k 12. Genomes were aligned using progressive
alignment of Mauve [95 ] . A genomic map with IS posi-
tions was computed using the R package genoPlotR
[96] with the Mauve alignment as a backbone filtering
blocks smaller than 5 kb. Genomes are ordered corre-
sponding to the neighbor-joining tree from kSNP.

Abbreviations
bp: Base pairs; BUSCO: Universal Single-Copy Ortholog; CDS: Coding
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DNAdiff: DNA difference = high-confidence SNPs and Indels of the assembly/
high-confidence SNPs and Indels of the reference genome; FPI: Francisella
pathogenicity island; Gb: Gigabases; GIndels: Genomic Insertion and Deletion;
GSNP: Genomic single nucleotide polymorphism; Indels: Insertions and
Deletions; IS, or ISFtu: Insertion sequences or insertion sequences of F.
tularensis; Kbp: Thousand base pairs; L50: L50 is the number of contigs
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polymorphism
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