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Abstract

Background: Sanghuangporus sanghuang is a well-known traditional medicinal mushroom associated with
mulberry. Despite the properties of this mushroom being known for many years, the regulatory mechanisms of
bioactive compound biosynthesis in this medicinal mushroom are still unclear. Lysine malonylation is a
posttranslational modification that has many critical functions in various aspects of cell metabolism. However, at
present we do not know its role in S. sanghuang. In this study, a global investigation of the lysine malonylome in S.
sanghuang was therefore carried out.

Results: In total, 714 malonyl modification sites were matched to 255 different proteins. The analysis indicated that
malonyl modifications were involved in a wide range of cellular functions and displayed a distinct subcellular
localization. Bioinformatics analysis indicated that malonylated proteins were engaged in different metabolic pathways,
including glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and the tricarboxylic acid (TCA) cycle.
Notably, a total of 26 enzymes related to triterpene and polysaccharide biosynthesis were found to be malonylated,
indicating an indispensable role of lysine malonylation in bioactive compound biosynthesis in S. sanghuang.

Conclusions: These findings suggest that malonylation is associated with many metabolic pathways, particularly the
metabolism of the bioactive compounds triterpene and polysaccharide. This paper represents the first comprehensive
survey of malonylation in S. sanghuang and provides important data for further study on the physiological function of
lysine malonylation in S. sanghuang and other medicinal mushrooms.
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Background
Sanghuangporus sanghuang (Hymenochaetaceae, Basid-
iomycota), an herbal mushroom, has been used for more
than 2000 years in China. It was previously mistaken for
Inonotus linteus or Inonotus baumii for a long time. In
2012, it was identified as a new species Inonotus
sanghuang and in 2016, it was renamed S. sanghuang [1, 2].
Extensive work has shown that S. sanghuang has a

diverse range of biological activities [3–6]. The active
compounds that play a major role in this medicinal

fungus are triterpenoids and polysaccharides. However,
the mechanism underlying the regulation of bioactive
compound biosynthesis in S. sanghuang is still unclear.
Posttranslational modifications (PTMs) play a pivotal

role in modulating different cellular pathways and dis-
ease processes, and over 400 distinct forms of PTMs
have been found [7, 8]. Lysine malonylation is an evolu-
tionarily conserved PTM. Malonylation has been re-
ported to use malonyl-CoA as a substrate in protein
modification [9]. However, we still know little about the
enzymes that regulate the malonylation state of proteins
[10]. To date, with advances in high-throughput experi-
mental techniques, thousands of malonylated proteins
have been discovered. These malonylated proteins have
been found to be located in chloroplasts, the mitochondria,
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the cytoplasm, and the nucleus [10–15], suggesting that
lysine malonylation is regulated in diverse metabolic
processes.
Although malonoyl modifications have been studied in

many species, few studies have focused on the mush-
room malonylome. Similar to the effects in other organ-
isms, such as mammals, plants, and bacteria [15, 16], we
speculated that lysine malonylation may affect various
metabolic processes in S. sanghuang. To demonstrate
this hypothesis, we conducted a proteomics study of
malonylated proteins in S. sanghuang. The results of this
study provide a comprehensive view of the regulation of
lysine malonylation in a wide range of biological processes,
particularly in the biosynthesis of bioactive metabolites
and secondary metabolites.

Methods
Fungal strain
The S. sanghuang CGMCC NO.21068 mycelia used in
this study were isolated from fruit bodies collected from
the mountainous area of Anshun city, Guizhou Province,
China. The specimen was deposited in the Mycological
Herbarium, Qingdao Agricultural University (HMQAU),
Qingdao. In this study, the strain was stored at 4 °C in
solid medium slants composed of 20 g/l bran, 30 g/l
corn, 30 g/l glucose (catalogue #A501991, Sangon
Biotech, China), 1 g/l KH2PO4 (catalogue #A100781,
Sangon Biotech, China), 0.5 g/l MgSO4.7H2O (catalogue
#A500864, Sangon Biotech, China), 4 g/l yeast extract
(catalogue #A100850, Sangon Biotech, China), 3 g/l pep-
tone (catalogue #A505247, Sangon Biotech, China) and
20 g/l agar (catalogue #A100637, Sangon Biotech,
China). The strain was incubated on liquid medium (the
medium was prepared as the solid medium mentioned-
above but without the agar) at 26 °C and 150 rpm for 7
d. Then, the fermentation broth was filtered to collect
the mycelia, flash frozen in liquid nitrogen, and stored at
− 80 °C to be used for lysine malonylation analysis.
Morphological and molecular identification of the S.

sanghuang strain was performed according to a previous
study. The microscopic characteristics were studied
under a Zeiss/Axioscope A1 microscope at magnifica-
tions of up to 1000×. The macroscopic and microscopic
morphological characteristics were consistent with
previous studies [17–19]. Phylogenetic analysis based on
ITS sequence also confirmed that the strain was S.
sanghuang [19, 20].

Protein extraction and trypsin digestion
Protein extraction was performed as previously described
[7, 10]. Briefly, the tissue samples were ground to powder
in a precooled mortar with liquid nitrogen. A fourfold vol-
ume of extraction buffer containing 10mM dithiothreitol
(catalogue #D9163-5G, Sigma-Aldrich, USA), 1% protease

inhibitor (catalogue #524633-1ML, Calbiochem, Merck,
USA), 3 μM trichostatin A (catalogue #58880–19-6,
Sigma-Aldrich, USA), and 50mM nicotinamide (catalogue
#N3376-100 g, Sigma-Aldrich, USA) was added and the
cells were lysed by sonication using a ultrasonic processor
(catalogue #JY92-N, Scientz, Ningbo, China) as previously
described [10]. Equivalent volumes of Tris-equilibrated
phenol were added. After centrifugation at 5500×g and
4 °C for 10min (catalogue #5424R, Eppendorf, Germany),
the supernatants were collected and sedimented overnight
with a 5-fold volume of 0.1M ammonium acetate
(catalogue #73594, Sigma-Aldrich, USA), and the protein
precipitate was washed with methanol (catalogue #34860,
Sigma-Aldrich, USA) and acetone (catalogue #270725,
Sigma-Aldrich, USA). Then, 8M urea (catalogue
#V900119-500G, Sigma-Aldrich, USA) was redissolved for
precipitation. The protein concentration was measured
using bicinchoninic acid (BCA) kits (catalogue #P0011–1,
Beyotime Biotechnology, China). Finally, the extracted pro-
teins were digested by trypsin (catalogue #V5111, Promega,
Madison, USA) as according to previously described proce-
dures [7, 10].

HPLC fractionation and affinity enrichment
High-pH reverse HPLC fractionation was used for pep-
tides on an Agilent 300 Extend C18 column (5 μm, 4.6
mm, 250mm) (Agilent, Santa Clara, USA). The operation
was performed as follows: sterilized peptide fractions were
isolated in a gradient between 8 and 32% acetonitrile
(catalogue #A998–4, Fisher Chemical, USA) (pH 9) for 60
min. They were merged into 4 fractions and freeze-dried
under vacuum. The polypeptides were dissolved in IP buf-
fer (100mM NaCl (catalogue #S3014, Sigma-Aldrich,
USA), 1 mM EDTA (catalogue #V900081-500 g, Sigma-
Aldrich, USA), 50mM Tris-HCl (catalogue #V900483-
500G, Sigma-Aldrich, USA), and 0.5% NP-40 (catalogue
#18896, Sigma-Aldrich, USA), pH 8.0) [10]. The polypep-
tides were incubated with pan anti-malonyllysine antibody
conjugated agarose beads (catalogue #PTM-904, PTM
Biotech, China) at 4 °C overnight. Finally, the bound
peptides on the agarose beads were eluted three
times with 0.1% trifluoroacetic acid (catalogue
#58880–19-6, Sigma-Aldrich, USA), followed by
desalting using C18 ZipTips (catalogue #Z720046,
Merck Millipore, USA) [21–23].

LC-MS/MS analysis
The obtained peptides were dissolved in 0.1% formic
acid (catalogue #56302-50ML-F, Sigma-Aldrich, USA)
and separated by ultrahigh-performance liquid chroma-
tography (UHPLC) using an EASY-nLC 1000 (Thermo
Scientific, USA). Mobile phase A consisted of 0.1% for-
mic acid (catalogue #56302-50ML-F, Sigma-Aldrich,
USA) and 2% acetonitrile (catalogue #A998–4, Fisher
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Chemical, USA). Mobile phase B consisted of 0.1% for-
mic acid and 90% acetonitrile. The liquid phase gradient
was set as follows: 0–20 min, 7–25% B; 20–34min, 25–
38% B; 34–37min, 38–80% B; and 37–40 min, 80% B,
with a flow rate of 500 nL/min.
After HPLC separation, the peptides were injected into

a nanospray ionization (NSI) ion source for ionization
and mass spectrometry (MS) analysis by a Q Exactive
Plus instrument (Thermo Fisher Scientific, USA) [10].
The ion source voltage was set to 2.2 kV. The primary
MS scanning range was 350–1800 m/z, and the second-
ary MS scanning range was 100.0 m/z. Data collection
was performed using the data-dependent acquisition
(DDA) procedure. The automatic gain control (AGC)
was set to 5e4 [24], The dynamic rejection time was set
to 15 s to avoid repeated scanning, the parameter thresh-
old was set to 5e3 ions/s, and the maximum injection
time was set to 200 ms.

Database search
The obtained MS/MS data were analysed with Max-
Quant software [25]. The S. sanghuang database was
used (transcriptome, 23,290 sequences). Reverse libraries
were added to calculate the false discovery rate (FDR),
and contamination libraries were added to eliminate the
effects of contaminating proteins. Trypsin/P was applied
as the cleavage enzyme and the number of missed cleav-
ages was set to 4 [10]. The first search and main search
primary parent ion mass error tolerance was set to 20
ppm and 5 ppm, respectively. Cysteine alkylation was set
as the fixed modification, and the variable modifications
were acetylation of the protein N-terminus, deamidation
of aspartyl/glutamyl groups, and malonylation of lysine.
All the FDRs were set to 1% [26].

Bioinformatics analyses
The Gene Ontology (GO) annotations of the proteins
were classified into the biological process, cellular com-
ponent, and molecular function categories [27]. The GO
annotations of the malonylated proteins were from the
UniProt-Gene Ontology Annotation (GOA) database
(http://www.ebi.ac.uk/GOA/) [28]. InterProScan was
used to annotate the domain functional domain descrip-
tions of the malonylated proteins [29, 30]. The metabolic
pathways associated with the modified proteins were
analysed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (https://www.genome.jp/
kegg/). The subcellular localizations of the identified
proteins were annotated using WoLF PSORT [31]. The
significance of malonylated protein enrichment was
measured by Fisher’s exact (two-sided) test and p value
< 0.05 was considered to be significant [32–36]. To in-
vestigate the protein-protein interaction (PPI) network,
all the modified proteins were searched against the

STRING database [37]. Then, the visualization of the
PPI network from STRING was presented with the R
package “networkD3” [38, 39].

Results
Proteome-scale analysis of malonylated proteins in S.
sanghuang
In this project, a range of technologies, such as HPLC,
malonylation peptide enrichment and MS-based proteo-
mics technologies, were combined for qualitative proteo-
mics of malonylation in S. sanghuang (Fig. 1a). The
results showed that the peptide score was between − 10
and 10 (Fig. 1b). The tolerance of the peptides was in a
reasonable range. The distribution of the identified pep-
tide lengths was examined, and the lengths of most pep-
tides were between 7 and 22 (Fig. 1c), meeting the
requirements of proteomic analysis. The MS results of
malonylated peptides are summarized in Additional file
1: Fig. S1. Finally, 713 malonyl-modified sites matched
to 255 different proteins were identified in S. sanghuang
(Additional file 2: Table S1). Among them, many were
related to triterpene synthesis. Farnesyl pyrophosphate
synthases (FPPs), which are are pivotal enzymes in the
main pathway of triterpene synthesis, were found to be
malonylated, indicating that lysine malonylation was
involved in bioactive compound biosynthesis.

Pattern analysis of malonylated sites
To evaluate the distribution of malonylation sites in S.
sanghuang, the number of identified modification sites
was calculated for each protein. As shown in Fig. 2a,
47% of the proteins had one malonylation site, while
only 18, 7, 12, 3, and 13% of the proteins contained 2, 3,
4, 5, and 6 or more modification sites, respectively. It
has been documented that modification is prioritized at
specific lysine sites (Additional file 2: Table S3) [10].
Therefore, the compositional frequencies of the amino
acids surrounding malonyl lysine were examined. As
shown in Fig. 2b, lysine (K) had the highest frequencies
in the − 10 to + 10 position, whereas arginine (R) and
glutamate (E) had the lowest frequencies. Hence, pro-
teins with this group are the preferred substrates for
malonyltransferases in S. sanghuang. Consistent with the
results of the motif enrichment heatmap (Fig. 2b), only
one motif was detected (Fig. 2c,d). To elucidate the sec-
ondary structure of proteins and the correlation between
modified lysines, the secondary structures of all the mal-
onylated proteins in S. sanghuang were examined
(Fig. 2e). More malonylation sites were located more in
the coiled-coil regions (p = 0.18) than in the α-helical
(p = 0.01) and β-strand (p = 0.48) regions, suggesting that
malonylation may favour the disordered structures of S.
sanghuang. In addition, we assessed the surface accessi-
bility of malonylated lysine sites and found that 39.62%
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of the unmodified lysine residues were located on the
protein surface, compared to 39.54% of the modified ly-
sine sites (Fig. 2f). As such, the protein’s surface accessi-
bility may be influenced by lysine malonylation.

Functional annotation and cellular localization of
malonylated proteins in S. sanghuang
For better comprehension of the malonylated proteins in
S. sanghuang and their corresponding biological pro-
cesses and molecular functions, we annotated and classi-
fied the identified proteins. GO analysis showed that the
malonylated proteins had extensive activity in molecular
functions and biological processes in S. sanghuang. The
most abundant group of malonylated proteins in the bio-
logical process category consisted of enzymes related to
metabolism (53%) (Fig. 3a). The majority of the malony-
lated proteins were associated with organocyclic com-
pound binding (15%), heterocyclic compound binding
(15%) and structural constituent of ribosome (10%)
within the molecular functional classification (Fig. 3b).
Characterization of the subcellular localization of the
malonylated proteins showed that the modified proteins
were found in the cytoplasm (36%), mitochondria (31%),
and nucleus (21%) (Fig. 3c). These observations show
that malonylated proteins have multiple functions and
are widely present in S. sanghuang.

Functional enrichment analysis of malonylated proteins
To further analyse the proteins and their functions, we
performed functional enrichment analysis of the obtained
malonylome by GO, KEGG pathway and protein domain
analyses (Additional file 2: Table S5, Additional file 2:
Table S6). Proteins associated with structural components
of the ribosome were highly enriched by functional ana-
lysis of GO terms (Additional file 2: Table S4). Based on
GO cellular component classification, proteins located in
the ribosomal subunit, ribosome, large ribosomal subunit,
small ribosomal subunit, and cytosol were more likely to
be malonylated (Additional file 1: Fig. S2). Domain enrich-
ment studies indicated that these proteins were the core
histone H2A/H2B/H3/H4, proteasome, beta-ketoacyl syn-
thase, 1-cys peroxiredoxin, acyl transferase domain, isoci-
trate/isopropyl malate dehydrogenase, and oxidoreductase
flavin adenine dinucleotide (FAD)-binding domain pro-
teins (Additional file 1: Fig. S3). These enriched domains
play a crucial role in glycolysis, polysaccharide synthesis
and the tricarboxylic acid (TCA) cycle in S. sanghuang. To
probe the process of malonylation regulation, we further
performed enrichment analysis of proteins corresponding
to malonylation modification sites in KEGG pathways
(Fig. 4). Several pathways of the enriched proteins in the
ribosome, glucuronide and dicarboxylic acid metabolism,
TCA cycle, glycolysis/gluconeogenesis and pyruvate me-
tabolism pathways were enriched. In conclusion,

Fig. 1 Analysis of malonylated sites in S. sanghuang. a Technology roadmap in this study. b Mass distribution of error for all malonyl peptides c
Length distribution of modified peptides
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malonylated proteins were enriched in several types of
proteins and pathways, suggesting a pivotal role of lysine
malonylation in the metabolism of S. sanghuang.

PPI network of malonylated proteins in S. sanghuang
To determine how the identified proteins were associ-
ated with multiple pathways, a PPI network was con-
structed. Ninety proteins were identified in the PPI
database (Fig. 5, Additional file 2: Table S7), presenting
a global view of how the identified malonyl proteins are
involved in multiple pathways in S. sanghuang. Analysis
of the STRING PPI network with Cytoscape identified
three strongly correlated clusters of malonylated pro-
teins, including those associated with ribosomes, meta-
bolic pathways, and the biosynthesis of secondary
metabolites in S. sanghuang. Overall, we conclude that
malonylation is a critical PTM for proteins in S. san-
ghuang and helps in interactions and coordination with
diverse pathways.

Malonylated proteins associated with the biosynthesis of
bioactive compounds in S. sanghuang
Malonylated proteins related to ribosomes, glucuronide
and dicarboxylic acid metabolism, glycolysis/gluconeo-
genesis, the TCA cycle, methane metabolism, oxidative
phosphorylation, and pyruvate metabolism were greatly
enriched (Fig. 4). These findings suggested that the mal-
onylation of lysine may be essential in the biosynthesis
of bioactive compounds in S. sanghuang. To further con-
firm these findings, we analysed malonylated proteins as-
sociated with triterpene and polysaccharide biosynthesis
in S. sanghuang. Consistent with these hypotheses, a
total of 26 enzymes associated with triterpene and poly-
saccharide biosynthesis were found to be malonylated
(Fig. 6, Additional file 2: Table S8). As shown in Fig. 6, a
large number of enzymes were affected by malonylation
in glycolysis and the TCA cycle, suggesting that malonyla-
tion may be associated with multiple levels of intracellular
metabolism. Furthermore, our results also showed that 51
malonyl-modified proteins detected on ribosomes, such as

Fig. 2 Characterization of malonylation sites. a Pie chart of the percentage and number of malonylated residues in the protein. b The frequency
heat map of amino acid composition around malonylation. c Conservatism of malonylation sites. d Number of malonylation motif peptides. K
indicates modified lysine sites and * denotes random amino acid sites. e Predictive analysis of the secondary structure of malonyl proteins. The Y-
axis indicates the average probability of secondary structure, and the larger the value of Y, the higher the probability of this secondary structure
configuration. f Peptides surface accessibility of malonylation sites
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Fig. 3 Functional classification of malonylated proteins in S. sanghuang. Each pie chart shows the percentage of malonylated proteins in each
category. The GO annotation classifies proteins according to their biological processes and molecular functions. a Classification of malonylated
proteins based on biological process b Classification of malonylated proteins based on molecular function. c Subcellular localization of the
malonylated proteins

Fig. 4 Enrichment bubble plot of S. sanghuang proteins corresponding to modification sites in the KEGG pathways
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Fig. 5 Interaction network of the identified proteins in S. sanghuang

Fig. 6 Biosynthesis of triterpenoid and polysaccharide in S. sanghuang. Malonylated proteins are highlighted in red. Additional file 2: Table S2
contains the enzyme annotation
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ribosomal proteins L24, L13a, and S3, were closely linked
to bioactive functions (Fig. 7).

Discussion
As a widely used medicinal fungus, S. sanghuang has
been known for many years worldwide. It has been re-
ported that S. sanghuang is capable of producing many
active substances, such as terpenes, flavonoids, and poly-
saccharides [5, 40–42]. However, the regulatory mechan-
ism of the biosynthesis of these active compounds is still
unclear. Lysine malonylation exists widely in eukaryotes
and prokaryotes and has many metabolic regulatory
functions. To investigate the role of lysine malonylation
in the regulation of bioactive compound metabolism, we
performed the first proteomic survey of lysine malonyla-
tion in S. sanghuang.
The metabolic processes of bioactive substances are

related to secondary metabolism. Our malonyl analysis
revealed a great number of malonylated proteins partici-
pating in secondary metabolism (Fig. 5), demonstrating
the essential role of lysine malonylation in all these pro-
cesses. Other types of PTMs such as acetylation and succi-
nylation also participate in secondary metabolic processes
in fungi [7, 43]. Similar to S. sanghuang, Ganoderma luci-
dum is also a widely used medicinal mushrooms world-
wide [43]. It has been well documented that a large
number of succinylated proteins are involved in the sec-
ondary metabolic process in G. lucidum [43]. Previous
studies have shown that the secondary metabolism of

Fusarium graminearum is regulated by acetylation [7].
These studies suggest that the secondary metabolic pro-
cesses associated with the biosynthesis of bioactive sub-
stances are regulated by multiple protein modifications.
Polysaccharides are among the main bioactive sub-

stances produced by medicinal mushrooms [43]. In G.
lucidum, 9 kinds of enzymes associated with polysac-
charide biosynthesis have been found [44]. Among them,
phosphoglucomutase (PGM) and UDP-glucose 6-
dehydrogenase (UGDH) are succinyl-modified proteins
in G. lucidum [43]. As shown in Fig. 6, PGM and UDP-
glucosepyrophosphorylase (UGPG) were malonylated in
S. sanghuang. To date, more than 700 kinds of medicinal
mushrooms have been shown to produce bioactive poly-
saccharides [45]. These observations suggest that mul-
tiple PTMs, including malonylation and succinylation,
participate in the regulation of polysaccharide biosyn-
thesis in medicinal mushrooms.
Another major bioactive substance produced by S.

sanghuang was triterpenoids. Previous studies have
proven that triterpenoids are biosynthesized by the mev-
alonic acid (MVA) pathway [44]. As shown in Fig. 6, the
first enzyme in the MVA pathway is acetyl-CoA acetyl-
transferase (ACAT), which converts acetyl-CoA to
acetoacetyl-CoA. FPPs are crucial enzymes in the MVA
pathway of triterpene metabolism [46]. Further modifi-
cation of terpenes involves the introduction of acyl, aryl,
or glycosyl groups, usually starting with oxidation cata-
lysed by cytochrome P450 monooxygenases (P450s, also

Fig. 7 Malonylated modified sites on ribosomal proteins in S. sanghuang. The malonylated modified sites were highlighted in red
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known as CYPs). P450s are ubiquitous in nature and are
involved in fundamental biological pathways such as ter-
pene biosynthesis [47–50]. All these key enzymes were
detected by malonyl enrichment (Fig. 6). Thus, lysine
malonylation plays a multilevel regulatory role in the
biosynthesis of secondary metabolism enzymes.
Furthermore, different types of ribosomal proteins

may have different biological activities. Ribosomal pro-
tein S5 (RPS5) is closely associated with liver fibrosis in
Sprague-Dawley rats [51]. RPS13a plays a role in plant
defence against Verticillium dahliae infection [52]. RPS3
protected cells in the substantia nigra against MPTP-
induced oxidative stress in a mouse model of Parkinson’s
disease [53] and RPL24 had time and dose-dependent
effects on HepG-2 cell growth inhibition [54]. In
addition, ribosomal synthesis and posttranslationally
modified peptides (RiPPs) are an important family of
bioactive products [55]. As shown in Fig. 7, a total of 51
ribosomal proteins were modified by malonylation.
These findings all support the irreplaceable role of
protein malonylation in the synthesis of bioactive
substances.

Conclusions
In this study, we found 714 lysine malonyl-modified resi-
dues in 255 proteins in S. sanghuang.
Malonylated proteins are involved in a variety of bio-

logical processes, especially in secondary metabolic path-
ways. Further analysis showed that a large number of
enzymes involved in the biosynthesis of polysaccharides
and triterpenoids were modified by malonylation. This
research widens the scope of protein malonylation and
provides a rich resource for exploring the physiological
regulation of protein malonylation in S. sanghuang.
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