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Abstract

Background: Size of reference population is a crucial factor affecting the accuracy of prediction of the genomic
estimated breeding value (GEBV). There are few studies in beef cattle that have compared accuracies achieved
using real data to that achieved with simulated data and deterministic predictions. Thus, extent to which traits of
interest affect accuracy of genomic prediction in Japanese Black cattle remains obscure. This study aimed to
explore the size of reference population for expected accuracy of genomic prediction for simulated and carcass
traits in Japanese Black cattle using a large amount of samples.

Results: A simulation analysis showed that heritability and size of reference population substantially impacted the
accuracy of GEBV, whereas the number of quantitative trait loci did not. The estimated numbers of independent
chromosome segments (Me) and the related weighting factor (w) derived from simulation results and a maximum
likelihood (ML) approach were 1900–3900 and 1, respectively. The expected accuracy for trait with heritability of
0.1–0.5 fitted well with empirical values when the reference population comprised > 5000 animals. The heritability
for carcass traits was estimated to be 0.29–0.41 and the accuracy of GEBVs was relatively consistent with simulation
results. When the reference population comprised 7000–11,000 animals, the accuracy of GEBV for carcass traits can
range 0.73–0.79, which is comparable to estimated breeding value obtained in the progeny test.

Conclusion: Our simulation analysis demonstrated that the expected accuracy of GEBV for a polygenic trait with
low-to-moderate heritability could be practical in Japanese Black cattle population. For carcass traits, a total of
7000–11,000 animals can be a sufficient size of reference population for genomic prediction.
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Background
Genomic evaluation in beef cattle breeds have been
implemented worldwide using high-density single
nucleotide polymorphism (SNP) arrays [1–4], and more
accurate prediction of genomic estimated breeding
values (GEBVs) can promote genetic improvement in
these populations. In general, the accuracy of genomic
prediction of GEBVs depends on the extent of linkage
disequilibrium (LD) between quantitative trait loci
(QTLs) and SNPs on high-density SNP arrays in each
breed [5], because the SNP arrays are designed to
function for several breeds [6–10]. Thus, accuracy of
genomic prediction is important to evaluate in target
breed populations.
Japanese Black cattle comprise the major source of

beef in Japan, and they have traditionally been bred with
a focus on carcass traits, such as fat marbling. The inten-
sive use of a few elite bulls over the years has led to a re-
duction in genetic diversity within the breed, and
Nomura et al. [11] estimated an effective population size
(Ne) of 17.2 during 1997 using the pedigree information.
In contrast, the Ne was much larger in other breeds. For
example, one study estimated Ne of Angus and Hereford
as being 207 and 185, respectively [12], and another esti-
mated those of Angus and Charolais as being 207 and
285, respectively [13]. From the perspective of Ne, the
genetic structure of Japanese Black cattle is quite differ-
ent from that of other beef cattle breeds; thus, the extent
of the LD between QTLs and SNPs in Japanese Black
cattle might differ from that of other cattle breeds.
The effectiveness of genomic evaluation for carcass

traits [14, 15], the fatty acid composition of meat [16], and
feed efficiency traits [17] has been assessed in Japanese
Black cattle. For example, Takeda et al. [17] conducted a
genomic evaluation using the genotypes of 300 bulls and
the phenotypes of their progenies as a reference popula-
tion and found moderate prediction reliability for feed
efficiency traits. Onogi et al. [15] used various sizes and
compositions for the reference population and concluded
that the accuracy of genomic prediction of carcass traits
could be improved by expanding the genotyped popula-
tion. However, the number of animals with genotypes and
trait variation used in these studies is limited. Uemoto
et al. [18] conducted a genomic evaluation using simulated
data accounting for the extent of LD between QTL and
SNPs in Japanese Black cattle and found that size of refer-
ence population was the most important factor affecting
accuracy of genomic prediction. A simulation study con-
ducted by Takeda et al. [17] included reference popula-
tions of different sizes with a genetic structure mimicking
the Ne of Japanese Black cattle. They also found that the
size of the reference population noticeably influenced
accuracy of genomic prediction. However, verification
using real data has not been performed.

A study of genomic evaluation on a larger scale than
previous related studies may lead to better understand-
ing on the impact of the size of reference population on
accuracy of GEBV for not only carcass traits that have
been emphasized up to the present but also simulated
traits. The finding might offer an insight into making de-
cisions regarding the size of reference population in
other numerically small breeds. In the current study,
more than 14,000 samples from various regions in Japan
were analyzed. We aimed to explore the size of the ref-
erence population for expected accuracy of GEBVs for
simulated and real data in Japanese Black cattle. Firstly,
we conducted a simulation analysis based on a cross-
validation design using real genotypes to account for the
extent of LD in Japanese Black cattle. In second, we em-
pirically determined the expected accuracy of the GEBV
using a maximum likelihood (ML) approach based on
the simulation results. In third, we then investigated dif-
ferences of accuracy between the expected and actual
carcass traits in the same population.

Methods
Animals and carcass traits
Approval from the Animal Care and Use Committee
was not obtained for this study, because all tissue sam-
ples for DNA extraction and carcass data were collected
from cattle that had been shipped to slaughterhouses in
Japan where were cared for and slaughtered according
to Japanese animal welfare regulations.
We obtained data from 14,821 cattle that had been fat-

tened in the Japanese prefectures of Hokkaido, Aomori,
Iwate, Miyagi, Akita, Fukushima, Gifu, Tottori, Shimane,
Okayama, Hiroshima, Yamaguchi, Saga, Nagasaki, Oita,
Miyazaki, Kagoshima and Okinawa between 2007 and
2020. The mean age (± standard deviation [SD]) at the
time of slaughter was 28.9 ± 1.8months. Carcass weight
(CW, kg) was defined as the sum of the left and right sides
of chilled carcasses. The rib-eye area (REA, cm2) and sub-
cutaneous fat thickness (SFT, cm) were measured at the
sixth and seventh rib sections. The rib thickness (RT, cm)
was measured at the midpoint of the seventh rib section.
The beef marbling score, which was ranked from 1 (poor)
to 12 (abundant), was measured at the surface of the long-
issimus thoracis muscle between the sixth and seventh
ribs according to the Japan Meat Grading Association
[19]. We transformed beef marbling scores (BMS) from 1
to 12, to 0–5 using the conversion criteria described by
Oyama [20] to ensure normal distribution.

Genotypic data, data editing, and extent of LD
Genomic DNA samples were extracted from perirenal
adipose tissue using the automated nucleic acid isolation
systems NA-3000 and GENE PREP STAR PI-480 (Kur-
abo, Osaka, Japan). The DNA of all samples genotyped
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using the GeneSeek Genomic Profiler: GGP BovineLD
v4.0, which contained 30,105 SNPs (Illumina, San Diego,
CA, USA) is described herein as SNPLD. We clustered
SNPs using the standard cluster file distributed by Illu-
mina Inc. and called genotypes using GenomeStudio
version 2.0.5 (Illumina, San Diego, CA, USA). We ex-
cluded animals with call rate of individual < 0.95, which
left 14,783 animals. The SNP positions in the array were
updated to the ARS-UCD 1.2 assembly using the UCSC
Genome Browser tool (http://hgdownload.soe.ucsc.edu/
goldenPath/bosTau9/liftOver/), and the missing geno-
type of SNPLD was then imputed using Beagle 5.1 soft-
ware [21]. The SNPLD were imputed into BovineHD
BeadsChip (Illumina) using Beagle 5.1 software [20]
based on the ARS-UCD 1.2 assembly. The reference
population for imputation comprised the BovineHD
genotypes of 1368 Japanese Black cattle [22]. These
imputed SNPs are referred to herein as SNPHD and were
included in the simulation analysis.
We cross-validated simulated and actual carcass traits

on the same level as the size of reference population by
firstly editing the structure of animals and the genotypic
data based on genetic relatedness and carcass records.
We assessed the quality control of SNPLD and SNPHD

using PLINK software [23], then excluded SNPs with sex
chromosomes, a minor allele frequency (MAF) < 0.01,
call rate of SNP < 0.95, and Hardy-Weinberg equilibrium
p < 0.001. To avoid having close relatives and to reduce
genetic bias within the population, animals with large
off-diagonal elements in the genomic relationship matrix
(GRM) using SNPLD were removed using GCTA soft-
ware [24]. The cut-off value for off-diagonal elements
was set at 0.4, and 12,619 animals remained. Among
carcass traits, animals with at least one trait with a value
that was mean ± 3 SDs were removed. Thereafter, 12,328
animals with 18,903 SNPs on SNPLD and 387,653 SNPs
on SNPHD remained, and Table 1 shows the distribution
of these samples in feedlots by prefecture.
We estimated the LD value (r2), which is a measure of

LD, using the SNPHD of the 12,328 animals, for all pairs
of SNPs < 1Mb apart using PLINK software [23].
Average r2 values for a given intermarker distance, with
marker distances grouped in 50 kbp bins, were estimated
for each autosome. The mean r2 values among chromo-
somes were then calculated.

GBLUP evaluation
We predicted GEBVs by the genomic best linear un-
biased (GBLUP) method using the following model:

y ¼ 1nμþ Xgþ e; ð1Þ

where y is a vector of phenotypic values, 1n is a vector
of n, which is the number of animals, μ is the mean, g is

the genomic breeding value with g � Nð0;Gσ2gÞ, X is the

design matrix for g, e is the residual effect with e � Nð0
; Iσ2eÞ ; σ2g and σ2e are the additive genetic and residual

variances, respectively, I is an identity matrix, and G is
the GRM always based on the SNPLD generated by the
following formula [25]:

G ¼ ZZ0Pm
j¼12pj 1−pj

� � ;

where pj is the frequency of the second allele (A2) of the
j-th SNP and m is the number of SNPLD (namely
18,903). The elements of Z were obtained as follows:

zij ¼ wij−2pj;

where wij is the number of the second allele of animal i
at the j-th SNP, which is coded as 0, 1, or 2 for the
homozygote (A1A1), heterozygote (A1A2), or other
homozygote (A2A2), respectively. When calculating the
GRM, we added 0.00001 to the diagonal elements of
each one to avoid near singularity problems. We pre-
dicted the GEBVs by incorporating the calculated GRM
with SNPLD using ASReml 4.1 software [26].

Simulation analysis
We simulated the true breeding value (TBV) and
phenotypes under different scenarios by varying QTL

Table 1 Distribution of samples by prefecture for feedlot

Prefecture Animals (n) Ratio (%)

Gifu 2358 19.1%

Hiroshima 1404 11.4%

Kagoshima 1017 8.2%

Miyagi 881 7.1%

Tottori 871 7.1%

Iwate 836 6.8%

Aomori 734 6.0%

Akita 610 4.9%

Okayama 567 4.6%

Hokkaido 514 4.2%

Miyazaki 445 3.6%

Shimane 436 3.5%

Fukushima 372 3.0%

Okinawa 357 2.9%

Yamaguchi 332 2.7%

Nagasaki 293 2.4%

Oita 256 2.1%

Saga 45 0.4%

Total 12,328 100%
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heritability and the number of QTLs. To account for the
extent of the LD between QTL and SNPs in Japanese
Black cattle, SNPs with MAF > 0.05 in the SNPHD but
not in the SNPLD, were randomly selected from all auto-
somal chromosomes and were considered as candidate
QTLs. Almost all complex traits in cattle are generally
assumed to have polygenic effects, and we set QTLs of
100, 500, or 2000 and three QTL heritabilities of 0.1, 0.3,
or 0.5. The QTL effects were generated from a gamma
distribution with shape and scale parameters of 0.4 and
1.66 [27], respectively, and signs of QTL effects were
randomly selected. The phenotypic value represented
the sum of the total QTL effects and the residual effect
as follows:

yi ¼
XnQTL

j¼1
wijβ j þ εi;

where nQTL is the number of QTLs, wij is the SNP
genotype for the j-th QTL of animal i, which is coded as
0, 1, or 2 for homozygote, heterozygote, or other homo-
zygote, respectively, βj is the allele substitution effect of
the j-th QTL, εi is the residual effect generated from Nð
0; σ2gð1=h2−1ÞÞ of animal i,

PnQTL
j¼1 wijβ j is the TBV, σ2g is

the total genetic variance of TBV, and h2 is the QTL
heritability. Phenotypic variance was set to 100, and the
total QTL variance was adjusted to 100 × h2 in all
scenarios.
A reference test validation study was replicated 20

times under each scenario. We divided 12,328 animals
into reference and test populations as follows. We ran-
domly selected 1000 animals as the test population from
these 12,328 animals, then 1000, 2000, 3000, 5000, 7000,
9000, and 11,000 animals were randomly selected as a
reference population. Animals in a smaller reference
population are always included in a larger population.
The phenotypes of the animals in the test population
were masked in each replicate, and the GEBV of the test
population was predicted using model (1). The genetic
and residual variances were fixed to predict the GEBV in
each replicate, and the setting variances in each simula-
tion scenario were used. After predicting the GEBV, the
accuracy of GEBV for simulated traits was determined
using Pearson’s correlation coefficients between TBVs
and GEBVs. The mean ± SD of 20 replicates was ob-
tained for each scenario and population size.

Expected accuracy of GEBV from simulated data
A limitation of the present study is that GEBV could be
predicted using a reference population of up to 11,000
animals. To estimate the accuracy of GEBVs for the
simulated traits using a larger reference population, we
utilized the formula suggested by Erbe et al. [28] and
modified from Daetwyler et al. [28] as follows:

r ¼ w∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nh2

Nh2 þMe

s
; ð2Þ

where r is the correlation coefficient between TBV and
GEBV (accuracy of GEBV), w is the maximum accuracy
of GEBV when the size of reference population is infinite
at 0 ≤w ≤ 1, N is the number of animals in the reference
population, and h2 is the heritability of the trait, and Me

is the number of independently segregating chromosome
segments that depends on the effective population size
of the target population [29]. This model provided a per-
fect fit for the realized accuracy of genomic prediction in
a dairy cattle population [28].
The accuracy of GEBV (r) in the i-th size of reference

population in the j-th replicate in the simulation study
was defined as rij, and rij was assumed to be in normal
distribution as follows:

rij � N E rið Þ; σ2i
� �

;

where E(ri) and σ2
i are respectively, the predicted value

and variance of rij in the i-th size of reference popula-
tion. We calculated the most appropriate estimates of w
and Me using the log-likelihood function as follows:

L w;Með Þ∝−
Xnpop

i¼1

Xnrep

j¼1

rij−E rið Þ� �2

2σ2i
;

where npop is 7, which is the number of different size of
reference population, nrep is the number of replicates,
namely 20, rij is the calculated accuracy of GEBVs ob-
tained in the i-th size of reference population in the j-th
replicate in each simulation scenario, and E(ri) is the
predicted accuracy of GEBV determined by using model
(2) and the empirical data (the setting values of N and
h2 in each scenario). We assumed that σ2i was the empir-
ical variance in 20 replicated values within the i-th size
of reference population in each scenario. The two pa-
rameters (w and Me) used in E(ri) were empirically de-
termined in each scenario using the ML approach under
the restriction of w (0 ≤w ≤ 1) using the optim function
in R software (http://www.r-project.org) for a two-
dimensional search.

Real data analysis
The variance components of carcass traits were esti-
mated by ASReml 4.1 software [26] using the following
single-trait animal model:

y ¼ X1bþ X2gþ e; ð3Þ
where y is a vector of the observations; b is a vector of

fixed effects due to prefecture for feedlot (18 classes),
sex (2 classes), year of slaughter (13 classes), and covari-
ates for age at the time of slaughter (linear and
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quadratic), g is a vector of genomic breeding values with
g � Nð0;Gσ2gcÞ , where G and σ2gc are the GRM gener-

ated with the SNPLD, as in model (1) and the additive
genetic variance, respectively; X1 and X2 are the design
matrices relating observations to fixed and random
effects, respectively; e is a vector of residual effects with
e � Nð0; Iσ2eÞ, where σ2e is the residual variance.
The adjusted phenotypes (yadj) were derived by:

yadj ¼ ĝþ ê;

where ĝ and ê are the predicted values of the genomic
breeding value and residual effect obtained in model (3),
respectively. The design of the reference-test validation
study was the same as that of the simulation analysis, and
model (1) was used to predict GEBV using the adjusted
phenotype. The genetic and residual variances were fixed
to predict the GEBV in each replicate, and we used the
variance components estimated by model (3). After pre-
dicting GEBVs, their accuracy was determined using as
Pearson’s correlation coefficient between the adjusted
phenotypes and the GEBVs divided by the square root of
the genomic heritability estimated by model (3), as de-
scribed by Hayes et al. [30]. We replicated the reference-
test population design 20 times for each population size,
and the mean ± SD of 20 replicates was obtained.

Results
Linkage disequilibrium (r2)
Figure S1 shows the mean r2 for the SNPHD values
among chromosomes of the 12,328 animals used for
analysis. Moderate linkage disequilibrium (r2 value = 0.2)
extended to approximately 0.15Mb.

The accuracy of GEBV for simulated traits
Figure 1 shows the accuracy of GEBVs for predicting the
simulated traits for each heritability category. Accuracy

did not substantially differ according to the number of
QTLs. In contrast, heritability and the size of reference
population had a major impact on the accuracy. A
higher value for heritability or a larger size of reference
population increased the prediction accuracy of the
GEBV. For example, when the QTL number was 100
and the size of reference population was 1000, the accur-
acy of GEBVs for heritability values of 0.1, 0.3, and 0.5
was respectively, 0.18, 0.20, and 0.23. When the refer-
ence population included 11,000 animals, the accuracy
respectively improved to 0.62, 0.73, and 0.79. The SDs of
GEBV accuracies decreased from ~ 0.10–0.03 as the size
of reference population increased from 1000 to 11,000.

Expected accuracy for simulated traits
Table 2 shows the estimated Me values determined
using the ML approach. The estimated value of w
was 1 for all scenarios. The estimated values of Me

were dependent on heritability but were independent
of the number of QTLs. When heritability was 0.1,
0.3, and 0.5, the estimated Me values were 1900,
3200, and 3800, respectively. Figure 1 also shows the
prediction accuracy of GEBVs for simulated traits
(curves) in the reference population with up to 11,000
animals. Regardless of heritability, the predicted ac-
curacy was higher than the observed accuracy for a
reference population of up to 5000 animals, but came
close to the observed accuracy when the reference
population comprised > 7000 animals.
Figure 2 shows the expected accuracy of GEBVs for

simulated traits due to heritability in the reference popu-
lation of ≤ 50,000 animals. Values for accuracy
approached 1 and approached a plateau as the reference
size increased, regardless of heritability and number of
QTLs. Higher heritability increased accuracy. For
example, in a reference population of 20,000 animals,
the estimated accuracy for the simulated traits with

Fig. 1 Observed and expected accuracy of genomic estimated breeding values (GEBVs) for simulated traits. Dots and curves, means of observed
and predicted accuracy for simulated traits, respectively. X axis, number of animals per reference population. Y axis, observed and expected
accuracy of GEBVs for simulated traits in number of QTLs (nQTL) obtained from equation developed herein. Heritability: (a), 0.1; (b), 0.3; (c), 0.5.
Whiskers, standard deviations of 20 replicates for observed accuracy. The dots and error bars are intentionally staggered for clarity
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heritability of 0.1, 0.3, and 0.5 was respectively, 0.71,
0.81, and 0.85.

Comparison of expected accuracy for simulated traits
with accuracy for carcass traits
Table 3 shows descriptive statistics of carcass traits. The
estimated genomic heritability of these traits was 0.29–0.41,
and the estimated standard error (SE) was 0.01 for any trait.
Figure 3 shows that the accuracy of GEBVs for carcass traits
was 0.20–0.33 and the SD was ~ 0.1 for all traits when the
reference population comprised 1000 animals. However, the
accuracy range was 0.78–0.91, and the SD was < 0.01, when
the reference population included 11,000 animals.

Figure 3 compares the accuracy of genomic prediction
of the simulated traits with accuracy for the carcass
traits. Because the accuracy for simulated traits was not
affected by the number of QTLs and the genomic herit-
ability for carcass traits was 0.29–0.41, the accuracy in
this figure is shown with 100 QTLs and heritability of
0.3 and 0.5. When the reference population comprised
11,000 animals, the expected accuracy for heritability of
0.3 and 0.5 was lower than the accuracy for all carcass
traits. The accuracy for CW was much higher than the
expected accuracy with a heritability of 0.5 in a reference
population of > 5000 animals, considering that the esti-
mated heritability for CW was 0.41.

Discussion
Importance of size of reference population to accuracy of
genomic prediction
Because the LD pattern is different for each cattle popu-
lation [5], it is necessary to investigate the relationship
between accuracy of genomic prediction and size of ref-
erence population in a target population. We found that
the LD pattern of the population used in this study dif-
fered from other beef cattle breeds [5]. Although accur-
acy of genomic prediction has been investigated in
Japanese Black cattle [14, 15], the numbers of animals
comprising the reference populations in these studies
ranged from several hundred to several thousand, and
the target traits were limited to carcass traits that have
been emphasized in the past. In addition, the optimal

Table 2 Number of independent chromosome segments (Me)
obtained by likelihood approach depending on condition of
simulated traits

Heritability QTL (n) Me

0.1 100 2026.3

500 1929.4

2000 1869.2

0.3 100 3245.9

500 3225.6

2000 3112.4

0.5 100 3826.5

500 3945.1

2000 3546.2

Fig. 2 Expected accuracy of genomic estimated breeding values (GEBVs) for simulated traits. X axis, number of animals per reference population. Y axis,
expected accuracy of GEBVs for simulated traits with heritability 0.1, 0.3, or 0.5 in number of QTLs (nQTL) obtained from equation developed herein
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number of animals in the reference population needed
to further improve accuracy of genomic prediction has
remained unknown. Therefore, we investigated the im-
pact of the size of the reference population on the accur-
acy of genomic prediction for carcass traits using much
more samples than previous studies. The SD of accuracy
was < 0.01, at the maximum size of the reference popu-
lation, and thus the results probably had high versatility.
Onogi et al. [16] estimated heritability and the accuracy
of phenotype prediction for carcass traits using the
single-step GBLUP method with various sets of refer-
ence populations with up to ~ 2000 animals. Using these
results, GEBV accuracy can be calculated by dividing the
accuracy of phenotype prediction by the square root of

the heritability estimate; for example, of 0.35–0.59 for
CW and of 0.36–0.48 for BMS. Our values were consist-
ent with these.
The degree of increase in accuracy was gentle and

reached a plateau as the size of reference population
increased. This agrees with previous studies of simu-
lated [31, 32] and wheat [33] data. A critical concern
is how many animals should be included in the refer-
ence population to obtain a desirable degree of accur-
acy of genomic prediction for carcass traits. We
discuss this based on the accuracy of the conventional
estimated breeding value (EBV) of a selection candi-
date bull progeny. Given the trait heritability (h2) and
the number of progenies per candidate (n, half-sib),

Table 3 Descriptive statistics of carcass traits

Trait Mean SD Min Max Vgb Vec h2 d

Carcass weight (kg) 481.2 57.9 305.0 662.0 885.8 1278.5 0.41 (0.01)

Rib eye area (cm2) 62.2 10.6 32.0 97.0 37.8 58.1 0.39 (0.01)

Rib thickness (cm2) 8.06 0.93 5.30 10.90 0.21 0.51 0.29 (0.01)

Subcutaneous fat thickness (cm) 2.68 0.78 0.60 5.10 0.23 0.35 0.40 (0.01)

BMSa 2.22 0.98 0.33 5.00 0.29 0.53 0.35 (0.01)
aBeef marbling score
bAdditive genetic variance accounted for by markers
cResidual variance
dGenomic heritability (strandard error)

Fig. 3 Expected accuracy of genomic estimated breeding values (GEBVs) for simulated and carcass traits. Dashed and solid curves indicate
expected accuracies of GEBVs for simulated traits with 100 QTLs and heritability 0.3 and 0.5, respectively. Colored dots, means of GEBV accuracy
for carcass traits. CW, carcass weight; REA, rib-eye area; RT, rib thickness; SFT, subcutaneous fat thickness; BMS, beef marbling score. Whiskers,
standard deviation of 20 replicates of accuracy of GEBVs for carcass traits. X axis, number of animals per reference population. Y axis, GEBV
accuracy for simulated and carcass traits. The dots and error bars are intentionally staggered for clarity
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the accuracy of the EBV ðrg; ĝ Þ for the candidate is obtained
using the general formula, rg; ĝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh2=ð4þ ðn−1Þh2Þ

q
[34]. Fig. S2 shows the relationship between EBV accuracy
and the number of progenies. At progeny test of candidate
bulls for Japanese Black cattle, a bull is required to have a
minimum of 15 progenies to obtain an EBV. Assuming 15
progenies, the accuracy of the EBVs for carcass traits
ranged from 0.73 to 0.79 (Fig. S2). In addition, 7000–11,000
animals are needed, depending on the traits, in the refer-
ence population to predict GEBVs with the same accuracy
as EBVs. Accordingly, when these conditions are met, the
accuracy of the GEBV for carcass traits should be compar-
able to the EBV in the progeny test. Even slightly reduced
accuracy of GEBV may be available to young candidate be-
cause long generation interval should be saved and high se-
lection pressure can be applied. A total of 7000–11,000
animals could be a sufficient size of reference population to
genetically improve carcass traits.
Japanese Black bulls have traditionally been bred on a

prefectural basis for growth and meat quality and the
semen of excellent bulls can be distributed in the prefec-
ture where the bulls are produced. For example, the
population in Hyogo prefecture, which is famous for
Kobe beef production, has been closely bred [35]. The
genetic relationship of an individual with another in the
same prefecture tends to be closer than that with an in-
dividual in the other prefecture. Accordingly, when a ref-
erence and a test population are composed only of a
prefecture, the accuracy of GEBV will be higher than the
result of this study. This is because the accuracy of the
GEBV is affected by the genetic relationship between the
reference and test populations [36, 37]. Hence, the ac-
curacy of the GEBV for an individual obtained using a
country-based reference population could be lower than
that of a prefecture-based reference population for spe-
cific prefectures. Further investigation is needed to ad-
dress this notion, because we did not assess genetic
relationships among the samples in detail.

Simulated and expected accuracy
While our results indicated that higher heritability led to
increased accuracy of genomic prediction, the number of
QTLs did not. These results agree with those of a previous
simulation studies [9, 18]. A larger reference population
also increased accuracy of genomic prediction, which is
consistent with previous studies of Japanese Black cattle
[17, 18]. Although, Uemoto et al. [18] cross-validated gen-
omic evaluation using simulated phenotypes from 1200
animals and found that accuracy of genomic prediction
did not reach a plateau, the present study using the 10-
fold more animals showed that accuracy of genomic
prediction gradually approached a plateau.

We estimated the value of Me from the accuracies em-
pirically estimated. Me is a measure of the effective num-
ber of independent segments across the genome and has
been defined by various authors as a function of the his-
torical effective population size, Ne (see the study of
Goddard [38] for detail). The estimated Me range was
1900–3900. The expected accuracy of GEBVs based on
the Me values were close to that obtained when the ref-
erence population contained > 5000 animals. The accur-
acy of GEBVs was overestimated when the reference
population contained < 5000, possibly because of large
deviations in observed accuracy. The Me estimates ob-
tained by empirical accuracies vary from studies and can
be summarized as shown Table S1. Erbe et al. [28] esti-
mated Me of 900–2800 depending on the trait and for-
mula in Holstein Friesian cattle and of 150–420
depending on the trait and SNP density in Brown Swiss
cattle, based on cross-validation accuracies. Van den
Berg et al. [39] also performed a cross-validation and es-
timated Me to range 4000–6100 in Holstein, 2400 in
Jersey, and 1800 in Australian Red cattle. The Me

estimates in our study are within these estimates. These
discrepancies can be due to the difference in the popula-
tion because the value of Me is breed-specific. However,
we demonstrated that estimating Me was independent
from heritability. The reliable Me could not be estimated
under the trait with low heritability and polygenic ef-
fects. In the condition, it may not be possible to estimate
each effect of chromosome segment accurately, and thus
inaccurate number of chromosome segment might be
estimated under the trait with lower heritability in our
study.
In addition to using the results of the empirical accur-

acies from cross-validation, other methods have been
suggested. From the results of the extent of LD in the
present population, we estimated an Ne of 101, accord-
ing to the method of Wientjes et al. [40]. Briefly, Ne t
generations ago (Nt) were obtained using the formula Nt

¼ ð 1r2 −1Þ=4c [41], where c = 1/2t is the length of the
chromosome segment in morgans [42], r2 is the measure
of LD over a chromosome segment with length c. Each
Nt for t values 1–5 was estimated and the mean Nt was
defined as Ne in the present population. Applying this
Ne value to the equation of Goddard [38], the Me of 676
was estimated using the equation Me = 2NeL/ ln (4NeL),
where L was an assumed genome size of 31.6 M [43].
Wientjes et al. [40] estimated Ne of 123 and Me of 805
using a Holstein-Friesian cattle population, with which
our estimates were comparable. On the other hand, our
estimates of Me using Ne were 1/6 to 1/3 of those esti-
mated using the cross-validation results. The Me value
can be either underestimated or overestimated depend-
ing on the formula with Ne according to a meta-analysis
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by Brard & Ricard [44]. Thus, our estimates of Me de-
rived from Ne might have been underestimated, which in
turn, would lead to overestimated accuracy of genomic
prediction. To confirm this, we calculated the accuracy
of GEBV using Eq. (2) based on the estimated Me (Fig. S3).
Fig. S3 shows that accuracy determined based on Ne

seemed overestimated and unrealistic.
A method for estimating Me using a pedigree relation-

ship matrix (A) and a genomic relationship matrix (G) be-
tween individuals has been proposed [40, 45]. Wientjes
et al. [40] estimated a Me of 837 using A and G from their
study population and it was similar to the Me of 805 esti-
mated based on the equation of Goddard [38], who used
Ne. The study by van den Berg et al. [39] found that using
both A and G led to an overestimation of Me, due to the
population containing genetically close individuals. How-
ever, such overestimation was unlikely to occur in our
population because we excluded genetically close individ-
uals from the population.

Comparison between expected and actual accuracy
We found that the prediction accuracy of the GEBVs for
the simulated trait was lower than that for the carcass
trait in terms of heritability. This trend became more
significant as the size of the reference population in-
creased. Two reasons might account for this finding.
One is the definition of accuracy. The accuracy of GEBV
is generally a correlation between GEBV and TBV,
which is equal to the correlation between GEBV and
EBV divided by the correlation between EBV and TBV
[7]. Here, the correlation between EBV and TBV was
equal to the square root of heritability. However, we
used the adjusted phenotype (sum of EBV and residual
effect) instead of EBV, because pedigree information was
not available. Thus, we defined accuracy of genomic pre-
diction as a correlation between GEBVs and adjusted
phenotypes divided by the square root of heritability for
carcass traits. Accordingly, for carcass traits with un-
known TBVs, accuracy of genomic prediction might be
biased using the adjusted phenotypes.
The other is the difference in the QTL distribution be-

tween the simulated and carcass traits. Especially for
CW, the actual accuracy exceeded the expected accuracy
for heritability of 0.5, when the reference population
comprised > 5000 animals. Whereas we derived simu-
lated traits from the QTLs following a gamma distribu-
tion, a few QTLs with large effects for CW, which
accounted for one-third of the total genetic variance,
were distributed in specific regions [46]. Moreover, the
effects of each QTL were independent in the simulation
of phenotypes, and interactions between markers
(epistasis effects) were ignored. These considerations
might apply not only to CW where QTL positions with

large effects are known, but also for REA and BMS, the
accuracy of which exceeded that for simulated traits.
Although genomic evaluations have not been imple-
mented in Japan for traits such as reproductive
performance [47, 48] and feed efficiency [17, 49], we
expect that the accuracy of GEBV for such traits
would be similar to our simulated traits.

Conclusion
We conducted a genomic evaluation for simulated traits
and carcass traits on a much larger scale in Japanese Black
cattle than previous studies. The simulation analysis based
on a cross-validation design using real genotypes to ac-
count for the extent of LD in this breed revealed that
higher heritability and a larger reference population led to
improved prediction accuracy of GEBVs, whereas the
number of QTLs did not affect accuracy. We developed a
deterministic formula based on Me derived from empirical
observations to obtain expected accuracy of GEBV, al-
though estimates of Me differed by heritability. We found
that the expected accuracy of GEBV for a polygenic trait
with heritability of 0.1–0.5 could be practical when the
reference population comprised > 5000 animals. For
carcass traits, we demonstrated that a total of 7000–
11,000 animals can be a sufficient size of reference popula-
tion for genomic prediction.
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