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Abstract

Background: Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also

known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects
of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to
environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported.

Results: In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed
that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene

promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns
of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses
of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgQWRKY genes

biosynthesis process of ginsenoside.

transcription factors in ginsenoside biosynthesis.

were expressed differently after heat treatment, and expression trends changed significantly under drought and
cold treatment but only slightly under salt treatment. The coexpression analysis of PgQWRKY genes with the
ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the

Conclusions: This work provides insights into the evolution, modulation and distribution of the WRKY gene family
in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY
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Background

Transcription factors (TFs) bind to the DNA regulator
sequence to modulate the rate of gene transcription, and
they usually play an essential role in responding to com-
plex environmental changes during plant development
[1, 2]. The WRKY family is a prominent TF family in
higher plants [3] that regulates various biological
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functions [4]. The name of WRKY TFs derives from
their DNA binding domain, which usually contains a
polypeptide sequence consisting of WRKYGQK, as well
as a zinc finger motif, either C2H2 (C-X4—5-X22-23-H-
X1-H) or C2HC (C-X7-C-X23-H-X1-C) [5, 6]. In plants,
the WRKY family has three primary groups (Groups I,
II, and III) based on the WRKY domain numbers along
with the zinc-finger motif [5, 7]. Group I WRKYs harbor
two WRKY domains; group II and IIT WRKYs carry only
one WRKY domain. Group II WRKYs are usually cate-
gorized into five subgroups, named Ila, -b, -¢, -d, and -e,
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on the basis of their phylogenetic relationships [5]. The
differences between Group III and II WRKY proteins are
the type of zinc finger motifs; the zinc finger is C-X4-5-
C-X22-23-H-X1-H in group II and C-X7-C-X23-H- X1-
C in group III [8].

There are 75 WRKY genes in Arabidopsis thaliana [9],
182 WRKY genes in soybean (Glycine max), 102 WRKY
genes in cotton (Gossypium hirsutum), and 98 WRKY
genes in rice (Oryza sativa) [10-12]. The first WRKY
gene was discovered from sweet potato (Ipomoea bata-
tas) in 1994 [13]. Since then, much research has been
carried out on the functions of WRKY. To date, the
study of the WRKY family has mainly addressed the bio-
logical progress of plants, consisting of biotic and abiotic
stress responses, along with plant growth processes. Re-
cent studies have shown that the WRKY family partici-
pates in many developmental processes of the plant,
such as root hair development [14], pollen development
[15], growth types [16], flowering time [17], fruit ripen-
ing [18], and leaf senescence [19-21]. Especially in re-
sponse to abiotic and biotic stresses, WRKY usually
plays an indispensable role. It modulates responses to
drought stress in A. thaliana [22, 23] and heat stress in
rice (O. sativa) [24], salt stress in soybean (G. max) [25],
ozone stress in Viburnum lantana and Pak Choi [26,
27], and cold stress in rice (O. sativa) [28, 29].

Panax ginseng, as the most famous Panax species
around the world, has an over 5000-year history of me-
dicinal use in East Asia [30]. The market for ginseng
reaches over 2 billion USD each year [31]. Ginseng is a
shade-requiring perennial herb that belongs to the Ara-
liaceae family. The growth and development of wild gin-
seng are relatively slow, and its maximum age can reach
100 years [32]. During its lifespan, wild ginseng is highly
exposed to harsh environmental conditions and has to
respond to diverse abiotic or biotic stresses. As the key
TFs in the plant stress response system, WRKY family
genes should play an important role in ginseng growth
and development. A previous study investigated WRKY
genes in ginseng adventitious roots based on transcrip-
tome analysis [33, 34]. However, the transcriptome re-
sults only present parts of the WRKY family genes, and
most of the WRKY gene family is still unidentified from
the ginseng genome. The expression trend of the WRKY
family in different parts and at different developmental
ages and the response trend to abiotic stress are still
unknown.

Herein, 137 ginseng WRKY genes were identified, and
these PgWRKYs can be further categorized into three
major groups with five subgroups. The evolutionary rela-
tionship of PgWRKY genes was explored. After that, the
gene structure of PgWRKYs was elucidated. The expres-
sion profile of PgWRKY genes in diverse tissues and re-
sponse trends for many abiotic treatments were also
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studied. Based on the tissue-specific expression and
coexpression analysis of ginsenoside pathway genes, 11
PgWRKYs were selected as potentially modulatory TFs
involved in the ginsenoside biosynthetic pathway. All of
these data reveal essential information for subsequent
functional study of WRKY gene family members in P.
ginseng.

Results

Identification, classification and phylogenetic analysis of
WRKY transcription factors in ginseng

A total of 137 WRKY (PgWRKY1 to PgWRKY137) tran-
scription factors were identified from the public ginseng
genome data resource and then confirmed by the
HMMSCAN search, SMART database, and NCBI-
Conserved Domain Database. The full data for these
genes consisting of gene name, gene ID, protein length,
gene locus numbers, gene length, coding sequences
(CDS) length, molecular weight (MW) and isoelectric
point (PI) are shown in Table S1. The lengths of these
WRKY genes varied from 465 to 21,240 bp. The protein
length ranged from 124 to 1303 amino acids (AAs), the
MW ranged from 13.9 to 143.53 kDa, and the pI varied
from 4.12 to 10.76.

An unrooted phylogenetic tree with 137 ginseng
WRKYs using maximum likelihood (ML) methods
(Fig. 1) was constructed to classify and explore the evo-
lutionary relationship of PgWRKY genes. The AtWRKYs
classification was used as the reference. All 137
PgWRKY genes were categorized into three primary
groups and five subgroups in group II. The 27
PgWRKYs harboring two WRKY domains were clus-
tered into Group 1. Group II constituted 95 WRKYs hav-
ing a single WRKY domain along with a zinc finger
motif of C-X4-5-C-X23-H-X1-H. Furthermore, group II
was stratified into five subgroups based on the existence
of distinct sequences on their zinc finger motifs. Sub-
group Ila harbored a CX5CPVKKK(L/V)Q motif, sub-
group IIb contained a CX5CPVRKQVQ motif, subgroup
IIc harbored a CX4C motif, subgroup IId included a
CX5CPARKHVE motif, and subgroup Ile contained a
CX5CPARK(Q/M)V(E/D) motif. Six WRKY proteins
were classified as Ila, 16 as IIb, 35 as Ilc, 15 as IId, and
23 as Ile. Ten PgWRKYs harboring a single WRKY do-
main along with a C2HC zinc finger motif (C-X7-C-
X23-31-H-X1-C) were assigned to group III. Six
PgWRKYs (PgWRKY47, -91, -137, -16, -90, -81) were
not categorized into any group even though they har-
bored a WRKY domain along with a C2H2-type zinc-
finger motif.

To better understand the relationship of WRKYs in
different species, WRKY genes from seven species were
compared. Although the total number of WRKY genes
between A. thaliana, Daucus carota, Vitis vinifera,
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Fig. 1 Phylogenetic analysis of ginseng WRKY proteins. The ML tree was constructed in line with WRKY protein sequences alignment. The
y Y
percentage of replicate trees are presented along branches, and they were computed via bootstrap tests 1000 replicates for reliability verification

Salvia miltiorrhiza, Solanum lycopesicum, Zea mays and  groups (Fig. 2 C). This result is in accordance with a
P. ginseng was different, all seven species were remark-  previous study in grapes and sunflowers [35, 36].

ably similar regarding gene length distribution (Fig. 2 A).

An unrooted ML phylogenetic tree was generated using

the WRKYs from seven plant species to explore the evo-  Conserved motifs and gene structure analyses of ginseng
lutionary landscape of the WRKY genes across species ~ WRKYs

(Fig. 2B). All of the WRKYs from the seven species were  Ten individual motifs were predicted by the local MEME
clustered into nine groups, the same seven classes (I, Ila,  tool, revealing the distinct regions of PgWRKYs (Fig. 3 A).
IIb, Ilc, IId, Ile, III) as mentioned above and two NG  We annotated motif one and motif two as the classic
groups. Although WRKY proteins could be stratifitd WRKY DNA-binding domain (Fig. S1). The lengths of
into the previously constructed groups clearly, the distri-  the ten motifs of PgWRKY ranged from 15 to 41 AA
bution of WRKY members was uneven in different residues. Two PgWRKYs (PgWRKY81 and 119) did not
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Fig. 2 Phylogenetic analysis of the WRKY family in different plant species. A Length distribution of WRKY proteins in different plant species.
B Unrooted NJ tree of WRKY proteins from seven plant species. C Distribution of WRKYs in different groups among seven species
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have any motif, and the other 135 WRKYs varied from
one to five motifs in each protein. In each subclass, the
proteins harbor a similar number and type of motif, which
suggests the functional similarities of these PgWRKYs.

To further examine the gene structure of PgWRKY, we
constructed exon/intron structure diagrams based on the
phylogenetic tree (Fig. 3B). All of the PgWRKY genes have at
least one intron except for three genes (PgWRKY 57, 121
and 8). Among the 137 PgWRKYs, the majority had two in-
trons and three exons, and a total of 52 PgWRKYs (37.9 %)
had this type of structure. The structure type was three in-
trons and four exons, and a total of 32 PgWRKYs (23.3 %)
had this structure. The third structure type was four introns
and five exons, and approximately 26 PgWRKYs (18.9 %)
had this structure. Only three PgWRKYs, PgWRKY121,
PgWRKY93 and PgWRKYS8, did not have any introns
(Fig. 3B). The exon numbers of PgWRKY genes within the
same group were relatively similar.

Cis-regulatory element analysis of the PQWRKY promoter
Cis-regulatory elements are the binding sites on the tar-
get gene for transcriptional modulation by transcription

factors, and they are usually restricted to the 5" upstream
(promoter) sequence of the target gene. Herein, the 1.5
k upstream regions from the translation start sites of
each PgWRKY were submitted to PlantCARE to survey
stress-responsive cis-regulatory elements. A total of 15
stress response elements, consisting of TC-rich repeats
(the cis-regulatory element for defense along with stress
response), TATC-box (cis-regulatory element that par-
ticipates in gibberellin-response), ACE (cis-regulatory
element that engages in light response), LTR (cis-regula-
tory element that plays a role in low-temperature re-
sponse), TCA-element (cis-regulatory element with a
role in salicylic acid response), SARE (cis-regulatory
element with a role in salicylic acid response), ABRE
(cis-regulatory element associated with the abscisic acid
response), AuxRR-core (cis-regulatory element with a
role in auxin response), G-box (cis-regulatory element
with a role in light response), CGTCA-motif (cis-regula-
tory element with a role in the MeJA-response),
TGACG-motif (cis-regulatory element associated with
MeJA-response), P-box (gibberellin-responsive element),
GARE-motif (gibberellin-responsive element), WUN-
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motif (wound-responsive element), MBS (MYB binding
site associated with drought-inducibility), and MRE
(MYB binding site associated with light response), were
identified (Fig. 4 A). All PgWRKYs had at least one
stress response-linked cis-regulatory element. The cis-
regulatory elements for hormone modulation consisting
of CGTCA motifs, ABREs, AuxRR cores, P-boxes, TCA
elements and TGA elements were also uncovered in nu-
merous PgWRKY promoter regions. Overall, 87

PgWRKYs (80.8%) had more than one ABRE motif,
which indicated the prospective abscisic acid response
under stress conditions. Approximately 91 PgWRKYs
(70.2 %) had one or more CGTCA motifs that demon-
strated the MeJA response potential, and the TCA elem-
ent, TGACG motif, P-box, and AuxRR core were found
in 51, 91, 20 and 11 PgWRKYs, respectively (Fig. 4B).
91G-box, 23 L, 64 MBS, and 32 TC-rich repeats were
also found in PgWRKY promoter regions, which
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illustrated that these genes might play a role in cold,
drought inducibility and defense responses.

Expression of PQWRKY genes in different tissues

The expression trends of PgWRKY genes in different tis-
sues, such as stem, fiber root, fruit peduncle, main root
epiderm, fruit pedicel, rhizome, leaf peduncle, arm root,
leaflet pedicel, leg root, leaf blade, fruit flesh, main root
cortex, and seed, were calculated by using FPKM values
based on public RNA-seq data [37]. An expression

heatmap of the WRKY genes was generated (Fig. 5 A).
The gene expression results showed that only four
PgWRKY genes (PgWRKY104, 78, 76 and 81; FPKM =
0) were not expressed in any tissue. The other 133
WRKY genes (97 %) were expressed in at least one tissue
(FPKM = 1), and approximately 60 (43.7 %) genes were
expressed in all tissues (FPKM > 1). The expression type
of PgWRKYs could be divided into three groups: low-
level expression, tissue-distinct and constitutive [36, 38].
Approximately 34 PgWRKY genes showed a low-level
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expression pattern in all tissues, and less than half of the
genes showed tissue-distinct expression (Fig. 5 A). For
instance, PgWRKY16 was expressed at a high level in
each part of the root, rhizome, stem, leaf, and fruit but
at a relatively low level in seed. The most highly
expressed gene in seed and fruit flesh was PgWRKY98.
Specifically, the WRKY genes exhibited relatively low-
level expression in seeds (FPKM median is 1.72372,
FPKM > 5, 46; FPKM > 10, 20). Over 58 % of PgWRKY
genes showed marked expression (FPKM > 5), particu-
larly in the fiber root, leg root, rhizome and fruit pedicel,
and the highly expressed genes (FPKM > 10) were also
distributed in these tissues (Table S2). The different ex-
pression trends of PgWRKYs indicated that these genes
participate in diverse biological processes in various
tissues.

Expression of PQWRKY genes in response to abiotic stress
The published data of different abiotic treatments on
ginseng can provide more information for further study
of the PgWRKY genes in response to abiotic stress. Cold,
salt, drought and heat treatments were applied in a pre-
vious study [30]. As illustrated in Fig. 6, many PgWRKY
genes showed a similar changing expression trend after
abiotic stress treatment. The results showed that 14
PgWRKYs (PgWRKY22, -25, -58, -63, -66, -81, -88, -89,
-90, -104, -108, -116, -124, -129 FPKM<1) were not

expressed in any groups, and two of these genes
(PgWRKY104 and 81) were also not expressed in any
tissue, as described in the former sections. The
PgWRKYs showed different response patterns for differ-
ent treatments. In the heat treatment, 25 PgWRKYs
(fold change > 2) were found to have significant changes
between the control and one-week heat treatment, and
four of these PgWRKYs (PgWRKY91, -51, -6 and -101)
had more than four-fold changes. Approximately 45
PgWRKYs (fold change > 2) were found to have signifi-
cant changes between the control and three-week heat
treatment, 26 PgWRKYs had more than four-fold
changes, and the most changed gene was PgWRKY136,
which had 136-fold changes. In total, 26 PgWRKYs were
found to change in both one week and three weeks of
treatment, and detailed information on the heat treat-
ment results is shown in Table S3. The expression trend
analysis indicated that many PgWRKYs might be in-
volved in the response to heat treatment at three weeks
(Fig. 6B, Table S4).

The cold treatment caused 16 genes to change (fold
change > 2), and most of them were upregulated. Ap-
proximately 11 of them changed over four-fold.
PgWRKY133 was found to be expressed only in cold-
treated samples. A total of 22 PgWRKYs (fold change >
2) were found to respond to drought treatment, and ap-
proximately 12 of them had over four-fold changes.
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Fig. 6 The expression of PgWRKY genes in response to different abiotic treatments. A The expression of PGWRKY genes for different abiotic
treatments. B Beanplot of PgWRKY genes before and after abiotic stresses

PgWRKY72 exhibited an approximately 30-fold change
after drought treatment, and two WRKYs (PgWRKY115
and PgWRKY133) were found to be expressed only in
drought-treated samples. Interestingly, no PgWRKY was
found to be downregulated after drought treatment, and
this result was in accordance with a previous report
showing that upregulation of numerous TFs under water
stress may result in enhanced expression of target genes
[39, 40]. The salt treatment only caused Four PgWRKYs
(fold change > 2) to change significantly: PgWRKY80,
PgWRKY100, PgWRKY111 and PgWRKY113. Only
PgWRKY113 changed approximately five-fold, and the
other PgWRKYs changed slightly. These results illus-
trated that PgWRKY might not respond to salt in gin-
seng. The expression trends of genes changed
significantly under drought and cold treatment but
slightly in response to salt treatment (Fig. 6B, Table S5).

Coexpression analysis of candidate ginsenoside
biosynthesis PQWRKY genes

WRKY participates in numerous physiological activities of
plants. To elucidate the relationship of PgWRKYs to ginse-
noside biosynthesis, we generated a coexpression network of
PgWRKYs and candidate ginsenoside biosynthesis genes
consisting of the upstream MEP, MVA pathway and down-
stream saponin skeleton formation pathway (Fig. 7). The
coexpression analysis results showed that the correlation be-
tween PgWRKYs and ginsenoside biosynthesis-related genes
could be divided into four clusters. PgWRKYs in Cluster I
have a lower correlation with ginsenoside biosynthesis path-
way genes. Only a few PgWRKYs (PgWRKY112, -105, -114,

-115) in this cluster have a higher correlation with IDI3 and
HMGS1 of the MVA pathway. In Cluster II, multiple
PgWRKYs showed a strong correlation with MEP pathway
upstream genes, such as DXS8, DXR4, MEP-CT1, and
MEP-CT2. Other genes in the MEP pathway did not show a
positive correlation with Cluster II PgWRKYs. The
PgWRKYs in Cluster II also showed a strong correlation
with some genes in the MVA and downstream pathways.
For instance, strong correlations were found in some
PgWRKYs with AACT2, HMGS5, MK1, PMK2, MVD],
IDI2, and IDI3 in the MVA pathway. The Cluster III group
WRKY did not show any positive correlation with genes of
the ginsenoside biosynthesis pathway. Many PgWRKYs in
Cluster IV have strong positive correlations with genes in
the MEP and downstream pathways. The genes named
DXS, DXR, CDP-MEK, HMBPPR and HMBPPS in the
MEP pathway have strong positive correlations with
cluster IV PgWRKYs. SS, SQE, Beta-AS, DDS and PPTs
in the downstream pathway also have a strong correl-
ation with cluster IV PgWRKYs. These results indicate
that PgWRKYs in Cluster IV might participate in the
modulation of ginsenoside biosynthesis. The results of
coexpression analysis indicated that the MVA pathway
genes were correlated to Cluster II PgWRKYs, and the
MEP pathway genes were correlated to Cluster IV
PgWRKYs. A total of 11 genes named PgWRKY118,
-12, -36, -5, -80, -130, -30, -128, -40, -33 and -46 were
selected to have modulatory potential for ginsenoside
biosynthesis. The r value of the correlation between
these PgWRKY genes and ginsenoside biosynthesis
pathway genes was greater than 0.7 (Table S6).
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reductoisomerase (DXR); 1-deoxy-D-xylulose-5-phosphate synthase (DXS)

Fig. 7 The Pearson’s correlation coefficients of PgWRKYs with ginsenoside biosynthesis pathway. Protopanaxatriol synthase (PPTS);
Protopanaxadiol synthase (PPDS); Dammarenediol Il synthase (DDS); Bamyrin synthase (3-AS); Squalene epoxidase (SQE); Squalene synthase (SS);
Farnesyl diphosphate synthase (FPPS); Isopentenyl-diphosphate delta-isomerase (IDI); Mevalonate diphosphate decarboxylase (MVD);
Phosphomevalonate kinase (PMK); Mevalonate kinase (MK); 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS); 3-hydroxy-3- methylglutaryl-CoA
reductase (HMGR); Acetyl-CoA C-acetyltransferase (AACT); Geranyl diphosphate synthase (GPS); 4-hydroxy-3-methylbut-2-en-1-yl diphosphate
reductase (HMBPPR); (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (HMBPPS); 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
(MECDPS); 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (CDP-MEK); 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (MEP-CT); DXP

Glycosyltransferases usually play an indispensable role
in the biosynthesis of triterpenoids [41]. In the ginseno-
side biosynthesis pathway, glycosyltransferases usually
catalyze the final steps to form different ginsenosides as
tailed enzymes [42]. To further confirm the correlation
between the PgWRKYs and the final stages of ginseno-
side biosynthesis, we selected 155 ginseng glycosyltrans-
ferases (Table S7) from the ginseng genome and
calculated the correlation between the selected 11
PgWRKYs and the 155 PgUGTSs (Table S8). We found
that 47 PgUGTs had a positive correlation (r > 0) with
these 11 PgWRKYs (Fig. 8). Finally, a total of 24 UGTs
were found to have a strong correlation with these 11
PgWRKYs (r > 0.8). To further annotate these 24
PgUGTsSs, we found that all of the reported ginsenoside
biosynthesis-related UGTs were included in the 24
PgUGTs [43-46] (Table S9). This result indicates that
these 11 PgWRKYs have strong potential in the regula-
tion of UGTs in the ginsenoside biosynthesis pathway.

Discussion

The WRKY family is a pivotal and large transcription
factor family in higher plants. Studies of the WRKY fam-
ily have been performed in many plants, consisting of

model plants, important crops and some medicinal
plants, such as Arabidopsis (A. thaliana) [47], sesame
(Sesamum indicum) [48], pineapple (Ananas comosus)
[49], sunflower (Helianthus annuus) [36], licorice (Gly-
cyrrhiza glabra) [50], carrot (Daucas carota) [51] and
chickpea (Cicer arietinum) [52]. Herein, a total of 137
PgWRKY genes were obtained from the ginseng genome
by bioinformatics analysis.

The members of the WRKY family in different plants
were uneven. As shown in Fig. 2 A, among the seven
species, the WRKY members ranged from 59 to 161 (Z.
mays, 161, genome size 2100 Mb; P. ginseng, 137, gen-
ome size 2900 Mb; A. thaliana, 90, genome size
121 Mb; D. carota, 69, genome size 421 Mb; S. miltior-
rhiza, 77, genome size 547 Mb; S. Lycopersicum, 81, gen-
ome size 809 Mb and V. vinifera, 59, genome size
427 Mb). The genome sizes of these plants ranged from
119.75 Mb to 2.98 Gb, Z. mays had the most prominent
WRKY family members, and a minor WRKY family was
found in V. vinifera. Ginseng has the second largest
WRKY family members, although the genome size of
ginseng is larger than that of Z. mays. This result indi-
cated that the number of WRKY genes was not associ-
ated with genome size. A previous study reported that
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Fig. 8 The Pearson’s correlation coefficients of selected PgWRKYs with ginseng UGTs
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WRKY family expansion has occurred in maize (Z.
mays) and rice (O. sativa) [53, 54]. The ginseng genome
experienced two whole-genome duplication (WGD)
events at 2.2 Million Years and 28 Million Years Ago
[30]. TFs are usually retained after the WGD event [55],
suggesting that WGD might be a major reason for
WRKY family expansion in ginseng.

PgWRKYs were grouped based on the conserved
WRKY domain along with the zinc-finger motif. Three
primary groups (I, II, III) and five subgroups (Ila, IIb,
Ilc, 1Id, Ile) were established by alignment. There were
27 PgWRKYs in Group I, 95 in group II, and 10 in
group III. The largest group of PgWRKY was group II.
The distribution of WRKY genes in groups among plant
species was different. Ginseng (137) has a large group
I1(95) and a relatively small group III(10), and a similar
WRKY distribution was found in grape [56] and egg-
plant [57]. In Arabidopsis (A. thaliana), maize (Z. mays)
and rice (O. sativa), group III is relatively large com-
pared to that in other plants [4, 53, 58]. Group III
WRKY TFs are thought to play a vital role in plant evo-
lution and adaptation. Due to the fewer group III genes
compared to other large genome plants, the expansion
of the PgWRKY family in ginseng might be caused by
the expansion of other WRKY groups [59].

The WRKY domain is highly conserved in most plants
with the heptapeptide motif WRKYGQK. The conserved
heptapeptide motif WRKYGQK was found in most of the
PgWRKYs. However, variants such as WRKYDQK,
WRKYGKK and WKKYGKK were also found in some
PgWRKYs. WRKYGKK appeared in six PgWRKYs, five of
which (PgWRKY29, -51, -50, -97, and -124) belonged to
group Ilc, and only one (PgWRKY125) belonged to group
Ile. Two PgWRKYs (PgWRKY15 and -70) have WKKY
DQK, and they belong to IId. PgWRKY44 has WRKY
DQK, PgWRKY68 has WKKYGKK, and they both belong
to Ile. Variants were also found in Asteranae, Nelumbo
nucifera and apple [60—62]. Previous studies reported that
variation in the WRKY domain might alter the DNA bind-
ing ability. NtWRKY12 (Nicotiana tabacum), GmWRKY6
and GmWRKY21 (G. max) showed more WK box (TTTT
CCACQ) binding ability than the W box (TTGACC) for
WRKYGKK motifs [63, 64].

Further analysis of PgWRKYs showed differential dis-
tribution patterns of cis-regulatory elements in different
PgWRKY promoters, which suggests that these
PgWRKYs regulate diverse biological processes of plant
growth during development. Numerous abiotic stress-
distinct cis-regulatory elements have been identified in
the PgWRKY promoter region (Fig. 4). These different
kinds of cis-regulatory elements in their promoter re-
gions might be related to the long-term evolution and
environmental adaptability of ginseng. In addition, the
existence of diverse cis-regulatory elements that respond
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to plant hormones (ABA, MeJA, and SA) indicates that
they are involved in regulating various hormone signal-
ing pathways related to ginseng adaptation to abiotic
stress along with biotic stress.

A variety of PgWRKY promoters have hormone and
MeJA response elements. PgWRKY54 and PgWRKY69
contain MeJA-responsive cis-regulatory elements, and a
previous study of ginseng WRKY showed that these two
genes were significantly downregulated after MeJA treat-
ment [33]. PgWRKY100, PgWRKY69, PgWRKY131 and
PgWRKY35 contain ABRE elements that are associated
with the abscisic acid response. A previous study showed
that all four PgWRKYs responded to abscisic acid treat-
ment [33]. A total of 64 PgWRKYs have one MBS elem-
ent, the MYB binding site associated with drought
inducibility. Compared with the drought treatment re-
sults, we found that 15 of the 64 PgWRKYs were signifi-
cantly changed. The results of cis-regulatory element
analysis could help to predict the potential function of
PgWRKYs for further study.

The expression levels of PgWRKYs in 14 different tis-
sues were calculated based on FPKM. As shown in
Fig. 5 A, PgWRKYs showed diverse expression patterns
in the 14 tissues. This result indicated that PgWRKYs
might perform diversified functions during the ginseng
lifespan. Among all 137 PgWRKY genes, only three
PgWRKY genes were not expressed in any tissues, 134
PgWRKYs were expressed in at least one tissue (FPKM
> 1), and their expression levels were altered significantly
among 14 tissues. As shown in Fig. 5B, the rhizome,
stem, leaf peduncle and fruit pedicel had higher median
FPKM values than other tissues, which indicated that
PgWRKY might participate in more physiological pro-
cesses in these tissues. PgWRKY16 is expressed predom-
inantly in almost every tissue except fruit flesh and seed.
PgWRKY10 was highly expressed in aerial parts, includ-
ing fruit flesh. PgWRKY137 was highly expressed in aer-
ial parts, such as PgWRKY10, but expressed at low levels
in fruit flesh. PgWRKY98 is only highly expressed in
fruit flesh and seed. A set of PgWRKYs, including
PgWRKY15, -137, -101, -10, -121 and -38, was highly
expressed in root tissues. These tissue-specific expres-
sion patterns suggest that these PgWRKYs might be in-
volved in tissue-specific development and signaling
processes. Interestingly, some PgWRKYs showed differ-
ent expression in the main root epiderm and cortex, and
most of the expressed PgWRKYs were highly expressed
in the epiderm. Since the ginseng epiderm is in direct
contact with the external environment, the highly
expressed genes in the epiderm are more likely to par-
ticipate in the environmental stress response.
PgWRKY111 was highly expressed in the epiderm and
responded to all abiotic stresses in this study. The ortho-
log of PgWRKY111 is AtWRKY33, which was found to
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be involved in the response to cold and salt stress [65].
Both PgWRKY11 and -17 were highly expressed in the
cortex and extremely low in the epiderm. The ortholog
of these two genes in Arabidopsis is AtWRKY12, which
can regulate secondary cell wall formation in Arabidop-
sis [66]. This result indicated that both PgWRKY11 and
-17 may also be involved in secondary cell wall forma-
tion in the cortex. Further study of the tissue-specific
expressed PgWRKYs could provide crucial information
for understanding the function of the ginseng WRKY
gene family.

During a long period of evolution, plants have to face
complex environmental factors, such as drought, salt,
heat or cold, and other uncertain ecological changes
[67]. Previous studies have demonstrated the important
roles of WRKY transcription factors in the response to
abiotic stress in plants [47, 52, 67, 68] In this study, a
total of 54 PgWRKY genes were induced under different
abiotic stresses. For instance, 15 PgWRKYs responded to
cold treatment, 22 PgWRKYs responded to drought
treatment, three PgWRKYs changed under salt treat-
ment, 25 PgWRKYs changed under one-week high
temperature, and 45 PgWRKYs changed under three-
week high temperature. Only PgWRKY111 responded to
all treatments, and another five PgWRKYs, namely,
PgWRKY121, -70, -85, -52, -72 and -86, responded to
cold, drought and heat treatments. These WRKYs might
be the central response TFs for abiotic stress. Overex-
pression of OsWRKY11 and OsWRKY45 could lead to
enhanced heat, drought and salt and tolerance [24, 69].
In soybean (G. max), overexpression of GmWRKY21
and GmWRKY54 shows enhanced cold, salt and drought
tolerance [64]. These PgWRKYs have the potential to be
the regulatory point for enhancing the tolerance of abi-
otic stress in ginseng.

WRKYs are involved in an extensive range of plant
physiological development processes and affect the bio-
synthesis of secondary metabolites. A previous study re-
ported that overexpression of CbHWRKY24 could
promote saponin accumulation in Conyza blinii [70],
and AvWRKYs could activate the promoter of AvNeoD
involved in the saponin biosynthesis pathway in Amo-
mum villosum [71]. In our study, we found that 13
PgWRKYs were positively correlated with ginsenoside
biosynthesis pathway genes. These PgWRKY genes are
distributed in phylogenetic Groups I and II. There were
11 PgWRKYs in phylogenetic Group I and only two
PgWRKYs in phylogenetic group II. One is in subgroup
IIc (PgWRKY104), and the other is in subgroup Ile
(PgWRKY118). Further analysis revealed that the se-
lected PgWRKYs were more highly related to PPT-type
ginsenoside pathway genes. For example, PgWRKYS5,
-130, -128, -40 and -33 have a high correlation (r > 0.8)
with PPTS1 and PPTS2, which are the candidate key
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enzymes that catalyze the branch point of PPD-type and
PPT-type ginsenosides. These coexpression relationships
reflect the modulation of ginsenoside biosynthesis by
PgWRKYs, and further overexpression or knockout ana-
lysis of these PgWRKY genes may help to elucidate their
function.

Conclusions

In this study, genome-wide identification of WRKY TFs
in ginseng and their expression in different tissues and
responses to different abiotic stresses were performed.
Coexpression analysis revealed the potential regulatory
relationship of PgWRKYs to ginsenoside biosynthesis
pathway genes. Our findings suggest a foundation for
further functional study of the regulatory mechanism of
PgWRKYs in plant stress responses and provide more
valuable information for Ginseng breeding and meta-
bolic engineering.

Methods

Sequence retrieval and identification

The candidate WRKY genes were firstly obtained from
the Ginseng Genome Data resource (http://ginsengdb.
snuw.ac.kr/) [72]. The WRKY Hidden Markov Model
(HMM) profile (PF03106) was abstracted from Pfam
data resource (http://pfam.xfam.org). The HMMER 3.2.1
software was employed to check the WRKY genes re-
trieved from the ginseng genome, and the E-value
threshold was 10-2. All candidate PgWRKYs were fur-
ther validated by using the SMART data resource
(http://smart.embl.de/) along with the NCBI-Conserved
Domain Database (CCD) to ensure that they contained
the WRKY domains. The WRKY data sets of A. thali-
ana, S. lycopersicum, D. carota, S. miltiorrhiza, V. vinif-
era and Z. mays were gained from the PlantTFDB (Plant
Transcription Factor Database) (http://planttfdb.cbi.pku.
edu.cn).

ClustalW with the default parameters was used for
Multiple WRKY sequences alignments between ginseng
and other species. The IQ-TREE was utilized by using
the Maximum Likelihood approach based on the LG+I+
G model [73] to establish the ginseng WRKY phylogen-
etic tree, and the nodes were tested by bootstrap analysis
with 1000 replicates. For WRKYs phylogenetic tree be-
tween different species, MEGAX was used to make the
tree by using the Neighbour-joining approach and 1000
bootstrap replications. The further annotation of the
phylogenetic tree result was processed by iTOL (http://
itol.embl.de).

Conserved motifs and gene structure analysis

The gene structure was abstracted from the ginseng gen-
ome annotation file  (http://ginsengdb.snu.ac.kr/).
TBtools 1.053 was employed to demonstrate the gene
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structure [74]. The conserved motifs of PgWRKYs were
identified by using MEME local software (version 4.12.0)
in Linux with the following parameters: maximum of 10
misfits and an optimum motif width of 6 - 100 amino acid
residues. In addition, theoretical isoelectric point (pl)
along with the molecular weight (MW) of PgWRKY pro-
teins were predicted by the online Sequence Manipulation
Suite (http://www.detaibio.com/sms2/reference.html) [75].

PgWRKY gene expression analysis

For analyzing gene expression among the different tissues
and the response for different abiotic treatment. 14 RNA-
Seq datasets of different tissues from NCBI (accession
number PRJNA302556) and 15 RNA-Seq datasets for abi-
otic treatment ( No.24-38 in ginseng transcriptome data re-
source, http://ginsengdb.snu.ackr/ transcriptome.php )
from Ginseng Genome Data Resource ( http://ginsengdb.
snu.ac.kr/ ) were retrieved. The clean reads were aligned to
the ginseng genome with Hisat2 software. Cufflinks along
with Cuffmerge were used to assemble and calculate the ex-
pression value for each transcript. The fragments per kilo-
base of exon per million mapped reads (FRKM) method
were used to identify differentially expressed genes (DEGs)
among the different samples [76]. The R package “Hmisc”
was employed to compute the Pearson’s correlation be-
tween the ginsenoside pathway genes and PgWRKYs in the
14 RNA-Seq tissues expression datasets. The abiotic treat-
ment mothed was like this, the one-year-old ginseng was
inoculated with 100 mM NaCl solution for 24 h for salt
stress; maintained at 4 °C for 24 h for cold treatment, re-
moved from the soil and air-dried on 3MM paper for 24 h
for drought treatment and treated with 30 (+1)°C for one
week and three weeks for heat treatment [30].
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