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Abstract

Background: Interferon regulatory factor-8 (IRF8) and nuclear factor-activated T cells c1 (NFATc1) are two
transcription factors that have an important role in osteoclast differentiation. Thanks to ChIP-seq technology, scientists
can now estimate potential genome-wide target genes of IRF8 and NFATc1. However, finding target genes that are
consistently up-regulated or down-regulated across different studies is hard because it requires analysis of a large
number of high-throughput expression studies from a comparable context.

Method: We have developed a machine learning based method, called, Cohort-based TF target prediction system
(cTAP) to overcome this problem. This method assumes that the pathway involving the transcription factors of
interest is featured with multiple “functional groups” of marker genes pertaining to the concerned biological process.
It uses two notions, Gene-Present Sufficiently (GP) and Gene-Absent Insufficiently (GA), in addition to log2 fold
changes of differentially expressed genes for the prediction. Target prediction is made by applying multiple
machine-learning models, which learn the patterns of GP and GA from log2 fold changes and four types of Z scores
from the normalized cohort’s gene expression data. The learned patterns are then associated with the putative
transcription factor targets to identify genes that consistently exhibit Up/Down gene regulation patterns within the
cohort. We applied this method to 11 publicly available GEO data sets related to osteoclastgenesis.

Result: Our experiment identified a small number of Up/Down IRF8 and NFATc1 target genes as relevant to
osteoclast differentiation. The machine learning models using GP and GA produced NFATc1 and IRF8 target genes
different than simply using a log2 fold change alone. Our literature survey revealed that all predicted target genes
have known roles in bone remodeling, specifically related to the immune system and osteoclast formation and
functions, suggesting confidence and validity in our method.

Conclusion: cTAP was motivated by recognizing that biologists tend to use Z score values present in data sets for
the analysis. However, using cTAP effectively presupposes assembling a sizable cohort of gene expression data sets
within a comparable context. As public gene expression data repositories grow, the need to use cohort-based analysis
method like cTAP will become increasingly important.
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Background
Bone is a dynamic organ constantly being remodeled to
maintain its strength and quality. During remodeling, old
bone is removed by osteoclasts and new bone is gen-
erated by osteoblasts. Bone homeostasis is the delicate
balance between levels of bone resorption and bone for-
mation. Bone diseases like osteoporosis and periodontitis
are notoriously due to enhanced bone resorption from
increased osteoclast differentiation. To explore a gene’s
behavior under this context, two important transcription
factors (TFs), Interferon regulatory factor-8 (IRF8) and
nuclear factor-activated T cells c1 (NFATc1), have been
extensively studied [1–3]. IRF8, a transcription factor
expressed in immune cells, is a key regulatory molecule
in suppressing osteoclastogenesis [1]. In contrast, NFATc1
functions as a master transcriptional regulator of osteo-
clast differentiation [2]. As reported in [3], IRF8 directly
interacts with NFATc1 to prevent NFATc1’s translocation
into the nucleus. Although the roles of IRF8 and NFATc1
are known, what target genes mediate the functional out-
comes of these two TFs is not well established. Luckily,
ENCODE has generated chromatin immunoprecipitation
sequencing (ChIP-seq) data for both IRF8 and NFATc1,
which has enabled us to investigate their possible direct
target genes.
In BioTarget [4], we demonstrated how targets of TBX21

and GATA2 can be identified, respectively, for the dif-
ferentiation of Th1 and Th2 immune cells by analyzing
the respective ENCODE ChIP-Seq data over five different
TCGA cancer cohort data sets, Stomach Adenocarcinoma
(STAD), Breast Invasive Carcinoma (BRCA), Colon Ade-
nocarcinoma (COAD), Lung Adenocarcinoma (LUAD),
and Lung Squamous Cell Carcinoma (LUSC). This work
reported that TFs may share some common target genes
across different cancer types, but they also have unique
target genes. This finding is not unexpected since it has
been postulated that depending on the temporal and spa-
tial context of a biological system, the role of TF’s may
change and it could use different genes to undertake its
programmed functions.
Predicting gene targets of a TF is an effort to extend

existing biological knowledge which has been typically
curated in the form of signal transduction pathways,
molecular pathways or gene regulatory networks. In this
regard, BioTarget and cTAP are efforts to extend known
pathways through an integrative analysis of combining
ChIP-seq data with many gene expression data sets from
experiments of comparable context. experiments. The
system we are describing in this work is called Cohort-
based TF target prediction system (cTAP) and it is an
attempt to extend our previous work BioTarget in multi-
ple ways. First, cTAP uses different pathway components
in computing TF gene target prediction. While BioTarget
uses pathway routes for prediction, cTAP uses “functional

groups” which are embedded in the pathway to predict
the TFs’ target genes. Second, cTAP tackles the problem
of using data from different laboratories to build a cohort
of comparable data sets unlike BioTarget’s use of an estab-
lished cohort data set like TCGA. Third, cTAP introduces
a new idea of using Z scores of intensity values of gene
expression, in addition to log2 fold changes (log2FCs) of
test vs. control gene expression values. Fourth, machine-
learning methods are used to predict gene regulation
instead of BioTarget’s algorithmic way of using log2FCs.
Finally, two new measures, called, Gene-Present Suffi-
ciently (GP) and Gene-Absent Insufficiently (GA), are
computed and these measures are used in the final stage
of “adjusting” target prediction.
Machine-learning approaches have been applied in

bioinformatics field for decades [5–9]. Hasan et al. pro-
posed machine learning based models that use support
vector machine (SVM), logistic regression (LR) and Naïve
Bayes (NB) etc. to identify neuropeptide [10], and DNA
N6-methyladenine sites of plant genomes [11]. In [12],
Basith et al. developed a machine learning framework to
identify cell-specific enhancers from the human genome.
Computationally predicting TF targets using third party
published data sets has been attempted in the past.
Honkela et al. (2010) [13] provided amodel-basedmethod
for TF target identification. It uses a differential equation
model of transcriptional regulation to fit each putative tar-
get gene and rank the targets based on model likelihood.
Cui et al. (2014) [14] generated an improved approach to
predict TF targets based on the support vector machine. It
uses a reverse-complementary distance-sensitive n-gram
profile algorithm to convert each upstream sub-sequence
into a high-dimensional vector data point. Subsequently,
it converts prediction tasks into classification problems
using an SVM classifier. Kim et al. (2006) [15] imple-
mented a SVM classifier for miRNA target gene pre-
diction. It uses three categories of features, structural
features, thermodynamic features and position-based fea-
tures, to represent the miRNA information. These are
related works but none of these published works tack-
les the problem of pathway extension through TF target
prediction in the way cTAP aims to solve.
The idea of using Z score of gene expression inten-

sity values in addition to the log2FCs of test vs. control
samples was motivated by closely observing the way sci-
entists evaluate pathways’ enrichment scores. Although
log2FCs is an important measure, biologists tend to assess
the absolute amount of transcripts detected for a given
gene in the test sample in judging the cell’s functionality
in the system. Basically, the absolute amount of tran-
script present in the sample should also be factored in the
decision making beyond the log2FCs. This issue becomes
even more critical in single cell analysis, since the cell
sub-type identification of the clusters is usually done by
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measuring abundance levels of known cell type marker
genes. A remaining question however is, when should we
call the amount of a gene’s transcript sufficient enough,
even if its absolute amount is lower than that of the control
case? Likewise, when should we call the gene’s transcript
amount not sufficient enough even when it is higher than
that of the control case? Relying only on p-values derived
from log2FCs omits the possibility of exploring addi-
tional scenarios of gene regulation which are subtle but
important.

Results
The results for predicting IRF8 and NFATc1 target genes
are shown in Tables 1 and 2, respectively. The selected
genes were obtained by applying all four ML models
including SVM, NN, Gaussian NB and LR and were com-
pared to the standard algorithmic method, Log2FC only.
The Venn-diagrams shown in Fig. 1 compare the extent
of overlap between these different methods for two sepa-
rate cases; one for upregulated target genes (Up Targets)
and the other for down regulated target genes (Down Tar-
gets). We performed a literature survey for the identified
target genes for IRF8 and NFATc1. The goal of the sur-
vey was to examine if any of the identified target genes
are already known for “osteoclast differentiation” in order
to develop confidence in what cTAP produces. Overall,
the result of predicting IRF8 targets by all three models
follows our expectation. Each method predicted unique
gene regulatory patterns, but most of them are overlap-
ping as shown in Fig. 1. One noticeable distinction is the
use of Log2FC only method to predict NFATc1’s target

Table 1 IRF8 target gene regulation prediction based on the
regulation prediction using SVM, NN and log2FC only

Model Up regulation Down regulation

Log2FC only AIF1, CD164, MARCKS,
MEF2C, RNASE4, TLR6,
LSP1

NDUFS7, RAB3IP,
NUDT13, MCRS1, COX15,
ATP5L

SVM AIF1, BID, CASP1, CTPS2,
H2-M3, IRF5, LSP1,
SLC15A3, TLR6

NDUFS7, PARP8,
NUDT13, MCRS1, COX15,
ATP5L, ALG9

NN AIF1, BID, CTPS2,
MARCKS, RNASE4,
H2-M3, SLC15A3,
NOTCH1, LSP1

NDUFS7, RAB3IP,
NUDT13, MCRS1, TAP2,
COX15, ATP5L

Gaussian NB ATP6V0A1, CCL6, CCRL2,
FGD2, LSP1, LY86,
NOTCH1, P2RY12,
PLSCR3, RNASE4, SLA,
SLC15A3, STAT2,
TNFRSF13B, TRIM21

GTF3C5, RAB3IP

LR AIF1, CTPS2, H2-M3,
MARCKS, NOTCH1,
RNASE4, S100A13,
SLC15A3, TLR6,
TNFRSF1B

ATP5L, NDUFS7

genes. Log2FC only, produced a much higher number of
Up and Down Target genes compared to the other twoML
basedmodels. However, the genes selected by log2FC only
did not show up in our literature survey, thus it remains
unclear whether they have a role in bone remodeling or
osteoclasts differentiation. For example, IL10RA, PRKD2,
RBM43, RPS6KA3, TPD52, and ACADM are reported
exclusively by the Log2FC only method, but no bone
remodeling related studies have been reported for these
genes. This finding possibly suggests that Log2FC only
gene selection is prone to generating “false positive” cases.
Below we summarize what we believe are “true positive”
cases predicted by the ML models.
First, we note that the AIF-1 gene (Table 1) has been

called by all three methods as an Up target of IRF8 and
the involvement of AIF-1 in osteoclast cells has been
well established [16]. Additionally, Kimural et al. (2007)
reported that AIF-1 induces the proliferation of cultured
synovial cells, and it plays an important role in chronic
immune inflammatory processes involving macrophages,
the cell type in which IRF8 is known as a master regulator.
Similarly, the ABCB4 gene (Table 2) has been identi-

fied as an Up target of NFATc1 by all three models. The
role of ABCB4 during osteoclastogenesis has been previ-
ously reported [17]. Irie et al. (2017) showed that ABCB4
expression was markedly increased during osteoclastoge-
nesis. In contrast, its knockdown in pre-osteoclasts led to
a reduction in osteoclast fusion [17].
Even for the genes that were uniquely called by only

one of the two machine learning methods, their function
has been implicated in bone remodeling as summarized
below. While our literature survey identifies gene associa-
tions with bone modeling, it does not determine whether
specific genes are directly regulated by either IRF8 or
NFATc1. However, since our analysis utilizes ENCODE
ChIP-Seq data, we hypothesize that the identified genes
could be direct targets of these two transcription fac-
tors. Nevertheless, our analysis is predictive and hypoth-
esis generating; wet-lab experiments will be necessary to
provide more definitive evidence that these regulatory
mechanisms actually exist.
BID - The involvement of BID in regulating osteo-

clast formation has been previously reported [18]. RelA, a
subunit of NF-κB, has been shown to block the RANKL-
induced JNK-BID apoptotic pathway and, by doing so,
promotes OC differentiation. Our machine learning sys-
tem placed BID in the Up target list of IRF8, suggesting
that the expression of BID may not increase if IRF8 is sup-
pressed. BID is known for its role in regulating apoptosis
[19]. When this fact is combined with IRF8, itself playing
a role in inhibiting NFATc1, the additional regulatory rela-
tionship between IRF8 and BID likely suggests that IRF8
possesses alternative mechanisms to negatively regulate
osteoclastogenesis.
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Table 2 NFATc1 target gene regulation prediction based on the regulation prediction using SVM, NN and log2FC only

Model Up regulation Down regulation

Log2FC only ABCB4, ACADM, ACADS, ACADVL, ACAT1, ACBD6,
ACO2, AK2, ALDH4A1, AP1G2, APBA3, ATP5E, ATP5G1,
ATP5G2, ATP5G3, ATP5J, ATP5L, ATP6V0B, ATP6V1C1,
ATP6V1D, ATP6V1H, BCAT2, BCL2L13, BSG, C1QBP,
CIAPIN1, COMTD1, COQ6, COX15, COX5B, COX7A2,
COX7A2L, CS, CTTN, CYC1, CYCS, DLAT, DLST, ECSIT,
ETFA, ETFDH, EXT1, FAHD1, FASTK, FDXR, GNB1L,
GPX4, GSS, GTF2H3, HAGH, HINT3, IDH3A, IDH3B, IK,
IMMT, KIF13A, LETM1, LRPPRC, MANBAL, MCAT,
MCRS1, MDH1, MDH2, MFN2, MRPL1, MRPL14,
MRPL34, MRPL36, MRPL38, MRPL46, MRPL48, MRPL51,
MRPL9, MRPS25, MRPS34, MRPS35, MTX2, NDUFA10,
NDUFA4, NDUFA5, NDUFA6, NDUFAB1, NDUFAF1,
NDUFB10, NDUFB3, NDUFB5, NDUFB6, NDUFB7,
NDUFC1, NDUFS3, NDUFS7, NDUFS8, NHEJ1, NSMAF,
NUDT8, OGDH, OPA1, OXNAD1, PABPC4, PGAM5,
PGLS, PIGO, PIP5K1B, PITPNM1, PPA2, PPARGC1B,
PTGES2, PTPN12, PTPN9, RABGEF1, RELB, REPIN1,
RREB1, SDHD, SLC25A11, SLC25A19, SLC25A3,
SLC25A39, SLC25A5, SLC30A6, SLC39A13, SOD2, ST5,
STARD7, TANK, TARBP2, TAX1BP3, TBC1D10B, TBRG4,
TCIRG1, TERF2IP, TFRC, TIMM17A, TIMM44, TMEM60,
TNFAIP3, TTC19, TUFM, UBE2G1, UBLCP1, UQCRC1,
UQCRC2, UQCRH, USP4, VDAC1, VTI1B

CD164, CD48, CHST12, CNR2, CORO1A, EBI3, EPS15,
FLI1, GCA, GNG2, IER3, IL10RA, IRF8, LAMP1, LSP1,
MARCKS, NEDD9, NUCB2, P2RY6, PKIB, POU2F2,
PRKD2, RASSF5, RB1, RBM43, RNASE4, RPS6KA3,
SSBP2, TLE3, TLR6, TNFSF9, TPD52, WSB1, ZFP90

SVM ABCB4, ACAD10, ACADS, AP1G2, ATP5L, CIAPIN1,
CNIH4, COX15, COX7A2, CYC1, DLAT, DNAJA3, DUS3L,
EXT1, FAHD1, FDXR, FEM1A, HAGH, HINT3, IDH3A,
IMMT, LRPPRC, MANBAL, MCAT, MCRS1, MRPL36,
MRPL38, MRPL9, MRPS34, MRPS35, NDUFB10,
NDUFB5, NDUFB6, NDUFS3, NDUFS7, NSMAF,
PABPC4, PEX16, PGLS, PIGQ, PIP5K1B, PPARGC1B,
PRDX3, PTGES2, PTPN12, SEMA7A, SLC25A19,
SLC39A13, SSNA1, ST5, TIMM44, TTC19, TUFM, USP4

ANXA6, ATF3, CCL3, CD48, CDC42EP3, CHST12,
CPEB2, DCK, EBI3, FLI1, GNG2, IRF5, IRF8, LSP1, LXN,
MAP4K2, PIK3CG, SLC15A3, SLC9A3R1, SP100, TEX2,
TLR6, TNFSF9, ZFP90

NN ABCB4, ACAD10, ACADS, AK2, AP1G2, ATP5G3, ATP5L,
BCAT2, CIAPIN1, COG8, COQ6, COX15, COX17, CYC1,
DLAT, DNAJA3, DUS3L, ECSIT, ETFDH, EXT1, FASTK,
FDXR, GSS, HAGH, HINT2, HINT3, IDH3A, LRPPRC,
MANBAL, MBTPS1, MCRS1, MRPL12, MRPL38, MRPL9,
MRPS25, MRPS34, MRPS35, NDUFB10, NDUFC1,
NDUFS3, NDUFS7, NSMAF, NUDT8, OXNAD1,
PABPC4, PIP5K1B, PITPNM1, PPARGC1B, PRDX3,
PTDSS2, PTGES2, RABGEF1, RELB, SLC39A13, STARD7,
TANK, TAX1BP3, TBRG4, TCF12, TTC19, TUFM,
UBE2G1, UBLCP1, UMPS, USP4

ADAM15, CCL3, CD48, CHST12, CPEB2, EBI3, FLI1,
GNG2, IL10RA, IRF8, LSP1, LXN, MAP4K2, MARCKS,
MS4A7, NAB2, NOTCH1, NUCB2, P2RY6, POU2F2, RB1,
RNASE4, RPS6KA3, SLC15A3, SLC9A3R1, SNAP29,
TEX2, TMBIM1, TNFSF9

Gaussian NB ACO2, ACSL1, DLAT, DNAJA3, FDXR, GSS, MCRS1,
NFKB2, NFKBIE, NUDT8, OTUD7B, OXNAD1,
PPARGC1B, PTGES2, SARS2, SDC1, SEMA7A,
SLC25A39, SLC39A13, TARBP2, TBRG4, TRAF1

CCR5, CDC42EP3, CNR2, ECE1, GSTK1, ICAM2, NAB2,
PIAS3, SORL1, TLR6, TNFSF9

LR ABCB4, ACAD10, AK2, AP1G2, ATOX1, ATP5G2, BCAT2,
DNAJA3, DUS3L, EXT1, FAHD1, FASTK, FDXR, IDH3A,
IVNS1ABP, MCRS1, MFN2, NDUFS3, NFKBIE, NSMAF,
OTUD7B, OXNAD1, PABPC4, PPARGC1B, PTGES2,
PTPN12, REPIN1, SDC1, SEMA7A, SERPINB8, SLC39A13,
ST5, STARD7, TANK, TARBP2, TBRG4, XRCC5

GSTK1, HSPA2, ICAM2, NFKBIZ, PARVG, RASSF5,
RBM43, SORL1, TNFSF9

NOTCH1 - In the skeleton, Notch signaling can regu-
late the differentiation and function of both osteoblasts
and osteoclasts. NOTCH1 can negatively regulate osteo-
clast formation indirectly by promoting the expression
of osteoprotegrin in osteoblasts [20]. However, NOTCH1
also functions in osteoclast precursors to repress osteo-
clast formation [21] . Our method identifies NOTCH1 in

the Up target list of IRF8 (Table 1), suggesting its suppres-
sive role in osteoclast differentiation. Interestingly, our
method also predicted NOTCH1 as a Down Target of
NFATc1. Our findings are consistent with the well-known
opposite roles that IRF8 and NFATc1 have in osteoclast
differentiation but also implicate the existence of down-
stream mechanisms where NOTCH1 expression is tightly
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Fig. 1 The Venn-diagrams of all targets, up targets and down for IRF8 and NFATc1

regulated positively and negatively, by IRF8 and NFATc1,
respectively.
IRF5 - Interferon regulatory factor 5 (IRF5) has an

important role in the differentiation of myeloid derivatives
from mouse bone marrow [22]. Our SVM model pre-
dicted that IRF5 may function as a repressor of osteoclast
differentiation through the activation of IRF8. Consistent
with this prediction, Yang et al.(2019) [23] reported that
silencing IRF5 increased osteoclast differentiation. How-
ever, in this study, NFATc1 expression leads to suppression
of IRF5 expression.
CASP1 – Rocha et al. (2020) [24] reported that CASP1

and NLRP3 deficiency increases the activity of RANKL-
derived osteoclasts. Our SVM model prediction plac-
ing CASP1 in the Down list of IRF8 suggests that
CASP1 is down-regulated through IRF8 along with IRF8’s
own down regulation when osteoclast differentiation
increases. The placement of CASP1 in the Up target
of IRF8 is consistent with what has been reported by
Rocha et al.
NAB2 - In [25], Kim et al. (2012) stated that EGR2 over

expression can inhibit RANKL-induced osteoclast differ-
entiation and also NAB2 binding to EGR2 can inhibit its
actions to restore osteoclast differentiation. In our NN

model prediction, NAB2 is placed as a Down Target of
NFATc1. This discovery suggests an interesting negative
feedback, albeit putative, possibly explaining maintenance
of homeostasis in osteoclast differentiation. During osteo-
clasts differentiation, NFATc1 is known highly upregu-
lated and that would suppress NAB2’s expression accord-
ing to our model prediction. Since Kim et al. suggested
that NAB2 inhibits EGR2’s suppressive role in upstream
of NFATc1, a negative feedback loop is established. That
is, during the suppressive state of osteoclast differentia-
tion, NAB2 can over express to repress EGR2 which will
subsequently allow RANKL to induce osteoclast differen-
tiation through NFATc1 over expression. When NFATc1
becomes over expressing, it suppresses NAB2 to reverse
its binding to EGR2, thus allowing EGR3 to inhibit osteo-
clast differentiation.
TCF12 - In [26], Yi et al. (2017) reported that over-

expression of TCF12 in mesenchymal stem cell sup-
presses the osteoblast differentiation. Our NN model
places TCF12 as an Up target of NFATc1 which makes
this prediction consistent with the TCF12’s role in osteo-
clast differentiation reported in [26]. In addition, Putt et al.
(2009) [27] stated that TCF12 is a co-regulator of NFAT
family and MEF2 family in heart failure disease, possibly
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suggesting a common regulatory relationship between
TCF12 and NFATc1 across multiple tissue types.
In summary, we reiterate the two facts. First, many

discovered targets are already known in the osteoclast
literature although some do not have direct reference
to bone remodeling, suggesting potential validity of the
results produced by the learned models as well as discov-
ery of possible novel targets. Second, none of the articles
is explicit in stating the role of IRF8 and NFATc1 in
their studied systems, suggesting the potential value and
novelty of newly discovered “direct” regulatory relation-
ships between IRF8, NFATc1 and their identified targets
in osteoclast differentiation.

Methods
The overall framework of cTAP is given in Fig. 2. The
figure outlines how multiple analysis steps are integrated
to make the final TF target prediction. The framework

is made up of three major components, assembling
“Comparison-Pairs” (CPs) designed to generate a cohort
of gene expression data sets specific for osteoclast dif-
ferentiation, introducing “Functional Groups” into the
regulatory pathway constructed to encode gene and their
relationships known for osteoclastogenesis, and training
and using the learning model for TF target prediction.

Generating comparison pairs
The first step of cTAP is identifying and creating “Com-
parison Pairs” (CPs) from GEO published data sets
that are relevant to the concerned biological context,
i.e., osteoclast differentiation in our case. Building CPs
requires biological knowledge to identify which pairs of
samples in the given study population should be compared
with each other. One important requirement is to identify
two sets of CPs whose functional regulations convey the
opposite direction, one for up regulation and one for

Fig. 2 The overall process of cTAP
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down regulation, within the concern context. For exam-
ple, in our case, one should be osteoclast differentiation up
regulation (OCU) and the other should be osteoclast dif-
ferentiation down regulated (OCD). Figure 3 displays this
concept by using two example data sets, GSE 142866 in
Fig. 3a and GSE111237 in Fig. 3b. GSE142866 is a simple
study that examines the impact of LEA on bone remodel-
ing. From this, one can identify two CPs, one comparing
the samples of “No RANKL” with “RANKL” for OCU
and one comparing “RANKL” with the combination of
“RANKL and LEA” for OCD. GSE111237 is a bit more
complex study that involves six populations, each having 3
technical replicates, making total 18 samples. In this case,
total 8 CPs are possible but not all comparisons should
be used. In fact, in this GEO data set, we considered that
only one CP is relevant to our cohort study, i.e., com-
paring “ostecoclast progenitors” with “mature osteoclast
progenitors” as OCU. Biologists generally do not compare
cases that involve more than one variable due to difficul-
ties in interpreting the outcome. For example, compar-
ing Era-pre-osteoclast progenitors and mature-osteoclast
progenitors involves both estrogens and cell type and thus
should be avoided. When comparing gene expression val-
ues between test and control populations, its goal is to
obtain information regarding how the involved variable
discerning test vs. control could impact gene regulation.
In case more than one variables are involved, parsing why
and how the changes in gene regulation occur becomes
too complicated.

The format of CP is a two-column matrix which con-
tains all gene symbols and their corresponding log2 ratios.
In general, comparing gene expression values between
test and control populations provides information on gene
regulation. A gene with a higher expression value in the
test than the value in control sample is supposed to mean
up-regulation with its log2 ratio being positive. In con-
trast, a gene with a lower expression value in the test than
the values in control sample is supposed to mean down-
regulation with its log2 ratio being negative. The following
steps describe the detail of generating CP from the series
matrix file of GE data that is downloaded from GEO:

• Duplicate samples in the series matrix file are
grouped into populations. A CP is formed by pairing
up a test population and a control population. Its
context is determined based on the experiment
variables and their effect.

• Log2 ratio (Ri) for each gene i is calculated using the
following Eq. 1. Et and Ec stand for the populational
average expression value of the gene in the test and
control population, respectively. Laplacian correction
is applied to reduce the effect of small expression
values. Et and Ec are increased by 0.01 while taking
the ratio.

Ri = log2
(
Et + 0.01
Ec + 0.01

)
(1)

Fig. 3 CPs examples illustrating the issues and complexity involved in determine which pair of gene expression populations should be chosen for
the analysis. (a) “No RANKL” vs. “RANKL” for OCU and “RANKL” vs. “RANKL with LEA” for OCD. (b) “osteoclast progenitors” vs. “mature-osteoclast
progenitors” for OCU



Wang et al. BMC Genomics           (2022) 23:14 Page 8 of 18

Modeling functional group
Introducing functional groups into the pathway is to over-
come the limitation of the existing pathway analysis sys-
tems. Pathway analysis has been popular to gain insight
into the underlying biology of differentially expressing
genes and proteins as it reduces the complexity of the
analysis. Khatri et al. (2012) [28] summarized that there
have been three generations of pathway analysis methods:
Over-Representation Analysis (ORA), Functional Class
Scoring (FCS) and Pathway Topology (PT) - Based analy-
sis. Examples of each system are, respectively, GOstat [29],
GSEA [30] and SPIA [31]. PT-Based systems outperform
others as it provides the visual understanding of gene reg-
ulation patterns when log2FC are overlaid over the path-
way diagrams. However, even in the well-known curated

pathway system like KEGG [32], only a limited number of
target genes in downstream of a transcription factor (TF)
are included. For example, in KEGGOsteoclast differenti-
ation pathway (Entry ID: hsa0480), only four genes, CTSK,
TRAP, CTR and β3 integrin, are included in the down-
stream of NFATc1, the key TF known regulating osteo-
clast differentiation. Thus if we are interested in inferring
the targets of IRF8 within the osteoclast differentiation,
using this pathway is impractical. Our approach is that
functional groups specific to osteoclast differentiation is
included in modeling a pathway as we illustrate such plan
in Fig. 4. In this figure, osteoclast differentiation is charac-
terized by having n functional groups (FGs), each of which
including a set of genes that are known to either collec-
tively activated or collectively suppressed in the context of

Fig. 4 Osteoclast differentiation pathway diagram including IRF8, NFATc1 and functional groups of marker genes
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osteoclast differentiation. In our study we have included
about ∼134 such curated genes in 14 functional groups
and we use them for the discovery of targets of IRF8 and
NFATc1 in the osteoclast differentiation context.
Each functional group (FG) is a collection of marker

genes that should collectively work towards a biological
process in one functional direction, i.e., either all up-
regulated or all down-regulated. What genes should be
included in each FG is determined through a curation
effort and discussing how it is done is beyond the scope of
this paper. Ideally, all genes included in each FG should be
all up or down-regulated for a given context. However, in
a biological system such agreement occurs rarely, and the
degree of regulation agreement over a certain threshold
(e.g., over 80%) should be considered sufficient.
In order to quantify the degree of agreement/disagreement

of activation and inhibition of a FG, we introduce the
notion, called, FG score (FGS). A negative score means
FG is inhibited, and a positive score means FG is acti-
vated. The more genes within a FG is up-regulated, the
more activated the FG is. The more genes within a FG is
down-regulated, the more inhibited the FG is. Equation 2
is used to calculate the jth FGS. Let Ri be the log2FC for
genes in FG and n be the number of genes in that FG.
The total functional group score (TFGS) is defined as the
number of FGs that follow the expected functional state
associated with all CPs. For instance, if there are two CPs,
one of them has 5 FGs and the other 6 FGs following the
expected behavior, then TFGS of these two CPs is 11

FGSj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∑i
n Ri
n

)2

if
(∑i

n Ri
n

)
≥ 0

−
(∑i

n Ri
n

)2

if
(∑i

n Ri
n

)
< 0

(2)

Training and prediction
The first step of this part is to combine GEO data sets
from different laboratories into a cohort of CP arranged

data sets. One difficulty in this data munging step is how
to handle the biases originating from different platforms
used by individual laboratories. Quantile normalization
is a popular way to normalize data, but it tends to pro-
duce skewed results if some samples have extreme val-
ues. Extreme values affect the average value and makes
the normalized data biased. In cTAP, we use a trimmed
quantile normalization (TQN) to overcome this issue. It
takes an unnormalized big matrix (M), which is gen-
erated based on control and test populations averaged
expression values from all CPs as an input where every
CP having two column values, one for control popu-
lation and one for test population. Value 0 is used to
impute the missing genes in the population. Since the
minimum and the maximum value for each column in M
will be removed temporarily before quantile normaliza-
tion, imputing the missing value with 0 does not impact
the performance of TQN. The overall process of TQN
is shown in Fig. 5. The detailed steps are described
below:

• Order gene expression value in ascending order for
every column (sample) and save the order of different
gene symbols for each column.

• Ignore the order of gene symbols and cut off
minimum (small value genes) and maximum (large
value genes) with P percent from every column.
Perform quantile normalization on the combined
remaining parts (the middle part) of the columns.

• Change the small and large parts of each column
using the Eq. 3. V ′

i represents the revised value for
gene i in the small or large value genes. Zm is the
column-wised Z score in the matched middle part. N
is the number of genes whose Z scores are positive. n′
represents the number of genes from i to the gene
whose Z-score is 0 in the middle part. Here σ and μ

are the standard deviation and average of the middle
part, respectively.

• Combine the revised top and bottom parts with the
normalized middle part. Then add the gene order for
each column to the columns.

Fig. 5 The overall process of trimmed quantile normalization
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• Reorder each column to make same gene appear in
same row, and by doing so generate the normalized
matrix (M′).

V ′
i =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣min(Zm)

N

∣∣∣∣ ∗ n′ ∗ σ + μ small values
∣∣∣∣max(Zm)

N

∣∣∣∣ ∗ n′ ∗ σ + μ large values

(3)

To quantify the notions, Gene-Present Sufficiently (GP)
and Gene-Absent Insufficiently (GA), we use the cohort’s
gene-wise Z-score as the tool. Total 4 types of Z-scores
for gene i are computed based on M′. They are row-wise
(gene across samples) Z-scores and column-wise (sample
across genes) Z-scores for both test and control popu-
lations, denoted by (ZRic, ZRit , ZCic, ZCit). Equation 4 is
used to calculate row-wise Z scores, μR and σR, respec-
tively, denoting the average and the stand deviation for
the row values. Likewise, Eq. 5 is used to calculate the
column-wise Z scores, μC and σC , respectively, denoting
the average and the stand deviation for the column values.

ZRi = Vi − μR
σR

(4)

ZCi = Vi − μC
σC

(5)

The next step is using key genes in the pathway diagram
(from FG and related TFs) and M′ to build a learning
model which is capable to determine if a potential tar-
get of the TF can be classified into either GA or GP.
Here, GA means that gene transcript abundance is “insuf-
ficient” meaning its transcript amount is too low to exert
its intended function in the system of the test sample.
A gene’s GA status in the test sample may override its
log2FCs being positive. GP means that gene transcript
abundance may be “sufficient” meaning its transcript
amount is high enough to exert its intended function in
the system of the test sample. A gene’s GP status in the test
sample may override its log2FCs being negative.
The basic idea behind cTAP is similar to the exist-

ing works that mentioned before because it relies on the
learned model to call if a gene is highly likely a target or
not. But our work is unique in that it can call if a gene
is either an Up target or a Down Target. Such decision is
possible in our approach as we use the input data defined
for opposite regulatory contexts, i.e. OCU and OCD. In
Table 3, an example case in which Caspase-1 (CAPS1) is
down-regulated in most of OCU CPs and up-regulated in
most OCD CPs. Another uniqueness in our approach is
that it uses the learned model’s classification of GP and
GA for each potential target gene. We introduce a param-
eter, called the error tolerance rate (T), to control the error

Table 3 CASP1 downregulated in most of OCU CPs and
upregulated in most of OCD

ID Context CASP1 log2FC

1 OCU -0.128

2 OCU -0.400

3 OCD 0.495

4 OCU -0.350

5 OCU 0.247

6 OCU -0.861

7 OCU -1.314

8 OCD 0.144

9 OCD 0.387

10 OCD 0.748

11 OCD 1.001

12 OCD 1.251

13 OCD 0.596

14 OCU -1.034

15 OCD 0.494

16 OCU 0.069

in determining the target, i.e., how much of inconsistency
should be allowed in cTAP’s decision making. In CASP1
case in Table 3, T was set to 15%. Even if the regulation
pattern of CASP1 does not agree with that of IRF8 in
two of the CPs (CP ID: 5 and 16), it is still considered as
down-regulation in OCU CPs.
The training data set is formed by context-related TFs

and genes in FGs. Log2FCs and 4 types of Z scores for
each gene make up five features for each training sam-
ple. In details, the first feature is the gene log2 folder
changes computed using Eq. 1. For the second, third, for-
rth and fifth features of a gene are column-wised Z score
of the control expression value, column-wised Z score of
the test expression value, row-wised Z score of the con-
trol expression value, and row-wised Z score of the test
expression value, respectively. How to compute these Z-
scores has been discussed in the above. Gene’s expected
regulation is used as the class label. The gene is labeled
“1” if its expected regulation is up-regulation or “-1” if its
expected regulation is down-regulation. One of the classi-
fiers from SVM, Gaussian, LR and Neural Networks (NN)
are selected to be trained. Once the model training is over,
it is used to predict the regulation state of each potential
target gene.

Experiment and discussion
Experiment materials
Choosing appropriate GEO data sets
In this study, we used gene expression studies that are
publicly available at NCBI GEO (https://www.ncbi.nlm.

https://www.ncbi.nlm.nih.gov/
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nih.gov/) and that involve only osteoclast progenitors and
mature osteoclast progenitors. Total data sets from 11
GEO studies were downloaded. The specific GSE IDs for
the downloaded data sets are shown in Table 3. Each of
these data sets is preprocessed to have its gene identi-
fiers (called, ID_REF) mapped to official gene symbols
using the accompanying annotation file available at NCBI
GEO for each data set, namely Platform file, for exam-
ple, using GPL6885 “IlluminaMouseRef-8 v2.0 expression
beadchip” for the data set GSE111237. The downloaded
and preprocessed data sets are then subject to “trimmed
quantile normalization (TQN)” as discussed in “Methods”
section (Fig. 5) to enable that data sets generated by inde-
pendent labs can be cohesively compared. Next step is
generating “Comparison Pairs (CPs)” by closely examin-
ing the study context so that which subgroups of samples
should be bundled and compared for our intended two
types of comparison semantics, i.e., osteoclast differen-
tiation up regulation (OCU) and osteoclast differentia-
tion down regulation (OCD). For example, in case of
GSE142866 in Table 3, comparing No RNAKL group as
Control Population with RANKL group as Test Popula-
tion is to create OCU as RANKL is the known ligand
whose binding to RANK initiates signaling for osteoclast
differentiation. On the other hand, comparing RANKL
treated group as Control Population and RANKL with
LEA as Test population is to create OCD as LEA is
known repressing RNANKLE-mediated osteoclast dif-
ferentiation. Similarly, in case of GSE72846, comparing
RANKL as Control Population with MMP9 KO as Test
Population creates OCD as the matrix metalloproteinase

9 is the principal H3NT protease of osteoclastogenesis
and its KO hampers the progression of osteoclastogen-
esis and thus OCD. The summary of all CPs with short
descriptions suggesting how Control/Test populations are
built and what regulatory phenotype that comparison
should produce (i.e., OCU/OCD) is given in Table 4. Over-
all, total 16 CPs, 8 CPs for OCU and 8 CPs for OCD,
were produced from the 11 studies including GSE111237
[33], GSE142866 [34], GSE149887 [35], GSE152986 [36],
GSE17563 [1], GSE20850 [37], GSE30160 , GSE37219
[38], GSE57468 [39], GSE76988 [40], GSE72846 [41] and
GSE135479 [42]. As noticeable, some studies include both
OCU and OCD cases and some only one type.

Generating functional groups
We assume that FGs are a priori known and have already
been incorporated into the pathway diagram of the con-
cerned biological context, as such has been illustrated in
Fig. 4. We show an example of FGs that were built into
osteoclast differentiation in Table 5. This table includes
total 14 FGs made up of 134 genes: Secreted factors for
external cells - Up (6 genes), Secreted factors for exter-
nal cells - Down (13 genes), Coupling factors (7 genes),
Integrin beta 3 (12 genes) Auto regulatory-up (6 genes),
Auto regulatory-down (11 genes), Cytoskeleton control
(7 genes), Acid and enzymes for matrix dissolution (15
genes), Cell differentiation (11 genes), Cell differentia-
tion signaling factors - Up (9 genes), Cell differentiation
signaling factors - Down (6 genes), Cell signaling (13
genes), MSC signature (12 genes) and Calciuren pathway
(6 genes). Figure 6 displays a 2-D plot of 16 CPs using

Table 4 Total 16 CPs related with osteogenesis generated from 11 GEO data sets

ID GSE ID Platform Control population Test population Context

1 GSE111237 GPL6885 osteoclast progenitors mature-osteoclast progenitors OCU

2 GSE142866 GPL17021 No RANKL RANKL OCU

3 GSE142866 GPL17021 RANKL RANKL with LEA OCD

4 GSE149887 GPL21103 Mo (macrophages ) Oc (osteoclasts) OCU

5 GSE17563 GPL339 bone marrow treated with hRANKL 0 hr bone marrow treated with hRANKL 24h OCU

6 GSE17563 GPL339 bone marrow treated with hRANKL 0 hr bone marrow treated with hRANKL 72h OCU

7 GSE20850 GPL1261 Macrophages Osteoclasts OCU

8 GSE30160 GPL1261 WT RANK IVVY Knockin OCD

9 GSE37219 GPL8321 WT NFATc1-deficient OC OCD

10 GSE57468 GPL6885 BMM RANKL 1day BMM RANKL 0day OCD

11 GSE57468 GPL6885 BMM RANKL 2day BMM RANKL 0day OCD

12 GSE57468 GPL6885 BMM RANKL 3day BMM RANKL 0day OCD

13 GSE76988 GPL13112 wild-type osteoclast M-CSF RANKL 24H wild-type osteoclast M-CSF RANKL IL-3 24H OCD

14 GSE76988 GPL13112 wild-type osteoclast precursor M-CSF 24H wild-type osteoclast M-CSF RANKL 24H OCU

15 GSE72846 GPL17021 Control MMP9 KO OCD

16 GSE135479 GPL21103 RANKL FOXO3 RANKL OCU

https://www.ncbi.nlm.nih.gov/
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Table 5 Total 14 functional groups have different behaviors in
different contexts

Functional group Contained genes OCU OCD

1. Autoregulatory - up CCL9, CCR1, CD109,
CXCL10, SDC1, VEGFC

Activation Inhibition

2. Cell Differentiation
signaling factors -
down

PLCB4, PLCB2, GIT1,
DOCK5, TRAF1, TRAF6

Activation Inhibition

3. Cell Differentiation CLCN7, CAR2, CALCR,
CSF1R, TREM2,
TNFRSF11A, OSCAR,
OCSTAMP, MST1R,
ITGB3, DCSTAMP

Activation Inhibition

4. Cytoskeleton
Control

DCSTAMP, LAD1,
MYO1B, OCSTAMP,
SCIN, MYOD1,
MARCKS

Activation Inhibition

5. Integrin Beta3 CLCN7, OCSTAMP,
CALCR, MST1R, CTSK,
MMP14, ITGB3,
MYO1D, ACP5, MMP9,
CAR2, OSCAR

Activation Inhibition

6. Secreted Factors for
External Cells - up

INF2, SEMA4D, SGPL1,
SPP1, CXCL10, CCL9

Activation Inhibition

7. Coupling Factors PGF,SPNS2,CD200,SGPL1,SEMA7A,LIF,CST7Activation Inhibition

8. ACID & Enzymes for
Matrix Dissolution

VCAN, ATP6V0D2,
CAR2, CLCN7, SLC9B6,
CTSK, ACP5, PDE2A,
MMP14, HTRA1,
MMP9, ADAM10,
ATP6V0B, ATP6V0C,
ATP6V0C-PS2

Activation Inhibition

9. Autoregulatory -
down

C1QA, C1QB, C1QC,
CCL2, CCL3, CCL4,
CCL6, CCL7, CXCL14,
IGFBP4, PF4

Inhibition Activation

10. Calcinuren
Pathway

CALM1, CAMK1,
CAMK2A, CALM2,
CALM3, PPP3CA

Inhibition Activation

11. Cell Differentiation
signaling factors - up

PPP2R3A, PPP3CA,
CALM2, PPP2R3C,
CAMK1, TNFAIP2,
CAMK2A, CALM3,
CALM1

Inhibition Activation

12. Cell Signaling SLIT1, SGPL1, INFB,
IL10, CXCL5, IGF1,
SPP1, SLIT3, C1QA,
CCL8, CCL7, C1QC,
C1QB

Inhibition Activation

13. MSC Signature ACTA2, ACTG2, BGN,
CCND1, COL1A1,
COL1A2, COL2A1,
DKK3, FN1, SERPINH1,
SPARC, TNC

Inhibition Activation

14. Secreted Factors
for External Cells -
down

CCL6, CCL4, CCL3,
CCL2, C1QC, C1QB,
CCL7, CXCL14,
CD200R1, CXCL16,
IGF1, APOE, C1QA

Inhibition Activation

t-SNE to illustrate what will happen if we try to reduce
the 14 FGSs to two features for each CP. This t-SNE plot
shows that the separation betweenOCD andOCU cases is
not obvious and suggests the limitation of using only gene
value log2FCs to compute the gene’s functional state.

Choosing key genes and incorporating ChIP-seq identified
targets
Since IRF8 and NFATc1 play an essential role in bone
metabolism as mentioned earlier, these two TFs are
included in the training set along with the genes identified
in FGs. The training is done using the class labels, OCU
and OCD, as summarized in Table 5. In addition, total 213
ChIP-seq identified putative IRF8 target genes obtained
frommouse GC B cell lines [23] and 6,812 ChIP-seq iden-
tified NFATc1 target genes from Harmonizome [43] have
been fed into the learned models.

Training and evaluation
For computational experiments, we used four well-
established machine-learning models, SVM, LR, Gaus-
sian NB and NN, to classify gene regulation patterns
and compared their performances. All four models were
implemented using scikit-learn [44] and in each case, grid
search method [45] was applied to optimize the hyper
parameters to deliver the highest AUC. For SVM, four
kernel functions of different types, linear, nonlinear, poly-
nomial, radial basis function (RBF) and sigmoid, were
tested. The linear kernel function was selected for the
comparative study because it performed the best while
the sigmoid kernel function performed the worst. In case
of Gaussian NB model which a variant of Naive Bayes
model, the parameter only affects the calculation stabil-
ity and thus default parameter setting in scikit-learn was
used. In case of LR model which uses the trained logistic
function to compute the probability of the default class, l1
penalty was used to get the highest AUC. For NN, a multi-
layer perceptron classifier with two hidden layers was built
with its first hidden layer having 5 nodes and the second
one having 3 nodes. For its activation function relu func-
tion was used and adam optimization was applied for the
training.
Each training set includes the five features for each of

134 genes in FGs and the two TFs, IRF8 and NFATc1. The
training set has 2,176 (=136*16) samples from 16 different
CPs. Among them, 70% of samples were used to train the
models, and 30% were used to produce the ROC curves.
To compare the performance of the learned models with
that of the baseline case, the same number of genes not
from FGs were randomly selected from CPs with the same
label assigned with each FG. For instance, a random gene
with its 5 features is fed to train the model without chang-
ing the label obtained from its membership belonging
to its FG.
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Fig. 6 The 2-D plot produced by applying t-SNE to FGS of 16 CPs. Orange colored dots denote OCU CPs and blue colored dots OCD CPs

ROC curves are shown in Fig. 7. All ROC curves using
functional group genes have AUC area above 0.85 and the
models using random genes have AUC area around 0.5
as anticipated. This evaluation clearly suggests that the
learned models were able to make a reasonably accurate
prediction for the target gene’s regulation state by using
the input gene’s 5 features. Other model performance
measurements including Accuracy (ACC), Matthews cor-
relation coefficient (MCC), Sensitivity (SN) and Speci-
ficity (SP) are also shown in Table 6. Among the four
models, SVM, LR and NN have a similar ACC and MCC
while Gaussian NB has a relatively lower ACC and MCC.
All models have similar specificity. Considering the lower
value of the AUC and ACC, Gaussian NB seems inferior
in its capability to contrast label-driven data difference
compared to the other models
Another evaluation experiment was performed by using

TFGS to check if the number of FGs follows the expecta-
tion or not. The results are summarized in Fig. 8. TFGS
was calculated based on the gene in FGs by replacing
its log2 ratio with the predicted results (-1 means down-
regulated and 1 means up-regulated). Since there are 14
FGs related to osteoclast Up/Down context, all mod-
els are trained 14 times. Each time, one FG was held
out as a test set and 13 other FGs were used for the
training set. This “cross-validation” like method produced
14 FGSs which were used to calculate TFGS based on
the number of FGSs whose regulation direction follows
the expectation. TFGS produced by four models were

compared to the TFGS produced by using log2FC. In
summary, we find that the NN model had the highest
AUC area when using the ROC curves. But the SVM
model produces the highest TFGS and the highest speci-
ficity compared to the rest of the models. We performed
the regulatory pattern prediction using all four learned
models. Results obtained from these models are then
compared to the prediction based on the log2FC only
model.
The results of predicting IRF8 and NFATc1 targets are

shown in Tables 1 and 2. The error tolerance parameter T
was set to 5% in this comparison study. Table 7 and Table 8
show the target genes identified differently between the
two machine learning models. For clarification we also
show the actual feature values for the differentially iden-
tified genes and the class label (i.e., GA or GP) that the
learned model assigned for each gene in Table 9. BID in
CP IDs 5 and 6 has positive log2 ratios, but both CPs have
negative row-wise Z-scores in both control and test popu-
lations. Both SVM and NN predicted that these two genes
are GA. CCRL2 in CP ID 9 has a negative log2 ratio, but all
of its Z-scores are positive. Thus, SVM andNN could have
classified that this is a GP case.We note that SVM andNN
produce the same prediction for most of the genes, but
there are cases in which the two models disagree: TAP2 in
CP ID 10 and CASP1 in CP ID 16.We conjecture that such
disagreement suggests a possible future study to develop
an ensemble method capable of combining decisions from
multiple learned models.
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Fig. 7 ROC curve of 4 different models’ prediction results using genes in FGs and random genes

Conclusions
IRF8 and NFATc1 are two important transcription fac-
tors known for osteoclast differentiation. Although, their
potential targets have been widely studied, the regulation
patterns of their target genes during osteoclastogenesis
are still unknown. By designing and implementing cTAP
we identified putative targets of IRF8 and NFATc1 that
may play key roles for osteoclast differentiation. The liter-
ature survey we performed implicated all the ML method
predicted genes in the proper context, i.e., bone remod-
eling or osteoclast differentiation under which this TF
target prediction was performed, providing confidence on
the predictive power of cTAP.

Table 6 Performance of 4 models

Models ACC MCC Sn Sp TP TN FP FN

SVM 0.79 0.58 0.82 0.76 303 283 87 65

Gaussian NB 0.69 0.41 0.48 0.89 177 332 38 191

NN 0.81 0.61 0.84 0.77 310 285 85 58

LR 0.79 0.59 0.78 0.81 288 300 70 80

Regarding the specifics of cTAP’s predictive power in
our study, we report that when cross-referencing the
functional group genes summarized in Table 5 with the
putative target genes summarized in Tables 1 and 2, two
sets of matching genes emerged: for IRF8, MARCKS (“4.
Cytoskeleton Control”), and CCL6 (“9. Autoregulatory-
down”, and “14. Secreted Factors for External Cells-
down”); and for NFATc1, SDC1 (“1. Autoregulatory-up”),
TRAF1 (“2. Cell Differentiation signaling factors-down”),
MARCKS (“4. Cytoskeleton Control”), SEMA7A (“7. Cou-
pling Factors”), ATP6VOB (“8. ACID & Enzymes for
Matrix Dissolution”), CCL3 (“9. Autoregulatory-down”,
and “14. Secreted Factors for External Cells-down”). Since
the predicted targets were chosen from ENCODE identi-
fied putative ChIP targets, one can say that thesematching
genes could be direct targets of IRF8 and NFATc1, respec-
tively, for the annotated functional groups. These spe-
cific relationships are new findings for the scientists who
study osteoclastogenesis, and these new discoveries could
help bone biologists design validation experiments. For
example, to test MARCKS is indeed a direct downstream
target of either IRF8 or NFATc1, one can design and
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Fig. 8 TFGS gained by each machine learning model compare to it gained by log2 ratio only. The higher score means more FGs in all CPs follow the
expectation of activation or inhibition

perform an IRF8 knock out (KO) study and measure how
much cytoskeleton control function is impacted through
down/up regulation of MARCKS. Similar hypothesis can
be attempted, that is, if knocking out IRF8 diminishes
the expression level of CCL6 and at the same time
noticeable impact is observed among secreted factors for
external cells.
One unique aspect of developing cTAP includes the

introduction of gene expression values themselves, i.e.,
z-scores, in the analysis. Doing so was motivated by rec-
ognizing that profiling a gene’s expression simply based
on fold change between test and control sample does not
utilize all of the information present in gene expression
studies. Experimentalists may argue that despite some
gene transcripts being expressed at a lower level in the
test sample compared to the control sample, their level of
expression may still be sufficient enough to carry out its
intended function. Likewise, gene transcripts expressed
at a higher fold change in the test sample compared to
the control sample may not necessarily indicate an up-
regulation even if such a decision of differential expression
was obtainedwith statistical significance after background
noise removed. The article by [46] points out that merely
using fold-change to determine significant changes in
gene expression does not reflect signal intensity and can
result in a substantial number of generating false positives

Table 7 Distinct target genes of IRF8 in SVM and NN models
compare to log2FC

Models Differently called genes

SVM PARP8; BID; CCRL2; CTPS2; CASP1; H2-M3; SLC15A3; IRF5

NN TAP2; BID; BST2; CCRL2; CTPS2; H2-M3; NOTCH1

and false negatives. The design behind cTAP is that if we
take into account the collective behaviors of related genes
in a cohort of gene expression data sets of the same or
comparable context, this potential problem of false pos-
itives and false negatives could be abated. We consider
that using machine learning methods for this type of pre-
diction problem is very appropriate because designing
an algorithmic solution to combine fold-change and sig-
nal intensities together introduces too many degrees of
freedom in the analysis.
Regarding future work, cTAP offers new ways to “in-

silico” assess predicted targets’ implication in skeletal
biology, specifically offering venues to associate predicted
targets with prior knowledge known or hypothesized for
bone diseases. As shown in Tables 1 and 2, too many
genes emerged as potential leads. Next task is to study
how to prioritize these so that experimentalists can focus
on a smaller list of candidates with higher probability for
translational potential to address the disease known for its
extreme polygenic nature with estimated thousands of low
effect genes [47, 48]. One resource to cross-reference the

Table 8 Distinct target genes of NFATc1 in SVM and NN models
compare to log2FC

Models Differently called genes

SVM ACAD10; CNIH4; DNAJA3; DUS3L; FEM1A; PEX16;
PIGQ; PRDX3; SEMA7A; SSNA1; ANXA6; ATF3; CCL3;
CDC42EP3; CPEB2; DCK; IRF5; LXN; MAP4K2; PIK3CG;
SLC15A3; SLC9A3R1; SP100; TEX2

NN ACAD10; COG8; COX17; DNAJA3; DUS3L; HINT2;
MBTPS1; MRPL12; PRDX3; PTDSS2; TCF12; UMPS;
ADAM15; CCL3; CPEB2; LXN; MAP4K2; MS4A7; NAB2;
NOTCH1; SLC15A3; SLC9A3R1; SNAP29; TEX2; TMBIM1
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Table 9 Targt genes with 5 features in different CP and their prediction results

CP ID Gene Symbol F1 F2 F3 F4 F5 SVM prediction result NN prediction result Pattern

9 NOTCH1 – + + – – Up Up GP

5 BID + + + – – Down Down GA

6 BID + + + – – Down Down GA

5 IRF5 + + + + – Down Down GA

9 CCRL2 – + + + + Up Up GP

5 CASP1 + + + + – Down Down GA

16 CASP1 + + + + + Down UP -

10 TAP2 – + + + + Up Down -

6 CTPS2 + + + + – Down Down GA

predicted target genes is the International Mouse Pheno-
typing Consortium (IMPC) repository which is a remark-
able resource built through community efforts to identify
genes affecting tissue health (including bone) by knock-
ing out thousands of mouse genes individually. Another
resource is Human GWAS Catalog that assembled hun-
dreds of loci that are associated with bone mineral den-
sity (BMD), osteoporosis, and osteoporotic fractures [49].
Yet another source is systems biology derived gene net-
works such as the one developed by Al-Barghouti et al.
who performed a systems genetics analysis of 55 complex
skeletal phenotypes using cortical bone RNA-seq data and
reported 66 likely causal genes for human BMD GWAS
associations [50]. The key to this type of secondary “in-
silico” meta-analysis is to perform an integrative analysis
in themost productive and informativemanner with suffi-
ciently sensitive tools so that one can identify which target
identifying variation in skeletal metrics is predictive of
subsequent skeletal dysfunction.
In summary, we point out that development of cTAP

originated from our effort to analyze our high through-
put μCT and histomorphometric screen of unselected
homozygous gene KO mice produced by the IMPC. The
IRF8 KO line had the lowest bone mass and highest
osteoclastic activity of the 220 lines examined [51] as
the details of this analysis can be seen on the webpor-
tal, bonebase.org. Understanding which other genes IRF8
could interact with was discoverable by applying cTAP to
multiple publicly available gene expression data sets using
a proven pathway known to affect one or more of the cell
lineages involved in skeletal formation and maintenance.
Our next research agenda is to narrow down the predicted
target list and engage in validation of promising targets
and eventually demonstrate that cTAP like TF target pre-
diction method can be instrumental to deconvoluting the
genetic complexity of developmental and degenerative
skeletal disease.
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